首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
红壤中La的生物富集及其对玉米幼苗生长影响研究   总被引:1,自引:0,他引:1  
Through a pot culture lanthanum nitrate was applied to maize seedlings grown in a red loamy soil to investigate the physiological and toxic effects of added La on the growth of crop seedlings and La bioaccumulation to help understand the environmental chemistry behaviors of rare earth element as fertilizers in soils. Compared to the control, La concentrations in shoots and especially in roots of maize seedlings increased with an increase of La in the soil. Also, with added concentrations of La 〉 0.75 g La kg-1 soil and ≥ 0.05 g La kg^-1 soil, the dry weight of shoots and roots of maize seedlings was significantly reduced (P ≤ 0.05), respectively, compared with the control. Additionally, La ≥0.5 g kg^-1 in the soil significantly inhibited (P ≤ 0.05) primary root elongation. Roots were more sensitive to La stress than shoots and thus could be used as a biomarker to La stress. Overall, in the red loamy soil studied, La had no significant beneficial effects on the growth of maize at the added La levels above 0.1 g kg^-1 soil.  相似文献   

2.
Silicon (Si) can enhance the resistance of plants to many abiotic stresses. To explore whether Si ameliorates Fe2+ toxicity, a hydroponic experiment was performed to investigate whether and how Si detoxifies Fe2+ toxicity in rice (Oryza sativa L.) roots. Results indicated that rice cultivar Tianyou 998 (TY998) showed greater sensitivity to Fe2+ toxicity than rice cultivar Peizataifeng (PZTF). Treatment with 0.1 mmol L-1 Fe2+ inhibited TY998 root elongation and root biomass significantly. Reddish iron plaque was formed on root surface of both cultivars. TY998 had a higher amount of iron plaque than PZTF. Addition of Si to the solution of Fe treatment decreased the amount of iron plaque on root surface by 17.6% to 37.1% and iron uptake in rice roots by 37.0% to 40.3%, and subsequently restored root elongation triggered by Fe2+ toxicity by 13.5% in the TY998. Compared with Fe treatment, the addition of 1 mmol L-1 Si to the solution of Fe treatment increased xylem sap flow by 19.3% to 24.8% and root-shoot Fe transportation by 45.0% to 78.6%. Furthermore, Si addition to the solution of Fe treatment induced root cell wall to thicken. These results suggested that Si could detoxify Fe2+ toxicity and Si-mediated amelioration of Fe2+ toxicity in rice roots was associated with less iron plaque on root surface and more Fe transportation from roots to shoots.  相似文献   

3.
Beneficial interactions between microorganisms and plants, particularly in the rhizosphere, are a research area of global interest. Four cadmium (Cd)-tolerant bacterial strains were isolated from heavy metal-contaminated sludge and their effects on Cd mobility in soil and the root elongation and Cd accumulation of Orychophragmus violaceus were explored to identify the capability of metal- resistant rhizobacteria for promoting the growth of O. violaceus roots on Cd-contaminated soils. The isolated strains, namely, Bacillus subtilis, B. cereus, B. megaterium, and Pseudomonas aeruginosa, significantly enhanced the plant Cd accumulation. The Cd concentrations in the roots and shoots were increased by up to 2.29- and 2.86-fold, respectively, by inoculation of B. megaterium, as compared with the uninoculated control. The bacterial strains displayed different effects on the shoot biomass. Compared with the uninoculated plants, the shoot biomass of the inoculated plants was slightly increased by B. megaterium and significantly decreased by the other strains. B. megaterium was identified as the best candidate for enhancing Cd accumulation in O. violaceus. Thus, this study provides novel insight into the development of plant-microbe systems for phytoremediation.  相似文献   

4.
Di-(2-ethylhexyl) phthalate(DEHP) is a high-molecular-weight phthalate ester(PAE) that has been widely used in the manufacture of polyvinylchloride and contributes to environmental pollution.The objectives of the present study were to isolate a DEHP degrader that can utilize DEHP as a carbon source and to investigate its capacity to biodegrade DEHP in both liquid culture and soil.A bacterial strain WJ4 was isolated from an intensively managed vegetable soil,which was contaminated with PAEs.The strain WJ4 was affiliated to the genus Rhodococcus and was able to remove DEHP from soil effectively.A period of only 7 d was required to degrade about 96.4%of DEHP(200 mg L-1) in the liquid culture,and more than 55%of DEHP(1.0 g kg-1) in the artificially contaminated soil was removed within 21 d.Furthermore,Rhodococcus sp.strain WJ4 had a strong ability to degrade DEHP without additional nutrients in liquid minimal medium culture and DEHP-contaminated soil and to degrade the homologue of DEHP in both liquid culture and soil.Strain WJ4 represents a novel tool for removing PAEs from contaminated soils and it may have great potential for application in the remediation of environmental pollution by PAEs.  相似文献   

5.
棉花发芽前生长与土壤温度关系研究   总被引:2,自引:0,他引:2  
Soil temperature is an important variable governing plant growth and development. Studies were conducted under laboratory conditions to determine the effect of soil temperature on root and shoot growth of cotton during emergence. Cotton seedlings were grown for 192 h at 20, 32 and 38℃ in soil packed in 300 mm long and 50 mm diameter cylinders. The data indicated that the longest roots (173 ram) as well as shoots (152 mm) were recorded at 32℃ followed by 20 (130 mm root and 82 mm shoot) and 38℃ (86 mm root and 50 mm shoot). Roots grown at 20 and 38 ℃ were 20% and 50% shorter, respectively, than those grown at 32℃ after 192 h. Roots and shoots exhibited the lowest length and dry biomass at 38 ℃. Shoot lengths grown at 20 (74 mm) and 38℃(51 mm) were 44% and 61% shorter than those grown at 32℃(131 mm) after 180 h growth period, respectively. Growth at all three temperatures followed a similar pattern. Initially there was a linear growth phase followed by the reduction or cessation of growth. Time to cessation of growth varied with temperature and decreased faster at higher temperatures. Sowing of cotton should be accomplished before seedbed reaches a soil temperature (≥ 38 ℃) detrimental for emergence. Further, the seedbeds should be capable of providing sufficient moisture and essential nutrients for emerging seedling before its seed reserves are exhausted to enhance seedling establishment in soil.  相似文献   

6.
A hydroponic experiment was carried out to study the effect of elevated carbon dioxide (CO2) on root growth of tomato seedlings. Compared with the control (350 μL L-1), CO2 enrichment (800 μL L-1) significantly increased the dry matter of both shoot and root, the ratio of root to shoot, total root length, root surface area, root diameter, root volume, and root tip numbers, which are important for forming a strong root system. The elevated CO2 treatment also significantly improved root hair development and elongation, thus enhancing nutrient uptake. Increased indole acetic acid concentration in plant tissues and ethylene release in the elevated CO2 treatment might have resulted in enhanced root growth and root hair development and elongation.  相似文献   

7.
A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with cowpea seeds. After 60 days the positive impact of AM inoculation on the growth of cowpea was more pronounced in the red soil than in the yellow-brown soil, with significantly higher (P < 0.01) mycorrhizal colonization rate, shoot dry weight and total P content in shoot tissues for the red soil. Both in the yellow-brown and red soils, AM inoculation significantly (P < 0.01) reduced shoot DEHP content, implying that AM inoculation could inhibit the uptake and translocation of DEHP from roots to the aboveground parts. However, with AM inoculation no positive contribution to the degradation of DEHP was found.  相似文献   

8.
中国蔬菜农业邻苯二甲酸酯污染与人体健康累积风险评估   总被引:4,自引:0,他引:4  
Phthalate esters(PAEs), which can disturb human endocrine system, have been widely detected in vegetable greenhouse agriculture in China. To investigate the effects of environmental factors on PAEs in soils, pollution sources were identified, and the cumulative risks of PAEs to humans through vegetables in the diet were evaluated in this study. Ninety-eight vegetable samples were collected from 10 markets along with 128 vegetable and 111 soil samples from agricultural greenhouses and open field. All soil and vegetable samples were contaminated with PAEs, and the total concentrations of the 5 PAEs, including dimethyl phthalate(DMP), diethyl phthalate(DEP), di-iso-butyl phthalate(DiBP), di-n-butyl phthalate(DnBP), and di-2-ethylhexyl phthalate(DEHP), were in the ranges of 0.26–2.53 mg kg~(-1) for soils and 0.95–8.09 mg kg~(-1) for vegetables. Three components extracted from principle component analysis could explain 51.2%, 19.8%, and 15.3% of the total variance of the 5 PAEs in soils, which may represent three major sources of PAEs, i.e., wastewater irrigation, application of fertilizers and pesticides, and plastic film. Long-term greenhouse cultivation could accumulate DEHP in soils, and a higher soil Fe Ox content reduced the Dn BP concentration. Based on a survey of vegetables in the diet, the hazard index of PAEs was 0.15 for individuals in different cities. The exposure of PAEs through vegetable intake was higher than the total exposure from other food stuffs, inhalation, and dermal absorption. More attention should be given to controlling PAEs in greenhouse vegetables.  相似文献   

9.
To elucidate the mechanisms of tolerance to zinc (Zn) deficiency and Zn toxicity in the root of apple trees, the apple rootstock Malus hupehensis (Pamp.) Rehd seedlings were selected to study the responses of organic acids to Zn homeostasis in roots under low Zn (0 μmol L-1 ), adequate Zn (as control, 4 μmol L-1 ) and toxic Zn (100 μmol L-1 ) treatments. The differences of Zn concentrations and accumulations in the roots were highest, compared with those in the stems and leaves, when apple seedlings were subjected to low and toxic Zn treatments for 1 d. The concentrations and accumulations of oxalic and malic acids in the roots in the low and toxic Zn treatments increased by 20% to 60% compared with those of the control treatment. Significantly negative correlations were found between the total Zn concentrations and the concentrations of oxalic and malic acids in the roots under 1 d of low Zn treatment. However, contrary correlations were found for the toxic Zn treatment. Meanwhile, the maximum influx rates of Zn 2+ under low and toxic Zn treatments increased by 30% and 20%, respectively, compared with the rate of the control treatment. Both Zn deficiency and Zn toxicity increased the concentrations of organic acids in root after short-time Zn treatment, which could resist Zn stress through balanding Zn homeostasis in M. hupehensis Rehd.  相似文献   

10.
A hydroponic experiment with six treatments, i.e., 0% seawater (control), 10% seawater, 25% seawater, 0% seawater + N (7.5 mmol L-1 NaNO3), 10% seawater + N (7.5 mmol L-1 NaO3), and 25% seawater + N (7.5 mmol L-1 NaNO3), was carried out to study the effect of nitrogen addition on the growth and physiological and biochemical characteristics of Jerusalem artichoke (Helianthus tuberosus) seedlings under seawater stress. The 10% seawater stress treatment had the least effect on plant growth while at 25% seawater growth was significantly inhibited. The malondialdehyde content and electrolyte leakage in leaves under 10% seawater were similar to those of the control, but significantly higher under the 25% seawater stress. The activities of superoxide dismutase, peroxidase and catalase in the leaves increased concomitantly with increasing seawater concentration and time. Proline and soluble-sugars in the leaves and Na^+, K^+, and Cl- contents in shoots and roots increased significantly with the concentration of seawater increasing. Nitrogen addition resulted in increasing fresh and dry weights of shoots and roots compared with seawater treatment without N. Nitrogen supplementation also significantly enhanced the activities of antioxidant enzymes in leaves. Addition of N to seawater enhanced the contents of proline and soluble-sugars in the leaves and K^+ and total-N in the aerial parts and roots of H. tuberosus, but it resulted in declined concentrations of Na^+ and Cl- in the aerial parts and roots. Nitrogen addition ameliorated the toxicity of seawater by improving the antioxidative enzymes, accumulating of proiine and soluble-sugars, and altering the distribution of inorganic ions in H. tuberosus.  相似文献   

11.
北京市东南郊灌区土壤和农产品酞酸酯污染风险评估   总被引:4,自引:0,他引:4  
为明确北京市东南郊典型灌区土壤和作物酞酸酯PAEs含量和污染水平,2015年利用气象色谱-质谱仪检测了该灌区31个表层土壤样品和38个作物样品的6种优控PAEs含量.研究结果表明灌区表层土壤PAEs质量分数为1.8~12.2 mg/kg,均值5.1 mg/kg.与国内外相比,该研究中土壤PAEs含量处于较高水平.土壤中邻苯二甲酸正二丁酯(DnBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)含量均值分别占PAEs总量的60.4%和35.9%.土壤样品邻苯二甲酸二甲酯(DMP)和DnBP含量均超美国土壤PAEs控制标准,但总体上未超过美国土壤PAEs治理标准.冬小麦籽粒、夏玉米籽粒和果蔬可食用部位PAEs质量分数分别为2.34~3.66、1.76~3.15和2.26~3.76 mg/kg;与其他研究成果相比,该研究区农产品PAEs含量处于中等水平.不同污灌历史年限区域土壤和粮食作物籽粒PAEs含量均没有显著差异.冬小麦籽粒、夏玉米籽粒和果蔬中DEHP和DnBP含量分别占总量的50.3%和30.5%、45.1%和50.2%、47.16%~63.3%和31.96%~46.36%.农产品PAEs总量及各组分含量均低于欧洲的建议标准值.粮食作物籽粒中PAEs和DnBP含量与土壤中相应含量呈显著正相关,Pearson相关系数(r)分别为0.74~0.87和0.91~0.92.该研究中农作物对PAEs的迁移系数为0.24~1.65.儿童和成人PAEs致癌风险分别为1.34×10-5和3.87x10-5,非致癌指数分别为9.44x 10-1和3.83×10-1,均在可接受范围内;通过口-作物暴露对PAEs 2种风险贡献均最大,DEHP对人体2种风险贡献最大.  相似文献   

12.
Tropical legume cover crops are important components in cropping systems because of their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the influence of N fertilization with or without rhizobial inoculation on growth and shoot efficiency index of 10 important tropical cover crops. Nitrogen treatment were (i) 0 mg N kg?1 (control or N0), (ii) 0 mg N kg?1 + inoculation with Bradyrhizobial strains (N1), (iii) 100 mg N kg?1 + inoculation with Bradyrhizobial strains (N2), and (iv) 200 mg N kg?1 of soil (N3). The N?×?cover crops interactions were significant for shoot dry weight, root dry weight, maximal root length, and specific root length, indicating that cover crop performance varied with varying N rates and inoculation treatments. Shoot dry weight is considered an important growth trait in cover crops and, overall, maximal shoot dry weight was produced at 100 mg N kg?1 + inoculation treatment. Based on shoot dry-weight efficiency index, cover crops were classified as efficient, moderately efficient, and inefficient in N-use efficiency. Overall, the efficient cover crops were lablab, gray velvet bean, jack bean, and black velvet bean and inefficient cover crops were pueraria, calopo, crotalaria, smooth crotalaria, and showy crotalaria. Pigeonpea was classified as moderately efficient in producing shoot dry weight.  相似文献   

13.
Phthalate esters(PAEs) are extensively applied in industry, and they migrate to environment during the process of production,employ, and treatment and are difficult to be degraded in nature. However, some microorganisms could use them as the carbon source to growth. In this study, an Acinetobacter sp. strain LMB-5, capable of utilizing PAEs, was isolated from a vegetable greenhouse soil.The degradation capability of strain LMB-5 was also investigated by incubation in mineral salt medium containing different PAEs,dimethyl phthalate(DMP), diethyl phthalate(DEP), di-n-butyl phthalate(DBP), and di-(2-ethylhexyl) phthalate(DEHP). The strain could grow well with DMP, DEP, DBP, and DEHP. When the concentration of DBP increased from 100 to 400 mg L~(-1), the half-life extended from 9.5 to 15.5 h. In the concentration range of DBP, the degradation ability of strain LMB-5 could be described by first-order kinetics. During the biodegradation of DBP, three intermediates, 1,2-benzenedicarboxylic acid,butyl methyl ester, DMP,and phthalic acid(PA) were detected, and the proposed pathway of DBP was identified. By analysis of bioinformatics, one esterase was cloned from the genome of LMB-5 and expressed in Escherichia coli. It displayed an ability to break the ester bonds of DBP. The enzyme exhibited maximal activity at pH 7.0 and 40℃ with DBP as the substrate. It was activated by Cu~(2+) and Fe~(3+) and had a high activity in the presence of low concentrations of methanol or dimethylsulfoxide(each 10%, volume:volume). The Acinetobacter sp. strain LMB-5 may make a contribution to the remediation of soils polluted by PAEs in the future.  相似文献   

14.
The effects of di-(2-ethylhexyl) phthalate (DEHP) at five different doses from 10 to 1000 mg kg−1 soil on biological properties were investigated over a period of 56 days. Meanwhile, the dissipation of DEHP was also monitored. The results indicated that the microbial biomass C (Cmic) fluctuated at around 70 mg kg−1 soil for the control, whereas the Cmic varied significantly for the soil samples contaminated by DEHP. The catalase activities in all five treatments were stimulated at most time, and the activities of phosphatase in the soils treated by DEHP with 500 mg kg−1 or 1000 mg kg−1 were significantly higher than the other treatments from the 20th day. Urease was more sensitive and inhibited significantly during the initial period of incubation. Additionally, the dose–response relationship of invertase was presented in the later phase of incubation. The activities of urease and invertase might indicate soil perturbations caused by the introduction of DEHP. The dissipation of DEHP was found to follow the pseudo first-order kinetics behavior.  相似文献   

15.
For better understanding of mechanisms responsible for genotypic differences in uptake and translocation of cadmium (Cd) in different plant species, two maize (Zea mays L.) inbred lines (B37 and F2) and a bean (Phaseolus vulgaris L.) cultivar (Saxa) were grown in a complete nutrient solution with additional 0.5 μM Cd and 250 μM buthionine sulfoximine (BSO), an inhibitor of PC synthesis, alone or in combination. The maize line B37 had a much higher Cd content in shoots (116.2 mg Cd kg?1 dry wt.) than F2 (32.7 mg Cd kg?1 dry wt.) and bean (1.83 in leaves, and 2.85 mg Cd kg?1 dry wt. in stems), whereas in roots the Cd content was much higher in bean (602.6 mg Cd kg?1 dry wt.) than in maize (427.1 mg Cd kg?1 dry wt. in B37, and 428.2 mg Cd kg?1 dry wt. in F2). Application of BSO markedly decreased Cd contents in roots of bean and maize lines, and also Cd contents in shoots and stem basis of both maize lines, while Cd contents in leaves, stems and stem basis of bean were not reduced by BSO. In root extracts (Tris-HCl buffer, pH 8.0) the proportion of Cd in the soluble fraction was much lower in bean (29.6%) than in the maize lines B37 (58.6%) and F2 (60.1%). Compared with the whole root tissue, Cd contents in the stele of the roots were much lower, especially in bean, and decreased by BSO in both maize lines, but not in bean. Gel-chromatography of root extracts strongly suggested that in the soluble fraction about 80% of the Cd was present as Cd-phytochelatin (PC) complexes in B37, whereas in F2 this Cd fraction accounted for about 50%, and in bean only for a few percent in the soluble fraction, Our results suggest that Cd-PC complexes constitute a mobile form in plants. The lower proportion of Cd in the soluble fraction as well as lower PC production in roots of bean compared to maize lines may be the main reasons for the very low Cd translocation from roots to shoots in bean plants.  相似文献   

16.
ABSTRACT

Elsholtzia splendens Naki has been identified as a copper (Cu) geobotanical indicator. In this study, the effects of Cu supply levels (control, 100, 200, 400, 600, 800, 1000, 1200 mg kg1) on the growth and Cu accumulation in E. splendens were studied in one pot experiment. The results showed that no reduction in shoot height and dry weight was noted when the plants were grown at Cu supply levels up to 1000 mg kg?1 in soil. Slight stimulation on shoot growth was noted at Cu levels ≥ 100 mg kg?1. Copper concentration in shoots and roots increased with increasing Cu levels, and reached a maximum of 1751 and 9.45 mg kg?1 (DW) at 1200 mg Cu kg?1. The amount of Cu accumulated in the roots and shoots were 313 and 22 μ g plant?1 at external Cu levels of 1000 and 800 mg kg?1, respectively. The shoot/root Cu ratios ranged from 0.005 to 0.008 and more than 92% of the total Cu taken up by E. splendens was accumulated in roots. Furthermore, Cu concentrations in roots and shoots were significant and positively correlated with total soil Cu, water, ammonium nitrate (NH4NO3), ammonium (NH4)-acetate, and ethylenediaminetetraacetic acid (EDTA) extractable Cu. These results indicate that E. splendens can considered as a Cu tolerant and accumulated plant, and root is the major part for accumulation of Cu in E. splendens.  相似文献   

17.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

18.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号