首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Field studies were conducted during 2008–2009 and 2009–2010 at the Gangetic alluvial plains of West Bengal, India, to assess the different levels of drip fertigation at variable evaporation replenishment compared to surface irrigation and conventional soil fertilization on yield, water use efficiency, and nutrients availability in plant and ratoon crop of banana. The experiment was laid in an Augmented Factorial Complete Block Design with three replications having three drip irrigation schedules at 50%, 60%, and 70% of cumulative pan evaporation (CPE) and three drip fertigation schedules at 50%, 60%, and 80% of recommended nitrogen, phosphorus, and potassium (NPK) fertilizers with inclusion of conventional surface irrigation at 100% of IW/CPE. The results showed that fruit yield of plant and ratoon crop increased progressively with increasing levels of irrigation water (up to 60% CPE) and NPK fertigation through the drip system. However, maximum fruit yield and water use efficiency of crops was obtained with drip irrigation at 60% CPE with NPK fertigation at 80% of recommended dose. Drip irrigation, as a whole, registered higher fruit yields and water use efficiency with savings of 38.3–41.5% of water compared to surface irrigation. Availability of N, P, and K in soil at vegetative, shooting, and harvesting stages for plant and ratoon crop consistently increased with increasing rate of irrigation water and NPK fertigation through the drip system. Higher availability of macronutrients in soil was recorded with drip irrigation at 70% CPE with 80% of recommended drip NPK fertigation. Overall drip fertigation system improved the available plant nutrients in the soil as compared with traditional surface irrigation.  相似文献   

2.
Different methods of fertilizer application-drip fertigation and conventional fertilizer application under drip, surface irrigation, and rainfed conditions were evaluated during 2009–2012 at Krishi Vigyan Kendra, Shimla, India. The experiment was arranged in randomized block design (RBD), replicated thrice. Results suggest that fertigation significantly increased growth parameters over conventional methods. Fruit yield was significantly higher under fertigation (13.7 t ha?1) over conventional fertilizer application with drip (11.6 t ha?1), surface irrigation (10.6 t ha?1), and under rainfed (8.6 t ha?1). Fruit quality parameters were also superior under fertigation. Fertigation maintained higher available nitrogen (N) and potassium (K) content in 0-30 cm soil layers. Available phosphorus (P) was higher in 0-20 cm soil depths in all the treatments. Fertigation with 80 and 100 percent recommended NPK dose registered statistically comparable results. In addition to higher productivity, fertigation resulted in 20 percent fertilizer savings over drip irrigation and 20 percent fertilizer besides 40 percent water savings over surface irrigation.  相似文献   

3.
Abstract

A field experiment was conducted at Research Farm of ICAR-Directorate of Groundnut Research, Junagadh for consecutive three summer seasons of 2013, 2014, and 2015 with the objectives of identifying optimum plant density and nutrient doses under check basin irrigation and drip fertigation for higher productivity and net returns. The treatments were; three plant densities viz., 3,33,333 plants/ha (100% of recommended plant density; P1); 4,16,666 plants/ha (125% of recommended plant density; P2), and 4,99,999 plants/ha (150% of recommended plant density;P3) in main plots, and three nutrient doses viz., 18.75–37.5–22.5 NPK kg ha?1 (75% of recommended nutrient dose; F1), 25-50-30 NPK kg ha?1 (100% of recommended nutrient dose; F2), and 31.25–62.5–37.5 NPK kg ha?1 (125% of recommended nutrient dose; F3) in sub-plots, and replicated thrice. The same sets of treatments were tested under both check basin irrigation and drip fertigation. The data were analyzed using split plot design. Pod yield, haulm yield, and net returns were significantly higher with P3 as compared to P1 under check basin irrigation but only haulm yield was found significantly higher with P3 under drip fertigation. Under check basin irrigation, NH4–N, NO3–N, and available P and K in soil were found in the order P1?>?P2?>?P3 (p?<?0.05) while in case of drip fertigation, differences were significant only for available K which was significantly higher in P1 over both P2 and P3. Under check basin irrigation, F2 i.e., application of 100 percent of recommended nutrient doses, being at par with F3, significantly improved pod yield, haulm yield and net returns over that with F1 however, differences were not significant under drip fertigation. NH4–N, NO3–N and available P and K in soil under both the irrigation systems were in the order F3?>?F2?>?F1 (p?<?0.05).  相似文献   

4.
Studies were conducted during 2010–2012 at University of Horticulture & Forestry, Solan, Himachal Pradesh, India. Four fertigation levels were tested with humic acid (combined fertigation) and without humic acid (sole fertigation or fertigation alone). The experiment comprising eight treatment combinations in Randomized Block design, replicated four times. Investigations revealed that combined fertigation significantly increased plant height (5.7%), total dry matter (7.7%), leaf area index (3.2%), chlorophyll content (4.7%) and fruit yield (9.6%) over sole fertigation. Higher available N and K in was recorded in surface soils whereas, better translocation of available P was noted at 10–20 cm soil layers under combined fertigation. Higher nutrient recovery and fertilizer use efficiency was also noted in combined fertigation. Fertigation along with humic acid resulted in 20 per cent fertilizer savings over fertigation alone. It is concluded that efficiency of fertigation can further be increased by using humic substances in any agricultural production system.  相似文献   

5.
The effects of drip fertigation of NPK and vermicompost extract (VCE) on soil fertility status of arecanut-only and arecanut-cocoa systems were assessed in a 4-year field study. In arecanut, soil pH was reduced over initial levels. At 0–30 cm deep, fertigation of 75 percent NPK to arecanut only and organic-matter recycling in arecanut + cocoa maintained significantly greater soil organic carbon (SOC) and soil-test phosphorus (P). At the first depth, soil potassium (K) was significantly greater with 75 percent NPK (246 mg kg?1) than other treatments. In cocoa, soil pH varied significantly due to fertigation at both depths. The SOC was reduced due to 75 percent NPK at the first depth. In cocoa, the P availability increased significantly with application of VCE at 20 percent N. Fertigation of 75 percent NPK maintained significantly greater soil K and soil Mg than other treatments. The results suggest that drip fertigation of NPK sustains the soil fertility status in arecanut and cocoa.  相似文献   

6.
Crop productivity and nutrient use are mainly water restricted in semi-arid regions. This study was conducted to find out whether the onion seed crop productivity could be elevated through drip fertigation. The effects of irrigation and fertigation levels on yield, yield components, quality, and nutrient use of onion seed crop (Allium cepa L.) were investigated at Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, western India on a sandy clay loam soil. Irrigation water applied at evapotranspiration (ETc) levels at 80% (I1), 90% (I2), and 100% (I3), whereas drip fertigation levels at 60%, 80%, 100%, and 120% of recommended dose [120:60:60 nitrogen, phosphorus, potassium (NPK) kg/ha] were investigated. Three-year experiment results showed no significant differences in number of seed per umbel, seed yield per umbel per plant, seed and straw yield per hectare from the comparison between 100% ETc and 90% ETc. In fertigation, 120% and 100% levels gave significantly higher values of yield components and seed yield than the 80% and 60% levels. The quality parameters decreased with decrease in ETc, but increased with increase in fertigation levels. Fertilizer-use efficiency (FUE) was highest in 60% fertigation and then declined with the increase in fertigation levels. Irrigation at 100% ETc and fertigation at 120% resulted in higher nutrient use, but the difference with 90% ETc and 100% fertigation was non-significant. The 90% ETc and 100% fertigation dose (120:60:60 NPK kg/ha) appears a useful practice to increase onion seed productivity under the semi-arid climate of western India.  相似文献   

7.
应用PGPR菌肥减少烤烟生产化肥的施用量   总被引:8,自引:0,他引:8  
利用从烤烟根际筛选的抗生菌、固氮菌、解磷菌和解钾菌菌株制成PGPR菌肥,进行田间完全区组随机试验,研究其在减施化肥的条件下对烤烟产量质量的影响。试验地土壤类型为黄棕壤,种植烤烟品种为云烟89,菌肥施用量30 kg hm-2,于烤烟移栽时溶于生根水中一起施入。共设4个处理,分别是(1)常规施肥同时施用PGPR菌肥;(2)NPK肥为常规施肥的80%同时施用PGPR菌肥;(3)常规施肥;(4)NPK肥为常规施肥的80%。结果表明,施用菌肥的二处理与未施用菌肥的二处理相比,施用菌肥不同生长期烤烟根际放线菌的数量显著降低17%~27%(p<0.05),根际微生物生物量碳含量提高3%~16%,现蕾期根际解磷菌的数量显著提高24%(p<0.05),并可提高烤烟的抗病性,烤后烟外观质量好。处理(2)与处理(4)比较,现蕾期烤烟根际氮、钾、铜、锌、硼和铁6种元素的有效性提高4.46%~28.87%,而磷、钙、镁和锰4种矿质元素的有效性降低2.63%~30.19%,烤烟产量和净产值分别提高7.53%和30.05%。处理(2)与处理(3)比较,烤烟产量和净产值分别提高4.52%和24.68%。使用PGPR菌肥可适当减少化肥用量,为可持续生产优质、无公害烟叶的有效途径之一。  相似文献   

8.
水肥一体化技术对不同生态区果园苹果生产的影响   总被引:11,自引:0,他引:11  
为探究水肥一体化技术对陕西省不同生态区苹果生产的影响,分别选取渭北旱塬区和关中平原区典型‘红富士’苹果园,研究了相同肥料用量的NPK传统施肥[NPK(C)]、NPK水肥[NPK(F)]和肥料用量减半的NPK水肥[1/2NPK(F)]对苹果产量、品质、肥料利用效率、果实养分吸收和果园经济效益的影响。结果表明,因不同生态区环境条件和果园自身土壤和肥力等存在差异,水肥一体化技术对苹果生产的影响也不同。渭北旱塬区果园,与NPK(C)相比,NPK(F)处理苹果增产13.0%,果实硬度增加10.6%,糖酸比提高19.1%,化肥偏生产力(PFP)由18.2 kg·kg?1提高至36.3 kg·kg?1,果实N、P和K养分吸收量分别增加36.0%、75.3%和44.8%;1/2NPK(F)处理对苹果生产的影响基本不显著。关中平原区果园,与NPK(C)相比,1/2NPK(F)使苹果增产26.2%,糖酸比提高16.9%,PFP从27.2 kg·kg?1提高至68.7 kg·kg?1,果实N、P和K养分吸收量分别增加41.8%、98.9%和58.9%;然而,NPK(F)处理苹果仅增产14.1%,果实养分吸收无显著增加,品质亦无明显改善。经济收益方面,在相同肥料用量下,采用水肥一体化技术可使渭北旱塬区和关中平原区果园分别增收1.55万元·hm?2和3.65万元·hm?2;当肥料用量减半时,收益增加分别为0.21万元·hm?2和7.28万元·hm?2。总体而言,在陕西渭北旱塬区和关中平原区果园采用水肥一体化技术均能显著提高苹果产量和改善品质,但其效果存在明显差异,实践中需因地制宜,根据果园实际情况,采用适宜的水肥用量以求达到高产、高效和优质的目标。  相似文献   

9.
荔枝钾氮肥滴施比例及施肥方式对土壤pH和盐分的影响   总被引:1,自引:0,他引:1  
灌溉施肥引起的土壤酸化和次生盐渍化问题是限制其可持续应用的重要因素。2013 ~ 2018年在海南省澄迈县进行了荔枝滴灌施肥试验,探讨在磷肥土施条件下以不同比例滴施钾氮肥(K2O/N = 0.6、0.8、1.0和1.2)及在K2O/N = 1.0条件下以不同方式施肥(磷肥土施而钾氮肥滴施、全部肥料滴施及全部肥料土施)对砖红壤荔枝园0 ~ 30和30 ~ 50 cm土层土壤pH和盐分的影响。结果表明,连续5年以不同比例滴施钾氮肥,土壤pH、盐分及盐分阳离子(K+、Ca2+和Mg2+)和阴离子(Cl?、NO3?、SO42?和HCO3?)含量变化与钾氮肥比例之间均缺乏密切关系。然而,在试验结束时,偏施氮肥(钾氮肥滴施比例为0.6)由于促进Ca2+在两个土层的淋失而降低土壤pH,而合理滴施钾氮肥(钾氮肥比例为1.0)则稍提高土壤pH,对盐分及盐分阴阳离子含量影响则未达显著水平。全部肥料土施比全部肥料滴施有利于盐分阳离子的保存,对盐分阴离子的影响则不大,从而也有利于维持土壤pH。在荔枝滴灌施肥中,可将钾氮肥以1∶1的比例滴施且将磷肥土施,即使在降雨丰沛的荔枝产区长期应用,也可避免土壤酸化及次生盐渍化。  相似文献   

10.
There is lack of information available concerning the effect of humic substances (HS) applied via fertigation on plant growth in sandy soils. Therefore, a field experiment was carried out at El‐Saff district (20 km southwest of Cairo), Egypt, to investigate the role of HS fertigation on water retention of a sandy soil, yield and quality of broccoli (Broccoli oleracea L.) as well as on soil nutrient concentration retained after harvest. The experiment consisted of six fertigation treatments (50%, 75%, and 100% of the recommended NPK‐fertilizer rate for broccoli combined with and without HS application at 120 L ha–1) in a complete randomized block design with three replicates. Humic substances affected spatial water distribution and improved water retention in the root zone. Furthermore, application of HS increased total marketable yield and head diameter of broccoli as well as quality parameters (i.e., total soluble solids, protein, and vitamin C). Higher nutrient concentrations were found in the broccoli heads and concentrations of plant‐available nutrients in soil after harvesting were also higher, indicating an improvement in soil fertility. In conclusion, HS fertigation can be judged as an interesting option to improve soil water and nutrient status leading to better plant growth.  相似文献   

11.
ABSTRACT

In the scheduling of nutrient supply programs, analysis of plant nutrient status has been found to be useful to prevent the deficiency or toxic effects of nutrients in any horticultural crop. So the present study was framed to assess the foliage nutrient content and vegetative growth under different irrigation and fertigation combination modules. Recently apple (Malus ×domestica) orchards in the state Himachal Pradesh of India have converted from the traditional royal delicious orchard at 6 × 6 m spacing with rainfed/basin irrigation to early spur varieties on dwarfing rootstock with drip irrigation, both with or without fertigation. An experimental field trial was started at the end of 2018 in a ‘Super Chief’/MM106 orchard at an experimental farm of the department of Soil Science & Water Management, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan (HP). A factorial experiment with 16 treatment combinations of 4 irrigation levels viz. I1 – drip irrigation at 100% ETc, I2 – drip irrigation at 80% ETc, I3 – drip irrigation at 60% ETc, I4 – conventional irrigation, and four fertigation levels viz. F0 – No fertilizer application (absolute control), F1 – 100% of AD (NPK), F2 – 75% of AD (NPK) and F3 – 50% of AD (NPK) were replicated thrice with 3 plants in each replication. Vegetative growth parameters and leaf nutrient contents were affected by both fertilization and water rate. Irrigation and nutrient levels and their interactions exhibited significant effect on leaf N (3.10%), P (0.28%), K (1.77%), and S (0.44%) contents. Significantly maximum contents were observed in the irrigation level I1 (DI at 100% ETc). Among fertigation level, F1 [100% AD (NPK)] recorded highest contents of leaf N (3.17%), P (0.29%), K (1.80%), S (0.46%). Interaction I1F1 registered maximum leaf N (3.36%), P (0.36%), K (1.92%) and S (0.63%).

With an increase in the water volume and an increasing dose of NPK, vegetative growth parameters, i.e., tree height, plant spread, tree volume, trunk girth, and annual extension growth were noted to increase proportionately. Treatment DI at 100% ETc (I1), increased the tree height by 9.41, plant spread (EW by 32.0, NS by 16.3), tree volume by 61.36, trunk girth by 8.05, and annual extension growth by 14.22% over conventional irrigation (I4). Drip fertigated trees with F1 [100% AD (NPK)] reported the highest growth parameters. The results of two years apple trial suggested a positive effect of fertigation on enhanced effectiveness of fertilization and improved foliage nutrient content and vegetative growth.  相似文献   

12.
【目的】切花菊生产中普遍存在施肥过量和施肥方式不当的问题,通过比较4种施肥处理对切花菊形态指标、品质和养分吸收的影响,筛选最适切花菊生产的施肥体系,为切花菊减肥增效栽培提供理论依据。【方法】以切花菊‘白扇’为试材,设置分别在智能水肥一体化机设备和施肥罐机器下,追施水溶肥7次(S1、S2)和追施4次(T1、T2) 4个处理,每次追肥量相同(75 kg/hm2)。在定植后35、62和85天,调查切花菊农艺指标、花部性状、植株氮磷钾含量及土壤氮磷钾含量。【结果】与施肥罐机器施肥(S2、T2处理)相比,定植62天时,采用智能水肥一体化机设备施肥(S1、T1处理)提高了切花菊的株高、茎粗、地上鲜重、地上干重、地下鲜重和地下干重,T1处理的效果又好于S1处理;定植85天时,T1处理切花菊株高高于S2和T2处理,花径和出花率与S1和S2处理无显著差异。定植35天时,T1处理的植株钾含量高于其他3个处理;定植62天时,T1处理植株茎叶中磷、钾含量高于其他3个处理;定植85天时,T1处理植株根中的磷、钾含量均最高。T1处理也增加了定植62和85天后土壤有效磷和速效钾含量。【结论】采...  相似文献   

13.
A field experiment was conducted in 2011 and 2012 to study the effect of fertigation on yield, fruit quality and nutrient uptake of ‘Nabbut-Ahmar’ date palm cultivar grown in sandy loam soil. Three fertigation treatments were compared with traditional application. In traditional treatment (CT), the recommended dose [2300 g nitrogen (N), 1200 g phosphorus (P) and 1400 g/tree] was applied as a soil broadcast in three equal doses. The fertigation treatments, (T2), (T3) and (T4), represent all nitrogen, phosphorus and potassium (NPK) amounts of CT, 2/3 CT and 1/3 CT, respectively that were injected in twelve equal doses. The results showed that compared to CT, the fertigation treatments increased yield/palm by 41%, 31% and 18% for T3, T2 and T4, respectively. Beside the increase in yield, 33% and 66% of the applied fertilizers were saved by T3 and T4, respectively, compared with CT. Feritgation treatments had no negative impact on the overall fruit quality characteristics and even increased total soluble solids (TSS), soluble tannins and total phenols concentrations compared to the conventional fertilization. Availability of NPK increased by fertigation but without further increase in leaves and fruit. In conclusion applying 2/3 of the recommended dose of NPK fertilizers under dry land condition through fertigation maximize yield, quality and fertilizer use efficiency.  相似文献   

14.
Inorganic fertilizers alone cannot sustain high levels of productivity. This study was conducted to determine whether higher productivity of capsicum could be achieved by conjoint application of chemical fertilizers and plant growth promoting rhizobacteria (PGPR). Four PGPR isolates (RS2, RS3, RS4, and RS7) from capsicum roots and rhizosphere were evaluated at Solan, Himachal Pradesh (India), during 2009–2012. Two best performers: RS2 and RS7 were tried singly or in consortium with different levels of chemical fertilizers under field conditions, Randomized Block Design, replicated thrice. The conjoint use of 100% recommended nitrogen, phosphorus, and potassium (NPK) doses through chemical fertilizers (RDF) plus PGPR significantly increased fruit yield, plant height, and biomass by 37%, 20%, and 30%, respectively, over sole application of 100% RDF (control). Further, response of capsicum to 80% RDF plus PGPR was statistically comparable with control. The results, therefore, indicate the potential of isolated PGPR strains to substitute about 20% NP fertilizers besides enhanced productivity of capsicum.  相似文献   

15.
Vertical distribution of sulfur fractions was studied in a long-term fertilizer experiment at the experimental farm of Department of Soil Science, Himachal Pradesh Agricultural University, Palampur (India), comprising various combinations of fertilizer and amendments. Initially, available nitrogen (N) was high, and phosphorus (P), potassium (K), organic carbon were optimum. Different forms, viz., available, water-soluble, heat-soluble, organic, and total sulfur were significantly affected by continuous cropping and decreased with depth. However at surface layer, 100% NPK(-S) resulted in 67%, 70%, 34%, 47%, and 48% reduction in these fractions, respectively, as compared to 100% NPK. Among all, organic sulfur was recorded highest. Hundred percent NPK + farmyard manure (at par with 100% NPK + lime) recorded highest maize and wheat yield. Hundred percent NPK(-S) recorded 39% and 44% reduction in grain yield of maize and wheat as compared to 100% NPK, respectively. Sulfur fractions were positively and significantly correlated with yield of maize?–wheat which shows the importance of sulfur fertilization.  相似文献   

16.
Abstract

An organic-mineral liquid fertigation fertilizer containing humic acid, nitrogen (N)–phosphorus (P)–potassium (K), zinc (Zn), sulfur (S), manganese (Mn) and a liquid foliar fertilizer consisting of fulvic acid and gibberellic acids were formulated and applied to wheat. The purpose of this study was to develop an efficient and cost effective liquid and foliar fertilizer and compare their potential with commercially available urea and DAP. The fulvic acid and humic acids were obtained by alkaline extraction of lignite coal. All the treatments were significant over the control. The application of the liquid fertigation fertilizer and liquid foliar fertilizer along with 50?kg of urea per acre showed the best results biological yield (grain plus straw yield). It was found that the highest yield was obtained in T6 treatment and the second best results were obtained with T2 treatment, but has a high cost, while treatment T6 was the most significant economical and yielded a high income when compared to other treatments.  相似文献   

17.
稻秆与紫云英联合还田提高黄泥田氮素利用率和土壤肥力   总被引:4,自引:0,他引:4  
  【目的】   稻秆与紫云英为南方稻田培肥的重要有机肥源。研究福建黄泥田稻秆、紫云英联合还田与化肥不同比例配施对水稻产量、养分吸收利用及土壤肥力的影响,旨在为该区域中低产田改良培肥及化肥替代提供依据。   【方法】   开展连续4年的田间定位试验,在等氮投入条件下,设置稻秆、紫云英联合还田与化肥不同配比6个处理,稻秆与紫云英二者氮素投入总量分别占农田总氮投入的0% (RM0,CK)、20% (RM20)、40% (RM40)、60% (RM60)、80% (RM80) 与100% (RM100),分析了水稻产量、养分吸收利用以及土壤肥力因子的变化。   【结果】   稻秆、紫云英联合还田与化肥配施均不同程度提高了水稻产量,其中籽粒与秸秆产量均以RM20最高,4年平均分别比CK显著增产了15.4%与23.6%,但产量增幅随有机物料替代比例增加呈降低趋势。产量构成中,RM20处理有效穗增加最为明显。与CK相比,有机物料联合还田下的水稻地上部植株氮、磷、钾养分吸收量增幅分别为2.4%~15.4%、2.6%~17.4%、2.0%~22.3%。除RM100处理外,稻秆、紫云英联合还田的氮素回收率较CK提高2.0~13.5个百分点,以RM20处理最高。稻秆、紫云英联合还田还不同程度提高了土壤pH、有机质、碱解氮(RM80处理除外)、有效磷、速效钾、微生物量碳含量以及脲酶、酸性磷酸酶活性,而降低了土壤容重。   【结论】   连续进行稻秆和紫云英联合还田有效提高了黄泥田土壤肥力质量及水稻氮素利用率。综合考虑增产效应、化肥减施与肥力改善因素,在等氮投入下,稻秆、紫云英联合还田替代20%~40%化肥可促进水稻稳产增产。  相似文献   

18.
腐植酸与氮肥配施对冬小麦氮素吸收利用及产量的影响   总被引:3,自引:0,他引:3  
研究腐植酸与氮肥配施对冬小麦产量、氮素吸收及经济效益的影响,可为提高氮肥的增产效益,减少氮肥对生态环境的污染提供理论指导。在河南褐土区冬小麦-夏玉米轮作制度下,于2014年开始在河南省南阳市卧龙区开展田间定位试验,共设置单施磷钾肥、常规施肥、单施腐植酸、常规施肥+腐植酸、常规施肥减氮15%+腐植酸、常规施肥减氮30%+腐植酸6个处理,分析不同氮肥与腐植酸配施下冬小麦产量和氮肥利用的特征。结果表明,腐植酸与氮肥配施可以有效提高冬小麦的产量及其构成要素,促进植株对氮素的累积,提高氮肥利用率。其中,常规施肥减氮15%+腐植酸处理下冬小麦产量、籽粒氮含量、籽粒氮累积量、地上部总氮累积量、氮肥利用效率和纯收益均增加,与常规施肥相比,冬小麦产量增加4.96%,氮肥利用效率增加23.42%,纯收益增加2.18%。常规施肥减氮30%+腐植酸条件下冬小麦产值和收益降低。因此,在施用腐植酸的基础上,配施适量氮肥才能获得较高的产值和收益。常规施肥减氮15%+腐植酸是本研究区域最佳的施肥模式,对实现现代化农业生产的高产高效、资源节约和生态环境保护具有重要意义。  相似文献   

19.
Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water‐ and N‐use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe.

Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water‐use efficiencies of the drip‐fertigated treatments were in most cases 100% higher than those of the corresponding furrow‐irrigated treatments. The highest water demand was during the fruit‐setting growth stage. It was also concluded that under drip fertigation, 100–150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip‐fertigated treatments ranged between 101 and 118kg and 116 and 188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94 and 113 and 111 and 144 kg N/ha for the furrow‐irrigated treatments for 2001 and 2002, respectively.  相似文献   

20.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号