首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
不同热解温度制备的水稻秸秆生物炭理化特性分析   总被引:1,自引:0,他引:1  
《土壤通报》2020,(1):136-143
以不同热解温度(100~800℃)制备的水稻秸秆生物炭为研究对象,研究在不同热解温度下制成的生物炭的理化特性。结果表明,热解温度为100~300℃制成的水稻秸秆生物炭呈弱酸性,400℃以上时呈碱性;水稻秸秆生物炭表面碱性含氧官能团数量随着热解温度的升高而增加、酸性含氧官能团则减少;水稻秸秆生物炭中的官能团C=C、C-O-C、-OH和-C=O在较高的热解温度下发生缔合或消除,促进了芳香基团的形成;随着热解温度的升高,水稻秸秆生物炭的阳离子交换量(CEC)、比表面积、孔径、比孔容、氮气吸附量和颗粒表面的分型维数(D1)均先增加后降低,阳离子交换量(CEC)在300~500℃时、其它性状在400~600℃之间达到最大值;以不同热解温度制成的水稻秸秆生物炭颗粒的孔隙结构均以孔隙宽度2~50 nm的中孔为主。随热解温度的升高,水稻秸秆生物炭的产率逐渐降低;400~500℃炭化2 h,生物炭产率最高,其孔隙结构最为复杂,所以可以认为400~500℃是水稻秸秆炭化的最佳温度。  相似文献   

2.
[目的]研究不同温度制备的玉米秸秆和污泥基生物质炭不同施加量对盐碱土壤基本理化性质的影响,为盐碱土改良及土壤污染物质的生态修复等方面的研究提供科学依据。[方法]以质量比5∶2的玉米秸秆和剩余活性污泥为原料,分别在300,350,400,450,500℃共5个不同温度条件下热解制备生物质炭,通过扫描电镜、元素分析和红外光谱对其性质及结构进行分析,并通过培养试验研究其对盐碱土壤基本理化性质的影响。[结果]随着热解温度的升高,生物质炭微观结构越发达,比表面积越大,表面官能团的种类和数量也产生了显著性变化;同时随着热解温度逐渐升高,生物质炭C含量不断增加,而O,H和N含量却逐渐降低;添加玉米秸秆和污泥共热解制备的生物质炭能够显著增加盐碱土壤中有机碳含量,而土壤中总氮、总磷、有效磷、速效钾含量变化幅度较小;水溶性盐含量降低明显;加入生物质炭后大幅度提高了土壤阳离子交换能力,添加量越大,阳离子交换量越大;但生物质炭对土壤pH值影响不大。[结论]玉米秸秆和污泥基生物质炭提高了土壤养分含量和肥力指标,降低了土壤盐碱性。玉米秸秆和污泥基生物质炭可用于盐碱土壤的改良。  相似文献   

3.
秸秆生物炭对棕壤中Cu(Ⅱ)的吸附效应及影响因素   总被引:5,自引:2,他引:3  
以棉花、花生秸秆为原料,采用限氧热裂解法分别于350℃、500℃、650℃下制备生物炭,通过等温吸附和吸附动力学实验,研究两种秸秆生物炭对棕壤中Cu(Ⅱ)的吸附特性和修复效应。结果表明:随裂解温度上升,秸秆生物炭的碳化程度和BET比表面积增加,而含氧官能团、H/C和O/C的比值则减少,且花生秸秆生物炭的芳香化程度、碳化程度和比表面积均高于棉花秸秆生物炭;不同温度梯度制备的生物炭在吸附效果及机制方面存在差异,秸秆生物炭对Cu(Ⅱ)的吸附效果与Lagergren动力学方程的二级动力学方程、Langmuir等温方程可以较好拟合;随着pH的升高,吸附量均增加,吸附量在6.5时达到最大,且花生生物炭的吸附量大于棉花生物炭;SEM电镜扫描图展示了花生秸秆生物炭的表面特征和孔隙结构比棉花明显;FTIR谱图分析表明秸秆生物炭含氧官能团含量随裂解温度的升高而减少。综上,花生秸秆生物炭对山东棕壤重金属污染的修复效果更优。  相似文献   

4.
热解温度对玉米秸秆炭产率及理化特性的影响   总被引:2,自引:0,他引:2  
【目的】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的炭化温度。【方法】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下 (100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃) 分别炭化2 h,制备生物炭,收集并测定了固体产物生物炭产率及特性。【结果】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含量在400℃以后随热解温度升高而降低。阳离子交换量 (CEC) 在400℃~600℃达到较高水平,为70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH随着热解温度的升高逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到500℃时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中–CH3、–CH2、–OH、–C=O间发生缔合或消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径先变小后变大,在400℃~600℃条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表面积和比孔容呈极显著正相关关系(P < 0.01)。【结论】综合各项指标,玉米秸秆的最佳热解温度为400℃~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。  相似文献   

5.
土壤表面电化学性质是土壤具有肥力的重要基础,研究小麦秸秆及其生物炭添加对黄绵土表面电化学性质的影响,可为黄绵土耕地质量的提升及可持续利用、减少土壤侵蚀提供重要的理论及实践依据。通过室内恒温培养试验,设置对照(CK)、1%秸秆(J1)、3%秸秆(J3)、5%秸秆(J5)、7%秸秆(J7)、10%秸秆(J10)和1%生物炭(S1)、3%生物炭(S3)、5%生物炭(S5)、7%生物炭(S7)、10%生物炭(S10)11个处理。培养10个月后采集土壤样品,采用物质表面性质联合测定法测定表面电化学参数,包括表面电荷数量(SCN)、比表面积(SSA)、表面电荷密度(σ0)、表面电位(φ0)、表面电场强度(E0),并通过冗余分析的方法解析了表面电化学性质与土壤基本理化性质之间的关系。结果表明:(1)施用秸秆和生物炭后,土壤碳酸盐含量下降,有机碳(SOC)、电导率、全氮(TN)及碳氮比(C/N)增加。添加秸秆会降低黄绵土的pH,而生物炭则会增加土壤的pH。(2)随着秸秆施用量的增加,Zeta电位下降,施用生物炭后,各个处理的Zeta电位都小于CK,但总体上随生物炭施用量的增加Zeta电位增加。(3)随着秸秆和生物炭施用量的增加,土壤的比表面积(SSA)和表面电荷数量(SCN)均增大。与CK相比,J10和S10的SSA分别提高114.0%和98.1%,SCN提高80.8%和88.3%。施用秸秆能够降低土壤表面电荷密度(σ0),与CK相比,施用秸秆的土壤σ0降低幅度可达5.5%~15.5%。总体上,随生物炭施用量的增加σ0减小,当添加量超过5%后,施用生物炭土壤的σ0小于CK。(4)冗余分析结果显示,有机碳是影响土壤表面电化学性质的最主要因素,其解释量在秸秆和生物炭添加处理中分别占88.1%和89.5%。施用秸秆和生物炭会显著提高黄绵土的有机碳含量,改善土壤基本理化性质。土壤的比表面积和表面电荷数量随秸秆和生物炭添加量的增加而增加,但表面电荷密度总体上呈下降趋势。有机碳含量是影响黄绵土表面电化学性质变化的主控因素。  相似文献   

6.
生物炭对干旱区绿洲农田土壤呼吸的影响   总被引:2,自引:0,他引:2  
为探究不同粒径秸秆生物炭添加对绿洲农田土壤CO2排放及Q10的影响,以新疆典型绿洲农田土壤灰漠土为供试材料,采用室内土柱培养的方法,研究添加>5、1~5、0.25~1和<0.25mm共4种粒径棉花秸秆生物炭和葡萄藤生物炭对农田土壤CO2释放的影响。结果表明:(1)试验周期内(0~85d),添加生物炭处理土壤呼吸速率呈先增加后降低的趋势,前10d土壤呼吸增速较高;添加生物炭的土壤呼吸速率(1.27μmol·m-2·s-1)高于不添加生物炭的对照处理(1.01μmol·m-2·s-1),棉花秸秆生物炭处理土壤呼吸速率(1.43μmol·m-2·s-1)高于添加葡萄藤生物炭处理(1.08μmol·m-2·s-1)。培养期内土壤CO2累积过程符合一级反应动力学方程,生物炭添加改变了土壤CO2潜在排放量、周转速率和半周转期。(2)添加棉花秸秆和葡萄藤两种生物炭处理与土壤CO2累积排放量(y)分别符合y=7.51x+88.53和y=2.68x+75.85的线性关系(x为生物炭粒径)。(3)添加生物炭处理土壤呼吸速率与空气温度和土壤温度显著相关,棉花秸秆生物炭处理土壤呼吸速率与温度的相关性高于葡萄藤生物炭处理,土壤温度敏感系数随粒径的减小而增加。综合土壤呼吸速率和温度敏感系数考虑,建议绿洲农田施用1~5mm中等粒径生物炭。  相似文献   

7.
秸秆热解工艺优化与生物炭理化特性分析   总被引:8,自引:3,他引:5  
以肥料化利用为目标,优化秸秆热解工艺,实现秸秆生物炭的高值化利用。该研究以水稻、小麦、玉米、油菜和棉花秸秆为原料,以炭化温度、保温时间和升温速率为因素进行正交试验,采用综合评分法优化热解工艺,并分析最优工艺条件下生物炭的理化特性。结果表明,影响秸秆生物炭品质因素的主次顺序为炭化温度、保温时间、升温速率。以生物炭的肥料化利用为目标,5种秸秆炭化的最优工艺参数组合是炭化温度500℃、保温时间30 min、升温速率10℃/min。在最优工艺条件下,5种秸秆生物炭的炭产率约为32%~38%,固定碳的质量分数大于45%,C元素的质量分数大于53%,N元素的质量分数为0.7%~2.5%,K元素的质量分数为3.41%~6.81%。生物炭表面有含氧官能团且内部有丰富的介孔结构。该研究为秸秆生物炭的肥料化利用提供数据支撑。  相似文献   

8.
生物炭主要类型、理化性质及其研究展望   总被引:25,自引:3,他引:22  
【目的】 生物炭作为工农业生产副产品低碳利用的有效手段,其改善土壤及提高作物品质的有益功效已被逐步认识,但对其研究报道分散且差异较大。对已有研究进行梳理总结,可为生物炭生产施用以及形成有效的产业链提供科学依据。 主要进展 1)生物炭全碳含量在 30%~90% 之间,平均 64%。生物炭碳含量由大到小来源依次是木质、秸秆、壳类、粪污和污泥。秸秆类生物炭碳含量大多为 40%~80%,木质类生物炭在 60%~85%。生物炭灰分含量在 0~40% 之间变动,平均 15.52%。灰分含量由大到小依次是污泥、粪污、秸秆、壳类和木质。秸秆生物炭灰分含量主要在 20%~35% 之间,较少为 15%;木质炭灰分主要在 0~10% 范围内。生物炭碳含量和灰分含量相关系数为–0.77。裂解温度与生物炭碳灰组分呈正相关,相关系数分别为 0.17 和 0.28。施入生物炭可以改善土壤状况,生物炭灰分通常对养分贫瘠土壤及沙质土壤的一些养分补充作用较明显。2)生物炭比表面积绝大多数在 0~520 m2/g 之间,平均 124.83 m2/g,壳类、秸秆、木质、粪污和污泥生物炭比表面积逐渐降低。秸秆炭比表面积集中在 0~200 m2/g 以内,木质炭比表面积集中在 0~100 m2/g 以内。制备温度与比表面积的相关系数为 0.48。生物炭的孔隙结构能降低土壤容重、降低土壤密度,能较好地去除溶液和钝化土壤中的重金属。3)生物炭 pH 值范围在 5~12,平均为 9.15。秸秆、污泥、粪污、木质、壳类生物炭 pH 值中值逐渐降低。秸秆生物炭 pH 值多集中在 8~11 范围内,木质生物炭 pH 相对一致。生物炭的 CEC 从 0 到 500 cmol /kg 都有分布,平均为 71.91 cmol/kg。秸秆类生物炭 CEC 值大多集中在 0~100 cmol/kg 范围内,木质生物炭则在 5~10 与 15~25 cmol/kg 范围内均有一定数量的分布。裂解温度与 pH 值和 CEC 的相关系数为 0.58 和 0.30。生物炭施入土壤后可消耗土壤质子,提高酸性土壤 pH 值,提高酸性土壤一些养分的有效性;其巨大的表面积还可提高对阳离子的吸附,提高土壤保肥能力。4)生物炭的裂解温度大都集中在 200~800℃ 之间,偶有达到 1000℃ 的裂解温度。 建议和展望 目前,全世界范围内对生物炭的生产和使用还处于就近和来源方便的初级阶段,影响着生物炭功能和效益的最大化。应从以下几个方面加强研究和应用试验:首先,系统研究生物炭制造参数对理化性状的影响,研究不同原料生物炭的作用机理差异及其针对性,建立生物炭理化性质参数数据库;其次,加强应用研究,根据土壤理化性状和改良目标选择适宜的生物炭类型,根据对作物经济性状的要求,研究选择适宜的生物炭类型,实现生物炭功效的最大利用。加强不同原料的选配和组合研究,改良生物炭产品的目标性状,形成系列化产品。   相似文献   

9.
热解炭化技术的开发对秸秆的能源化利用具有重要意义。试验研究了保温时间与粒度对水稻和棉花秸秆热解产物理化特性及能源转化的影响。结果表明,保温时间从0到120 min中,秸秆生物炭产率先降低后略增加,热解气中CH_4、C_nH_m和H_2百分含量增加,其高位热值和能量转化率增加,而生物炭的pH值、电导率、灰分、固定碳、C、高位热值增加,保温时间为90 min的生物炭的炭化程度最好。秸秆中能量有1.5%~5.4%保留在热解气中,有50%~57%保留在生物炭中。不同粒度相比,粗粉秸秆的生物炭的炭产率、挥发分、H、O、N及碳转化率最高,细粉秸秆热解气中CO和CH_4百分含量、高位热值和能量转化率最高,而超微秸秆生物炭的pH值、灰分、C最高。棉花秸秆生物炭的挥发分、固定碳、C、H、碳转化率、高位热值和能量转化率高于水稻秸秆生物炭。  相似文献   

10.
为了探究生物炭对潮土和砂土钾素淋失的调控效应,通过土柱淋溶模拟试验,以水洗生物炭为研究对象,比较生物炭水洗前后不同形态钾含量、表面形貌和含氧官能团变化,进而探究不同用量水洗生物炭对2种类型土壤钾素淋失的阻控效应。结果表明:水洗处理可使生物炭水溶性钾含量由13.9 g/kg降至0.06 g/kg,而对生物炭孔隙结构和表面含氧官能团影响较小。水洗生物炭对潮土和砂土水分淋失的影响受其施用量的影响,表现为低量促进、高量抑制的趋势,添加1%水洗生物炭显著增加了2种类型土壤水分淋失总量。生物炭对2种类型土壤钾素淋失的影响各异,添加2%和4%水洗生物炭对砂土钾素淋失表现出显著的阻控效应(P0.05),钾素淋失量分别较不加生物炭处理降低了21.2%和28.3%,而添加1%水洗生物炭却增加了潮土钾素淋失量(P0.05)。另外,生物炭可提升土壤阳离子交换量和表层土交换性钾含量,且提升幅度随生物炭施用量的增加而增加,并且对砂土的提升效果更明显。因此,从钾素淋失角度考虑,生物炭更适用于阳离子交换量较低、保肥能力差的砂质土壤上。  相似文献   

11.
生物碳对灰漠土有机碳及其组分的影响   总被引:16,自引:1,他引:15  
土壤有机碳是影响土壤肥力和作物产量高低的决定性因子。以棉花秸秆为原料,在高温厌氧条件下热解制备生物碳,通过盆栽试验探讨了生物碳对新疆灰漠土有机碳及其组分的影响。试验设置3种生物碳:棉花秸秆分别在450℃、600℃和750℃下热解制备(以BC450、BC600和BC750表示);每种生物碳的施用量分别为5 g·kg-1、10 g·kg-1和20 g·kg-1(占土壤重量的比例);同时,以空白土壤为对照(CK)。结果表明:施用生物碳可促进小麦生长,两茬小麦的地上部干物质重均显著高于对照。施用生物碳可显著提高土壤总有机碳,且生物碳热解温度越高,施用量越大,提高作用越明显。各生物碳处理土壤易氧化碳含量均显著高于对照;生物碳低、中施用量处理(5 g·kg-1、10 g·kg-1)土壤水溶性有机碳含量显著高于对照,但高施用量处理(20 g·kg-1)与对照无显著差异;除BC750低施用量处理(5 g·kg1)外,其余各生物碳处理土壤微生物量碳含量也均显著高于对照。生物碳不同热解温度对土壤易氧化碳和微生物量碳含量的影响表现为BC450>BC600>BC750;但对土壤水溶性有机碳含量无显著影响。生物碳不同施用量对土壤易氧化碳的影响表现为10 g·kg-1≈20 g·kg-1>5 g·kg-1,水溶性有机碳含量为5 g·kg1≈10 g·kg-1>20 g·kg-1。生物碳对土壤微生物商的影响总体表现为:生物碳的热解温度越高,施用量越大,土壤微生物商越低。因此,合理的施用棉花秸秆生物碳可显著增加灰漠土有机碳储量,改变土壤有机碳组分,提高土壤生产力。  相似文献   

12.
钢渣与生物质炭配合施用对红壤酸度的改良效果   总被引:2,自引:0,他引:2  
卢再亮  李九玉  徐仁扣 《土壤》2013,45(4):722-726
采用厌氧热解方法制备污泥生物质炭和花生秸秆炭,研究了钢渣和生物质炭单独施用及配合施用对红壤酸度的改良效果,结果表明,钢渣、花生秸秆炭和污泥生物质炭均含有一定量的碱性物质,向红壤中添加钢渣和生物质炭可以中和土壤酸度,提高土壤pH,增加土壤交换性盐基阳离子含量,降低土壤交换性铝含量.90天培养实验结束时,这3种改良剂分别使土壤pH相对对照提高1.10、0.72和0.48.钢渣与花生秸秆炭配合施用对土壤酸度的改良效果最好,使土壤pH相对对照提高2.14,单施污泥生物质炭的改良效果最小.钢渣和生物质炭含一定量的养分元素,添加钢渣和生物质炭可以同时改善土壤肥力.钢渣含丰富的钙,添加钢渣使土壤交换性钙含量增幅最大,相对对照增加4.5倍;添加花生秸秆炭使土壤交换钾增加最显著,相对对照约增加7倍;污泥生物质炭含丰富的磷,添加污泥生物质炭使土壤有效磷增加最显著,相对对照增加5.4倍.添加钢渣和2种生物质炭均显著提高了土壤交换性镁含量,将钢渣与生物质炭配合施用,土壤交换性镁含量的增幅更大.由于钢渣和2种生物质炭的碱含量和养分含量各有特点,因此可以根据土壤酸度状况和养分含量选择将钢渣与不同生物质炭配合施用,以达到既能最大限度中和土壤酸度又能补充土壤所必需养分的目的.  相似文献   

13.
生物炭施入土壤被认为是一种有效的固碳减排措施,可增加土壤有机碳及矿质养分含量,提高土壤的持水能力及保肥能力。为探明其施入土壤后对土壤微生物活性及多样性的影响,本文在盆栽试验条件下,采用Biolog与高通量测序相结合的方法,研究了CK(不施生物炭)和施用5 g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)玉米秸秆生物炭对土壤微生物碳源利用能力(AWCD)、功能多样性指数以及土壤细菌的丰度和多样性的影响。结果表明,随着生物炭施用量的增加,表征土壤微生物活性的AWCD值呈下降趋势,表现为:5 g·kg~(-1)处理≈CK10 g·kg~(-1)处理30 g·kg~(-1)处理60 g·kg~(-1)处理,其中CK和5 g·kg~(-1)处理间差异不显著(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60 g·kg~(-1)处理在整个培养期间的AWCD值显著低于CK处理(P0.05);土壤微生物群落代谢功能多样性指数(H′)、碳源利用丰富度指数(S)均随生物炭施用量的增加而呈下降趋势,但均匀度指数(E)表现出相反趋势,5g·kg~(-1)、10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)各处理的H′较CK处理分别增加0.16%、-0.88%、-3.14%、-11.09%,S分别增加-2.82%、-11.27%、-18.31%、-47.89%,E分别增加1.14%、3.00%、3.73%和13.76%。主成分分析表明,与CK处理比较,5 g·kg~(-1)处理对土壤微生物群落碳源利用方式没有显著影响(P0.05),而10 g·kg~(-1)、30 g·kg~(-1)和60g·kg~(-1)处理对土壤微生物群落碳源利用方式影响显著(P0.05)。随着生物炭施用量的增加,土壤细菌OTU数目及丰富度指数(Chao1)呈增加趋势,5 g·kg~(-1)处理与CK处理差异不显著,而10 g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理的OTU数目较CK处理分别增加1.09%、5.26%、24.42%,Chao1分别增加5.73%、10.21%、37.68%。土壤中施用生物炭后土壤细菌变形菌门(Proteobacteria)的丰度在CK处理和5 g·kg~(-1)处理间差异不显著(P0.05),而10g·kg~(-1)、30 g·kg~(-1)、60 g·kg~(-1)处理较CK处理分别增加32.3%、21.1%、16.7%,拟杆菌门(Bacteroidetes)的丰度随着生物炭施用量的增加各处理较CK处理分别减少22.1%、55.3%、66.8%、50.5%。生物炭施入土壤后降低了土壤可培养微生物的活性,减少或改变了土壤微生物碳源利用的种类,使土壤原有微生物群落组分发生改变,生物炭也影响了土壤细菌各菌群在土壤中的丰度,使其分布的均匀性降低。为了不影响微生物群落结构和功能,石灰性褐土上生物炭一次还田量不能超过5 g·kg~(-1)(干土)。  相似文献   

14.
棉花、花生秸秆生物炭对棕壤中Cu(Ⅱ)运移的影响   总被引:2,自引:0,他引:2  
[目的]分析棉花、花生生物炭基本理化性质,模拟自然条件下降雨对土壤中Cu(Ⅱ)淋失量的影响,探讨生物炭修复Cu(Ⅱ)污染棕壤的可行性。[方法]以棉花、花生秸秆为原料,采用限氧热解法分别在350,500,650℃下制备生物炭,将生物炭按1%的炭土干重比施入铜污染棕壤[Cu(Ⅱ)的浓度200mg/kg],通过室内土柱淋溶试验分析添加不同生物炭对土壤缓冲性能和吸附能力的影响。[结果]两类生物炭的H/C及O/C的比值随着温度的升高逐渐降低,而生物炭的BET比表面积则随着制备温度的升高而逐渐增大;添加生物炭的土壤淋溶液pH值显著高于空白处理,花生生物炭的效果更为显著;随着淋溶次数的增加,添加生物炭的土壤中Cu(Ⅱ)的淋失量明显低于空白处理;添加花生生物炭提高了土壤中Cu(Ⅱ)的专性吸附,以650℃最为显著。[结论]两种生物炭能明显提高土壤的缓冲性能和对重金属的吸持能力,其中以花生生物炭的效果更为明显。  相似文献   

15.
以棉花和花生秸秆为原料于500℃下限氧慢速热解制备得到两种生物质炭,通过批处理恒温振荡法,探讨了土壤施加不同种类生物质炭及冻融交替后吸附Cu(Ⅱ)的变化。结果表明,Freundlich和Langmuir等温模型均能较好地拟合各处理土壤对Cu(Ⅱ)的吸附,土壤施加棉花和花生秸秆炭后对Cu(Ⅱ)的吸附能力显著提高,吸附能力分别提高了3.8和17.9倍;冻融交替后施加棉花和花生秸秆炭的土壤对Cu(Ⅱ)的吸附能力均降低,吸附能力分别下降了1.6和1.1倍;花生秸秆炭比棉花秸秆炭更适宜作为土壤改良剂修复重金属污染土壤。  相似文献   

16.
不同秸秆生物炭对土壤水分入渗和蒸发的影响   总被引:2,自引:1,他引:2  
探究不同秸秆生物炭对土壤入渗和蒸发的影响,对于秸秆废弃物的资源化利用和水土资源高效利用具有重要意义。选取3种秸秆(油菜、藜麦和马铃薯)为原料制备生物炭,采用室内土柱模拟方法,探究不同材料生物炭对土壤湿润过程、累积入渗量和蒸发过程的影响。结果表明:不同材料生物炭下的土壤入渗和蒸发过程存在显著差异。马铃薯杆炭显著促进了湿润锋的运移,而藜麦杆和油菜杆炭在中后期减缓了湿润锋的运移速度。添加生物炭处理均提高了土壤早期的入渗速率,降低了土壤后期的稳定入渗速率,其中马铃薯杆炭表现最好,促进了早期入渗,而且后期入渗降低少,在入渗55 min时,马铃薯杆炭累积入渗67.8 mm,比对照提高41.8%。在模拟施炭土壤的入渗过程方面,Kostiakov模型表现最优。施炭对于前期土壤蒸发无显著影响,但显著提高了后期的土壤蒸发量。蒸发30天后,马铃薯杆、油菜杆和藜麦杆炭累积蒸发量分别比CK高5.2%,9.2%和10.2%。马铃薯杆生物炭能显著提高土壤的入渗能力。研究结果为青海省东部农区选择合适的生物炭种类提供了科学依据。  相似文献   

17.
农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响   总被引:6,自引:0,他引:6  
李九玉  赵安珍  袁金华  徐仁扣 《土壤》2015,47(2):334-339
利用自行研制的生物质炭化炉在田间条件下制备花生秸秆炭和油菜秸秆炭,采集秸秆气化站产生的稻壳炭,研究了这3种生物质炭对酸性土壤的改良效果和对油菜产量的影响。结果表明:施用稻壳炭、花生秸秆炭和油菜秸秆炭均可提高土壤p H,降低土壤交换性酸含量,效果随施用量的增加而增强。生物质炭对酸性土壤的改良效果主要决定于其本身的含碱量,施用花生秸秆炭和油菜秸秆炭显著增加土壤交换性盐基阳离子、有效磷、有效阳离子交换量和盐基饱和度,并提高油菜籽产量。田间条件下施用花生秸秆炭和油菜秸秆炭3年后土壤p H仍明显高于对照处理,说明生物质炭对土壤酸度的改良具有持续性。因此,花生秸秆炭和油菜秸秆炭是优良的酸性土壤改良剂。  相似文献   

18.
Biochar application has been received much attention because biochar can improve the fertilizer utilization efficiency of soil. However, the effect of biochar produced at different temperature on the nutrient retention and leaching remains poorly understood. In this study, we observed the nutrients leaching from a sandy loam soil amended with biochar produced at different temperature. The properties of biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550°C) showed that increasing pyrolysis temperature increased pH value and specific surface area but reduced the electrical conductivity and cation exchange capacity. With the temperature increased, the nitrogen loss was significant decreased (p > 0.05) from 109.6 mg to 53.3 mg in biochar amended soil. However, dissolved organic carbon (DOC), available P, Na and K were significant increased (p > 0.05). These results demonstrate that the pyrolytic temperature has a great influence on biochar properties, which in turn affect the leaching of the available nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号