首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
On the interfluves and in small depressions of the Ryazan forest-steppe, under periodic stagnation of surface water, acid chernozem-like soils with a relatively thick humus horizon, podzolic horizons, and marble-colored gleyed B1 and B2 horizons are formed. The eluvial horizons of these soils contain Mn-Fe nodules, and dark humus coatings occur in the illuvial horizons. In the spring, the eluvial horizons of these soils are excessively moistened and gravitational water stagnates on the soil surface for 3–4 weeks. The formation of the acid light-colored eluvial horizons of the soils on leached rocks is related to gleying under the conditions of the stagnant-percolative regime. Their total thickness is 15–25 cm and more. According to the properties of their solid phase, these horizons are similar to the podzolic horizons of soddy-podzolic gleyed soils. These soils have not been represented in the classification systems of soils of the USSR and Russia. Based on the principles of the substantial-genetic classification, one of the authors of this article [9] referred this soil to gleyed podzolic chernozem-like soils, thus, considering it as an individual genetic soil type. The gleyed podzolic chernozem-like soils differ from the leached chernozems by their low productivity and difficulty of tillage. In humid and moderately moist years, the death of crops or a reduction in yield are probable because of the excess of moisture.  相似文献   

2.
The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5?C2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2?C10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm??s reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.  相似文献   

3.
Specific features of soil formation in the taiga zone of Western Siberia are considered. The polygenetic nature of podzolic and gley-podzolic soils in the middle taiga zone, soddy-podzolic and soddy gley soils in the southern taiga zone, and meadow soils in the subtaiga zone is related to the pre-Holocene transformation of the lithogenic matrix upon activation of denudation and accumulation processes and the complicated Holocene evolution of these soils. A soil profile can be subdivided into separate layers according to the geomorphic features of the cryogenesis, the indices of interruption of soil formation, and the differences in the composition of the organic matter in the relict and modern humus horizons.  相似文献   

4.
Automorphic loamy soils of the northern taiga and forest-tundra zones in the northeastern part of European Russia are characterized. These soils are diagnosed by the presence of a paragenetic system of the podzolic (often, with gley features) and iron-illuvial horizons combined with a specific cryometamorphic CRM horizon. The podzolic horizon is considerably impoverished in the total and oxalate-extractable iron and slightly impoverished in aluminum and clay in comparison with the iron-illuvial horizon. A distinctive feature of the cryometamorphic horizon is its fine angular blocky, ooidal, or granulated structure in the dry state and curdled cryogenic structure in the wet state. The soil profile is relatively weakly differentiated with respect to the contents of clay and sesquioxides. The genesis of these soils is related to a combination of the gley-Al-Fe-humus mobilization, migration, and illuvial accumulation of substances and the cryogenic structuring. According to the new Classification and Diagnostic System of Russian Soils, these soils fit the criteria of iron-illuvial svetlozems in the order of cryometamorphic soils. In the studied area, these soils are found together with texture-differentiated gley-podzolic soils having the Bt horizon and belonging to the order of texture-differentiated soils.  相似文献   

5.
In soils developed from the red-earth deposits in the Cis-Ural region (Perm oblast), hematite does not ensure the theoretically possible redness due to the concealing effect of rivaling pigments, i.e., humus in the upper horizons and Fe(II) in the gleyed horizons. The soil color depends on the minimal (spring) values of the hydrogen partial pressure index rHmin rather than on the average value of this index rHav. The hematite content decreases in the gleyed and humus horizons (despite the absence of the morphological features of gley in the latter due to the concealing effect of humus). The gley horizons are heterogeneous with respect to the state of iron. Upon the maximum wetting in the gley horizons of the mucky-humus gley soil, hematite is being reduced to Fe(II), which is proved by the low values of rHmin (<19). In a less humified dark humus gley soil, the values of rHmin exceed 19, which points to the inherited gley features in this soil. In the mucky-humus gley soil, an inverse dependence between the magnetic susceptibility χ and EHmin is observed upon EHmin <320 mV. In this case, the degree of reduction of the highly magnetic iron oxides rises from 0.3 to 1.0 due to a decreasing portion of maghemite γFe2O3 and an increasing portion of magnetite Fe3O4.  相似文献   

6.
The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.  相似文献   

7.
Nodules (nodules) forming in the chernozem-like soils of flat-bottomed closed depressions on the northern part of the Tambov Plain differ in their morphology and chemical composition as related to the degree of hydromorphism of these soils. The highest are the coefficients of Mn, P, and Fe accumulation in the nodules from these soils. The Fe to Mn ratio grows with the increasing degree of hydromorphism. Under surface moistening, the maximal amounts of mobile Mn and Fe compounds were extracted from the nodules of the most hydromorphic podzolic chernozem-like soils; under the ground moistening, their greatest amounts were extracted from the least hydromorphic soil—the weakly gley soil. In the first case, the content of organic phosphates in concretions amounted to 30–50%; in the second one, 2–3% of their total content. Under surface moistening, the proportion of active mineral phosphates becomes higher with the increasing hydromorphism: from 30 (podzolized soil) to 70% (gleyic podzolic soil). Under ground moistening, on the contrary, their proportion decreases from 70–89% in the weakly gley soil to 40–50% in the gley chernozem-like soil. The possibility to determine the degree of hydromorphism of chernozem-like soils based on the coefficients of bogging is shown. The expediency of using Schvertmann’s criterion in these studies is assessed.  相似文献   

8.
Gravelly clay loamy and clayey soils developed from the derivatives of ultramafic rocks of the dunite-harzburgite complex of the Rai-Iz massif in the Polar Urals have been studied. They are represented by raw-humus pelozems (weakly developed clayey soils) under conditions of perfect drainage on steep slopes and by the gleyzems (Gleysols) with vivid gley color patterns in the eluvial positions on leveled elements of the relief. The magnesium released from the silicates with the high content of this element (mainly from olivine) specifies the neutral-alkaline reaction in these soils. Cryoturbation, the accumulation of raw humus, the impregnation of the soil mass with humic substances, gleyzation, and the ferrugination of the gleyed horizons are also clearly pronounced in the studied soils. Despite the high pH values, the destruction of supergene smectites in the upper horizons and ferrugination (the accumulation of iron hydroxides) in the microfissures dissecting the grains of olivine, pyroxene, and serpentine, and in decomposing plant tissues take place. The development of these processes may be related to the local acidification (neutralization) of the soil medium under the impact of biota and carbonic acids. The specificity of gleyzation in the soils developing from ultramafic rocks is shown in the absence of iron depletion from the fine earth material against the background of the greenish blue gley color pattern.  相似文献   

9.
Depending on conditions of formation, solods should be differentiated into two groups: solods of ground overmoistening and solods of surface overmoistening. Criteria are offered to distinguish soils according to the ratio between the clay in the B2 horizon and that in the A2 horizon, as well as according to the changes in the soil pH. Formation of gley under conditions of stagnant to percolative water regime is a necessary and sufficient cause for light-colored acid eluvial horizons to form in their profile. In the main properties of the solid phase (acidity, total chemical composition, and distribution of silt), gley solods are identical to soddy-podzolic and chernozem-like podzolic gley soils.  相似文献   

10.
In the mineral horizons of the soils under different southern taiga forests (oak, archangel spruce, and aspen in the Kaluzhskie Zaseki Reserve of Kaluga region and the green moss spruce and spruce-broadleaved forests of the Zvenigorod Biological Station of Moscow State University in Moscow region), the carbon content in the microbial biomass (Cmic), the rate of the basal respiration (BR), and the specific microbial respiration (qCO2= BR/Cmic) were determined. The Cmic content was measured using the method of substrate-induced respiration (SIR). In the upper humus horizons of the soils, the Cmic content amounted to 762–2545 μg/g and the BR ranged from 1.59 to 7.55 μg CO2-C/g per h. The values of these parameters essentially decreased down the soil profiles. The portion of Cmic in the organic carbon of the humus horizons of the forest soils was 4.4 to 13.2%. The qCO2values increased with the depth in the soils of the Biological Station and did not change in the soils of the Reserve. The pool of Cmic and Corg and the microbial production of CO2 (BR) within the forest soil profiles are presented.  相似文献   

11.
Priming effects initiated by the addition of 14С glucose have been compared for humus horizons of soils existing under continuous input of fresh organic substrates and for buried soil horizons, in which entering of organic matter has been essentially limited. The effect of microrelief on the manifestation of priming effect in the humus horizons of gray forest soil on microhigh and in microlow has been estimated. Humus horizon in soils on microhigh, not activated by glucose, produced two times more СО2 in comparison with soils of microlow. However, the introduction of glucose canceled the effect of microrelief on СО2 emission. The intensity of absolute priming effect correlated with the Сorg pool, initial microbial biomass, and enzyme activity, decreasing from humus horizons to the buried ones, and did not depend on microrelief. The effect of microrelief was observed, when assessing the priming effect relative to control (soil not activated by glucose): the value of relative priming effect was 1.5 times greater in А horizon of gray forest soil in microlow in comparison with that on microhigh being the result of increasing activity of enzymes.  相似文献   

12.
Abstract

Pg contents of soils chosen from the major soil groups occurring in the mountain area of Central Japan were measured by the method presented by the author in a previous paper. The Pg contents of the soils ranged from 0 to 0.58 per cent of the dry soils. In podzolic soils, Pg contents were high in A horizons and gradually decreased with depth and in some cases of brown forest soils, Pg contents were highest in B horizons. The percentage of Pg in humic acid ranged from 0 to 8.6 per cent, and the highest value was observed in the C horizon of Dando Bo soil, Pg contents were high in humid and acidic soils containing much humic acid. Humidity, soil pH and humus content may affect the Pg accumulation by controlling the activity of Pg-producing fungi. ? log K values of Pb were calculated to estimate the degree of humification of P type humic acids and indicated that Pb's were relatively immature.  相似文献   

13.
Specific features of the genesis and water regime of soils in closed depressions were studied in two catenas located on the interfluvial and terrace surfaces. In humid years and in the years with moderate precipitation, the surface flooding up to early May reduced the Eh values up to 60–100 mV in the soils of the interfluvial depressions. The contrasting stagnant-percolate water regime under the surface waterlogging caused podzolization of the soils manifested in the skeletans, iron nodules, humus cutans, and podzolic horizons. The pro-files acquired eluvial-illuvial differentiation, and the water-physical properties of the soils became less favorable. In the soils of the terrace depressions upon bogging due to the shallow ground water and stagnation of water up to mid-July, the Eh values decreased to ?20 to ?80 mV. The reductive conditions were responsible for the appearance of the morphochromatic signs of gley. The ground water of bicarbonate-calcium composition at a depth of 80–120 cm hindered podzolization. The soils with features of gley and podzolization are low-productive.  相似文献   

14.
The number and biomass of the microbial community in the upper humus horizon (0–20 cm) were determined in the main types of alluvial soils (mucky gley, desertified soddy calcareous, hydrometamorphic dark-humus soils) in the Volga River delta. Fungal mycelium and alga cells predominate in the biomass of the microorganisms (35–50% and 30–47%, respectively). The proportion of prokaryotes in the microbial biomass of the alluvial soils amounts to 2–6%. No significant seasonal dynamics in the number and biomass of microorganisms were revealed in the alluvial soils. The share of carbon of the microbial biomass in the total carbon content of the soil organic matter is 1.4–2.3% in the spring. High coefficients of microbial mineralization and oligotrophy characterize the processes of organic matter decomposition in the alluvial soils of the mucky gley, desertified soddy calcareous, and hydrometamorphic dark humus soil types.  相似文献   

15.
ABSTRACT

The neutral monosaccharide composition of forest soils differs from that of non-forest soils suggesting there is an accumulation of microbial saccharides. Ectomycorrhizal (ECM) fungi can be responsible as the fungi are typical in forest soils. We investigated neutral saccharides of ECM fungal sclerotia to determine what part it might play in the origin of forest soil polysaccarides. Sclerotial grain (SG) was collected from the O, A1 and A2 horizons of a soil of subalpine forest of Mt. Ontake, central Japan. Neutral saccharides in soil and SG were analyzed by two step hydrolysis with sulfuric acid and gas-chromatography of alditol acetate derivatives. Saccharides accounted for 6.0?16% of the SG by carbon content. The SG contained predominantly easily hydrolysable (EH)-glucose, which accounted for 75–85% of the composition depending on grain size and the soil horizon, followed by mannose (7.7?15%), galactose (2.2?4.8%) and non-easily hydrolysable (NEH)-glucose (1.7?6.1%). The SG contained all of these sugars irrespective of its size. The SG collected from the A1 and A2 horizons contained all sugar components found in that from the O horizon, except for fucose in that from A2 horizon. The monosaccharide composition of SG indicates that accumulation of ECM fungal sclerotial polysaccharides might have been responsible for enlarging the molar ratios of (galactose + mannose) /(arabinose + xylose) and EH-glucose/NEH-glucose of forest soils. The proportions of SG saccharides relative to soil saccharides were 3.6, 1.2, and 0.83% for the O, A1 and A2 horizons, respectively. These levels of the proportion are considerable as ECM fugal sclerotia are the products of a limited species among hundreds and thousands of microbial species inhabiting forest soils. The sclerotia forming ECM fungal species such as Cenococcum geophilum may be key sources of forest soil polysaccharides.  相似文献   

16.
The study of soils of different ages in different physiographic regions of the Crimean Peninsula made it possible to reveal the main regularities of pedogenesis in the Late Holocene (in the past 2800 years). With respect to the average rate of the development of soil humus horizons, the main types of soils in the studied region were arranged into the following sequence: southern chernozems and dark chestnut soils > mountainous forest brown soils > gravelly cinnamonic soils. In the newly formed soils, the accumulation of humus developed at a higher rate than the increase in the thickness of humus horizons. A sharp decrease in the rates of development of soil humus profiles and humus accumulation took place in the soils with the age of 1100-1200 years. The possibility for assessing the impact of climate changes on the pedogenetic process on the basis of instrumental meteorological data was shown. The potential centennial fluctuations of the climate in the Holocene determined the possibility of pulsating shifts of soil-geographic subzones within the steppe part of the Crimea with considerable changes in the rates of the development of soil humus horizons in comparison with those in the Late Holocene.  相似文献   

17.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

18.
General ideas concerning the formation of light-colored acid eluvial horizons in soil profiles are considered. In Russia, the current concept is related to the polygenetic origin of these horizons due to processes of acid hydrolysis, lessivage, and gley. Based on the original and literature data summarized by the author, the conclusion was drawn that the acid hydrolysis cannot provide the reduction of Fe (III) to Fe (II) under aerobic conditions or its further transfer to the soil solution. Lessivage, which governs the formation of light-colored acid eluvial horizons, is not an obligatory factor, as its features are often absent in the profile of these soils. Under conditions of a stagnant-percolative water regime, gley may be considered to be the only process responsible for the eluviation of Fe, Mn, and Al and removal of iron hydroxide and iron oxide coatings from mineral grains, resulting in an increase in the relative Si content and the appearance of a whitish color. This factor is the only cause for the formation of light-colored eluvial (podzolic) horizons. Therefore, they are monogenetic in origin.  相似文献   

19.
Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.  相似文献   

20.
The influence of forest fires on the properties of taiga brown, gley taiga brown, and alluvial bog soils widespread in the area of the Norskii Reserve (the Amur River basin) was studied. During several years after the fire, the humus content increased, especially in the soils subjected to fires of high intensity. In the soils of steep slopes, the humus content decreased due to damage to the forest vegetation and activation of lateral runoff after the fire. As a rule, in the soils subjected to fire, the C ha-to-C fa ratio increased and correlated with the fire intensity. Some relationships between the forest fires and the acid-base properties of the soils were revealed. After the fires, the pH values often became higher. The stronger the fire, the higher the pH values. The stony soils differed from the other ones, since the reaction of their upper horizons turned out to be more acid after the fires. The analysis of the authors’ and literature data showed that the pyrogenic changes of some soil properties have been poorly studied and need further investigation, including their geographical aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号