首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a knowledge gap on biochar carbon (C) longevity and its priming effects on soil organic carbon (SOC) and recent root-derived C under field conditions. This knowledge would allow the potential of biochar in long-term soil C sequestration to be established. However, most studies on biochar C longevity and its priming effect have been undertaken in plant-free laboratory incubations.A 388 d field study was carried out in the presence of an annual ryegrass (C3) growing on a rhodic ferralsol with established C3/C4 plant-derived SOC (δ13C: −20.2‰) in a subtropical climate. A 13C-depleted hardwood biochar (δ13C: −35.7‰, produced at 450 °C) was applied at 0 and 30 dry t ha−1 and mixed into the top 100-mm soil profile (equivalent to 3% w/w). We report on the differentiation and quantification of root respiration and mineralisation of soil-C and biochar-C in the field. Periodic 13CO2 pulse labelling was applied to enrich δ13C of root respiration during two separate winter campaigns (δ13C: 151.5–184.6‰) and one summer campaign (δ13C: 19.8–31.5‰). Combined soil plus root respiration was separated from leaf respiration using a novel in-field respiration collar. A two-pool isotope mixing model was applied to partition three C sources (i.e. root, biochar and soil). Three scenarios were used to assess the sensitivity associated with the C source partitioning in the planted systems: 1) extreme positive priming of recent SOC derived from the current ryegrass (C3) pasture; 2) equivalent magnitude of priming of SOC and labile root C; and 3) extreme positive priming of the native C4-dominant SOC.We showed that biochar induced a significant negative priming of SOC in the presence of growing plants but no net priming was observed in the unplanted soil. We also demonstrated the importance of experimental timeframe in capturing the transient nature of biochar-induced priming, from positive (day 0–62) to negative (day 62–388). The presence/absence of plants had no impact on biochar-C mineralisation in this ferralsol during the measurement period. Based on a two-pool exponential model, the mean residence time (MRT) of biochar varied from 351 to 449 years in the intensive pasture system to 415–484 years in the unplanted soils.  相似文献   

2.
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants.  相似文献   

3.
Abstract

Northeast China is the main production area of maize and soybean in China. In the present study, the rates of decomposition and replacement of soil organic carbon (SOC) were estimated using the soil inventory collected since 1991 from long-term maize and soybean cultivation plots in Heilongjiang Province, Northeast China, to evaluate the sustainability of the present cultivation system. The total carbon (C) content in soil was stable without any significant changes in the plots (approximately 28.5 g C kg?1). The δ13C value of soil organic matter under continuous maize cultivation increased linearly with an annual increment of 0.07 from ?23.9 in 1991, which indicated that approximately 13% of the initial SOC was decomposed during the 13-year period of maize cultivation, with a half-life of 65 years. Slow decomposition of SOC was considered to result from the low annual mean temperature (1.5°C) and long freezing period (170–180 days year?1) in the study area. In contrast, the amount of organic C derived from maize increased in the soil with a very slow annual increment of 0.17 g C kg?1, probably because of the removal of all the plant residues from the plots. Based on the soil organic matter dynamics observed in the study plots, intentional recycling/maintenance of plant residues was proposed as a way of increasing soil fertility in maize or soybean cultivation.  相似文献   

4.
Amino sugars are useful indicators for the accumulation of microbial residues. A 14-day incubation experiment with C4 and C3 sucrose additions was carried out to investigate the relationships between amino sugar-specific shifts in δ13C values and those of CO2 production, microbial biomass C, K2SO4 extractable C and soil organic C (SOC). High performance anion exchange chromatography (HPAEC-IRMS) was able to measure amino-sugar specific δ13C values for muramic acid (MurN), galactosamine (GalN), and glucosamine (GlcN) in the range of natural abundance. At day 7, the initial application of C4 sucrose significantly increased the δ13C value of MurN by 1.0‰ in comparison with the non-amended control treatment, whereas that of GalN and GlcN remained unchanged. This significant increase had disappeared by day 14. This means that the HPAEC-IRMS method is not useful for short-term incubation experiments in the natural abundance range, as the pool size, especially of GalN and GlcN, was too large for a significant response in δ13C values. The δ13C values significantly decreased in the order MurN (−23.2‰) > GalN (−25.7‰) > GlcN (−26.5‰) in the control treatment. Similar δ13C values were measured in GlcN, microbial biomass C, and SOC. MurN exhibited δ13C values similar to the K2SO4 extractable fraction. These results may be caused by differences in the access of bacteria and fungi to different SOC fractions or differences in metabolic fractionation in bacteria and fungi. C3 sucrose application without further nutrient supply seven days after C4 sucrose application together with N and P led to strong mineralization of freshly formed microbial residues.  相似文献   

5.

Purpose

Soil carbon dynamics were studied at four different forest stands developed on bedrocks with contrasting geology in Slovenia: one plot on magmatic granodiorite bedrock (IG), two plots on carbonate bedrock in the karstic-dinaric area (CC and CD), and one situated on Pleistocene coalluvial terraces (FGS).

Materials and methods

Throughfall (TF) and soil water were collected monthly at each location from June to November during 2005–2007. In soil water, the following parameters were determined: T, pH, total alkalinity, concentrations of Ca2+ and Mg2+, dissolved organic carbon (DOC), and Cl? as well as δ13CDIC. On the other hand, in TF, only the Cl? content was measured. Soil and plant samples were also collected at forest stands, and stable isotope measurements were performed in soil and plant organic carbon and total nitrogen and in carbonate rocks. The obtained data were used to calculate the dissolved inorganic carbon (DIC) and DOC fluxes. Statistic analyses were carried out to compare sites of different lithologies, at different spatial and temporal scales.

Results and discussion

Decomposition of soil organic matter (SOM) controlled by the climate can explain the 13C and 15?N enrichment in SOM at CC, CD, and FGS, while the soil microbial biomass makes an important contribution to the SOM at IG. The loss of DOC at a soil depth of 5 cm was estimated at 1 mol m?2 year?1 and shows no significant differences among the study sites. The DOC fluxes were mainly controlled by physical factors, most notably sorption dynamics, and microbial–DOC relationships. The pH and pCO2 of the soil solution controlled the DIC fluxes according to carbonate equilibrium reactions. An increased exchange between DIC and atmospheric air was observed for samples from non-carbonate subsoils (IG and FGS). In addition, higher δ13CDIC values up to ?19.4?‰ in the shallow soil water were recorded during the summer as a consequence of isotopic fractionation induced by molecular diffusion of soil CO2. The δ13CDIC values also suggest that half of the DIC derives from soil CO2 indicating that 2 to 5 mol m?2 year?1 of carbon is lost in the form of dissolved inorganic carbon at CC and CD after carbonate dissolution.

Conclusions

Major difference in soil carbon dynamics between the four forest ecosystems is a result of the combined influence of bedrock geology, soil texture, and the sources of SOM. Water flux was a critical parameter in quantifying carbon depletion rates in dissolved organic and inorganic carbon forms.
  相似文献   

6.
The minor isotopes of carbon (13C and 14C) are widely used as tracers in studies of the global carbon cycle. We present carbon‐isotope data for the 0–5 cm layer of soil on a transect from 49.6°N to 68°N, from mature forest and tundra ecosystems in the boreal‐arctic zone of interior western Canada. Soil organic carbon in the < 2000 μm fraction of the soil decreases from 3.14 kg m?2 in the south to 1.31 kg m?2 in the north. The 14C activity of the organic carbon decreases as latitude increases from 118.9 to 100.7 per cent modern carbon (pMC). In addition, the 14C activities of organic carbon in the particle‐size fractions of each sample decrease as particle size decreases. These results suggest that organic carbon in the 0–5 cm layer of these soils transfers from standing biomass into the coarsest size fractions of the soil and is then degraded over time, with the residue progressively transferred into the more resistant finer particle sizes. We calculate residence times for the coarsest size fractions of 21 years in the south to 71 years in the north. Residence times for the fine size fractions (< 63 μm) are considerably longer, ranging from 90 years in the south to 960 years in the north. The δ13C of the organic carbon decreases from ?26.8 ± 0.3‰ in soil under forest in the south to ?26.2 ± 0.1‰ for tundra sites in the north. At all sites there is an increase in δ13C with decreasing particle size of 0.7–1.6‰. These changes in δ13C are due to the presence of ‘old’ carbon in equilibrium with an atmosphere richer in 13C, and to the effects of microbial degradation.  相似文献   

7.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

8.

Purpose

Processes that lead to soil organic carbon (SOC) protection depend on both soil porosity and structure organization, as well as chemical and biological properties. In particular, the soil micro-nano porosity (<30 μm) regulates microorganism accessibility to the soil pore system and offers surfaces for organic carbon adsorption and intercalation into soil minerals. The aim of this work was to investigate how pore size distribution can selectively protect specific carbon pools in different aggregate size fractions, by considering the effects of long-term application of farmyard manure (FYM) and mineral (Min) fertilization.

Materials and methods

Macroaggregates (250–2000 μm), microaggregates (53–250 μm), and silt–clay (<53 μm) fractions of three different soils (clayey, peaty, and sandy) were separated by wet sieving technique and then subjected to chemical and physical analysis. Sample porosity and pore size distribution were analyzed using mercury intrusion porosimetry (MIP), while SOC chemical structure was characterized by means of nuclear magnetic resonance (13C cross-polarization–magic angle spinning nuclear magnetic resonance (CP MAS 13C NMR)) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopies.

Results and discussion

Results showed that FYM increased organic (OC) and humic carbon (HC) content compared to the Min fertilization and unfertilized soils. However, it caused a gradual decrease in O,N-alkyl C, and alkyl C of humic C from macroaggregate to silt–clay fractions, suggesting an advanced state of humic component degradation as revealed by CP MAS 13C NMR, DRIFT analyses. MIP analysis showed a clear increase of micropores (5–30 μm) and cryptopores (0.0035–0.1 μm) from macroaggregate to silt–clay fractions, while minor differences were observed among the treatments. The application of principal component analysis to mineral soil fractions identified the formation of three main clusters, where (i) macroaggregates of clayey soil were mainly associated to cryptopores and OC and (ii) microaggregates and silt–clay fraction were mainly isolated by carbonyl C, ultramicropores, and total porosity. The third cluster was associated with medium and fine sand of the sand soil fraction as coupled with O,N-alkyl C, anomeric C, mesopores, and HC/OC ratio.

Conclusions

Overall, this study indicates that pore size distribution may be a valuable indicator of soil capacity to sequester carbon, due to its direct influence on SOC linkages with soil aggregates and the positive effects against SOC decomposition phenomena. In this context, micropore- to nanopore-dominated structures (e.g., clayey soil) were able to protect OC compounds by interacting with mineral surfaces and intercalation with phyllosilicates, while meso/macropore-dominated structures (i.e., sandy soil) exhibited their low ability to protect the organic components.
  相似文献   

9.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

10.

Purpose

Wet meadows formed on alluvial deposits potentially store large amounts of soil carbon (C) but its stability is subject to the impacts of management practices. The objective of this study was to quantify and characterize soil organic carbon (SOC) and nitrogen (N) in mountain wet meadows across ranges of meadow hydrology and livestock utilization.

Materials and methods

Eighteen wetlands in the southern Sierra Nevada Mountains representing a range of wetness and livestock utilization levels were selected for soil sampling. In each wetland meadow, whole-solum soil cores delineated by horizon were analyzed for total and dissolved organic C (DOC) total (TN) and mineral nitrogen and soil water content (SWC). Multiple regression and GIS analysis was used to estimate the role of wet meadows in C storage across the study area landscape.

Results and discussion

Average solum SOC contents by wetland ranged from 130 to 805 Mg ha?1. All SOC and TN components were highly correlated with SWC. Regression analyses indicated subtle impacts of forage utilization level on SOC and TN concentrations, but not on whole-solum, mass-per-area stocks of SOC and TN. Proportions of DOC and TN under seasonally wet meadows increased with increasing utilization. GIS analysis indicated that the montane landscape contains about 54.3 Mg SOC ha?1, with wet meadows covering about 1.7% of the area and containing about 12.3% of the SOC.

Conclusions

Results indicate that soil organic C and N content of meadows we sampled are resilient to current light to moderate levels of grazing. In seasonally wet meadows, higher proportions of DOC and N with increasing utilization indicate vulnerability to loss. Partial drying of the wettest and seasonally wet meadows could result in losses of over five % of landscape SOC.  相似文献   

11.
Profiles of soil organic carbon (SOC) are often characterized by a steep increase of 14C age with depth, often leading to subsoil 14C ages of more than 1000 years. These observations have generally been reproduced in SOC models by introducing a SOC pool that decomposes on the time-scale of millennia. The overemphasis of chemical recalcitrance as the major factor for the persistence of SOC was able to provide a mechanistic justification for these very low decomposition rates. The emerging view on SOC persistence, however, stresses that apart from molecular structure a multitude of mechanisms can lead to the long-term persistence of organic carbon in soils. These mechanisms, however, have not been incorporated into most models. Consequently, we developed the SOC profile model COMISSION which simulates vertically resolved SOC concentrations based on representations of microbial interactions, sorption to minerals, and vertical transport. We calibrated COMISSION using published concentrations of SOC, microbial biomass and mineral-associated OC (MOC), and in addition, 14C contents of SOC and MOC of a Haplic Podzol profile in North-Eastern Bavaria, Germany. In order to elucidate the contribution of the implemented processes to the 14C age in different parts of the profile, we performed model-experiments in which we switched off the limitation of SOC decomposition by microbes, sorptive stabilization on soil minerals, and dissolved OC (DOC) transport. By splitting all model pools into directly litter-derived carbon and microbe-derived organic carbon, we investigated the contribution of repeated microbial recycling to 14C ages throughout the profile. The model-experiments for this site lead to the following implications: Without rejuvenation by DOC transport, SOC in the subsoil would be on average 1700 14C years older. Across the profile, SOC from microbial recycling is on average 1400 14C years older than litter-derived SOC. Without microbial limitation of depolymerization, SOC in the subsoil would be on average 610 14C years younger. Sorptive stabilization is responsible for relatively high 14C ages in the topsoil. The model-experiments further indicate that the high SOC concentrations in the Bh horizon are caused by the interplay between sorptive stabilization and microbial dynamics. Overall, the model-experiments demonstrate that the high 14C ages are not solely caused by slow turnover of a single pool, but that the increase of 14C ages along a soil profile up to ages >1000 years is the result of different mechanisms contributing to the overall persistence of SOC. The dominant reasons for the persistence of SOC are stabilization processes, followed by repeated microbial processing of SOC.  相似文献   

12.
Long‐term no‐tillage management and crop residue amendments to soil were identified as an effective measure to increase soil organic carbon (SOC). The SOC content, SOC stock (SOCs), soil carbon sequestration rate (CSR), and carbon pool management index (CPMI) were measured. A stable isotopic approach was used to evaluate the contributions of wheat and maize residues to SOC at a long‐term experimental site. We hypothesized that under no‐tillage conditions, straw retention quantity would affect soil carbon sequestration differently in surface and deep soil, and the contribution of C3 and C4 crops to soil carbon sequestration would be different. This study involved four maize straw returning treatments, which included no maize straw returning (NT‐0), 0.5 m (from the soil surface) maize straw returning (NT‐0.5), 1 m maize straw returning (NT‐1), and whole maize straw returning (NT‐W). The results showed that in the 0–20 cm soil layer, the SOC content, SOCs, CSR and CPMI of the NT‐W were highest after 14 years of no‐tillage management, and there were obvious differences among the four treatments. However, the SOC, SOCs, and CSR of the NT‐0.5 and NT‐W were the highest and lowest in 20–100 cm, respectively. The value of δ13C showed an obviously vertical variability that ranged from –22.01‰ (NT‐1) in the 0–20 cm layer to –18.27‰ (NT‐0.5) in the 60–80 cm layer, with enriched δ13C in the 60–80 cm (NT‐0.5 and NT‐1) and 80–100 cm (NT‐0 and NT‐W) layers. The contributions of the wheat and maize‐derived SOC of the NT‐0.5, NT‐1 and NT‐W increased by 11.4, 29.5 and 56.3% and by 10.7, 15.1 and 40.1%, relative to those in the NT‐0 treatment in the 0–20 cm soil layer, respectively. In conclusion, there was no apparent difference in total SOC sequestration between the NT‐0.5, NT‐1, and NT‐W treatments in the 0–100 cm soil layer. The contribution of wheat‐derived SOC was higher than that of maize‐derived SOC.  相似文献   

13.
Abstract

Soil organic carbon (SOC) plays a key role in crop productivity and soil quality. Conservation agriculture has a positive effect on SOC accumulation in the surface soil horizons, but little information is available regarding the effect of the removal of crop residues by burning. This study aimed to assess the impact of different types of crop residue management practices on the total C distribution and natural abundance of 13C (‰, δ13C). Two volcanic soils, located in the Mediterranean temperate zone of Southern Chile, were studied: an Ultisol (Collipulli Series, CPL) and an Andisol (Santa Bárbara Series, SBA). Both soils had been cultivated under direct-drilling and a typical annual crop rotation system for a long period of time. Two different types of crop residue management practices were imposed in both soils: (i) crop residue burning (CPL-B; SBA-B) and (ii) crop residue retention over the soil (CPL-R; SBA-R), corresponding to treatments B and R, respectively. Soil profile distribution of the C content and natural abundance of 13C were analysed for bulk soils (down to 100 cm depth) and three particle-size fractions of the soils (down to 20 cm of soil depth): (a) ≤ 53 µm, (b) 53-212 µm and (c) ≥ 212 µm. It was found that the effect of crop residue management can be observed in the variations of C content and δ13C in the soil profile in both volcanic soils. Crop residue burning (B treatment) increased the C content in bulk soil and the particle-size fractions. On the other hand, soil organic matter of crop residue retention (R treatment) showed higher natural abundance of 13C (δ13C) compared with residue burning (B treatment) in the two volcanic soils. R treatment enriched the particle-size fractions (except ≥ 212 µm fraction of CPL soil) with 13C. Factors that could account for these findings are also discussed here.  相似文献   

14.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

15.

Purpose

Genetic modification of Bt rice may affect straw decomposition and soil carbon pool under flood conditions. This study aims to assess the effects of cry gene transformation in rice on the residue decomposition and fate of C from residues under flooded conditions.

Materials and methods

A decomposition experiment was set up using 13C-enriched rice straws from transgenic and nontransgenic Bt rice to evaluate the soil C dynamics and CH4 or CO2 emission rates in the root and non-root zones. The concentrations and stable carbon isotope compositions of the soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), CH4, and CO2 of the root and non-root zones were determined from 7 to 110 days after rice straw incorporation.

Results and discussion

Rice straw incorporation into soil significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates. The percentage of 13C-SOC remaining in the root zone was significantly lower than that in the non-root zone with rice straw decomposition. The DOC and MBC concentrations significantly increased in both the root and non-root zones between 0 and 80 days after rice straw incorporation. However, no significant differences were found after Bts (Bt rice straw added into soil) and Cks (nontransgenic Bt rice straw added into soil) incorporation in the root and non-root zones. This result may be attributed to the priming effects of sufficient oxygen and nutrients on straw degradation in the root zone.

Conclusions

Bt gene insertion did not affect the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates in both the root and non-root zones. However, rice straw incorporation and root exudation significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates.  相似文献   

16.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

17.
Spatial patterns of soil δ13C were quantified in a subtropical C3 woodland in the Rio Grande Plains of southern Texas, USA that developed during the past 100 yrs on a lowland site that was once C4 grassland. A 50 × 30 m plot and two transects were established, and soil cores (0–15 cm, n = 207) were collected, spatially referenced, and analyzed for δ13C, soil organic carbon (SOC), and soil particle size distribution. Cross-variogram analysis indicated that SOC remaining from the past C4 grassland community co-varied with soil texture over a distance of 23.7 m. In contrast, newer SOC derived from C3 woody plants was spatially correlated with root biomass within a range of 7.1 m. Although mesquite trees initiate grassland-to-woodland succession and create well-defined islands of soil modification in adjoining upland areas at this site, direct gradient and proximity analyses accounting for the number, size, and distance of mesquite plants in the vicinity of soil sample points failed to reveal any relationship between mesquite tree abundance and soil properties. Variogram analysis further indicated soil δ13C, texture and organic carbon content were spatially autocorrelated over distances (ranges = 15.6, 16.2 and 18.7 m, respectively) far greater than that of individual tree canopy diameters in these lowland communities. Cross-variogram analysis also revealed that δ13C – SOC and δ13C-texture relationships were spatially structured at distances much greater than that of mesquite canopies (range = 17.6 and 16.5 m, respectively). These results suggest fundamental differences in the functional nature and consequences of shrub encroachment between upland and lowland landscapes and challenge us to identify the earth system processes and ecosystem structures that are driving carbon cycling at these contrasting scales. Improvements in our understanding how controls over soil carbon cycling change with spatial scale will enhance our ability to design vegetation and soil sampling schemes; and to more effectively use soil δ13C as a tool to infer vegetation and soil organic carbon dynamics in ecosystems where C3–C4 transitions and changes in structure and function are occurring.  相似文献   

18.
Although soil Collembola are known to contribute to soil carbon (C) cycling, their contribution to the mineralization of C sources that differ in bioavailability, such as soil organic C (SOC) and leaf litter, is unknown. Stable C isotopes are often used to quantify the effects of both soil C and litter C on C mineralization. Here, 13C-labeled litter was used to investigate the effects of Collembola (Folsomia candida) on the mineralization of both SOC and litter C in laboratory microcosms. The three microcosm treatments were soil alone (S); soil treated with δ13C-labeled litter (SL); and soil treated with δ13C-labeled litter and Collembola (SLC). The presence of Collembola did not significantly affect soil microbial biomass or litter mass loss and only had a small effect on CO2 release during the first week of the experiment, when most of the CO2 was derived from litter rather than from SOC. Later, during the experiment (days 21 and 63), when litter-derived labile C had been depleted and when numbers of Collembola had greatly increased, Collembola substantially increased the emission of SOC-derived CO2. These results suggest that the effect of Collembola on soil organic C mineralization is negatively related to C availability.  相似文献   

19.
《Geoderma》2005,124(1-2):37-47
Isotopic signatures of soil components are commonly used to infer past ecologic and climatic shifts in the soil record. The theory behind the fractionation of isotopes that occurs during ecosystem processes is well understood; however, few isotopic studies have explored ecosystem relationships in modern soils. We discuss relationships of stable carbon isotopic signatures in plant tissue, soil organic carbon (SOC), laboratory-respired CO2, and modern carbonates at 10 sites (seven containing pedogenic carbonates) along a C3-dominated climatic gradient (mean annual precipitation (MAP) ranging from 200 to 1000 mm) in the Palouse region of eastern Washington state.A horizon soil organic carbon (SOC) δ13C values varied from −24.3‰ to −25.9‰ PDB. Values in the arid portion of the gradient (200 to approximately 500 mm MAP) generally decreased and linear regression of SOM 13C vs. MAP was significant (r2=0.71, p=0.02). Trends in plant-13C of two grass species (Agropyron spicatum and Festuca idahoensis) found throughout this portion of the gradient were similar to that of SOC. Mean pedogenic carbonate δ13C values varied from −4.1‰ to −10.8‰ PDB. Linear regression was significant for carbonate 13C vs. MAP (r2=0.79, p=0.007), estimated above-ground productivity (r2=0.88, p=0.002) and soil carbon content (r2=0.83, p=0.004). Carbonate δ13C values at the most arid site exhibited higher variability than other sites (presumably due to greater spatial variation in plant respiration vs. atmospheric diffusion). Our data suggest that carbon isotopic relationships among ecosystem components may prove useful in determining ecosystem level properties in modern systems, and potentially in ancient systems as well.  相似文献   

20.
The present study aims to evaluate carbon recovery and analytical precision of two methods based on dry combustion for organic carbon (OC) quantification in base metal mine tailings: (1) IC subtraction method (inorganic C(IC) measured and subtracted from total C) and (2) direct OC quantification after acid pretreatment. Results showed IC subtraction method effectively hydrolyzed a range of IC minerals [calcium carbonate (CaCO3), magnesium carbonate (MgCO3), dolomite, magnesite, calcite] with satisfactory IC (as CO2 released) recovery (87–103 percent). In the direct OC quantification method, 5 M hydrochloric acid (HCl) pretreatment resulted in a satisfactory recovery (76–92 percent) of most organic compounds [ethylenediaminetetraacetic acid (EDTA), cellulose, plant litter, and charcoal], except for water-soluble OC (sucrose, 40 percent recovery). The precision of both methods declined when C levels were <5 g kg?1 with RSD (Relative Standard Deviation) > 10 percent. The OC values in test samples of base metal mine tailings were comparable between the two methods. However, IC subtraction method is not applicable for tailings with low OC levels (<5 g kg?1) until the precision is substantially improved. Moreover, compared to the IC subtraction method, OC values are significantly lower in direct OC quantification method for tailings with high OC levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号