首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limitations to the respiratory activity of heterotrophic soil microorganisms exert important controls of CO2 efflux from soils. In the northeastern US, ecosystem nutrient status varies across the landscape and changes with forest succession following disturbance, likely impacting soil microbial processes regulating the transformation and emission of carbon (C). We tested whether nitrogen (N) or phosphorus (P) limit the mineralization of soil organic C (SOC) or that of added C sources in the Oe horizon of successional and mature northern hardwood forests in three locations in central New Hampshire, USA. Added N reduced mineralization of C from SOC and from added leaf litter and cellulose. Added P did not affect mineralization from SOC; however, it did enhance mineralization of litter- and cellulose- C in organic horizons from all forest locations. Added N increased microbial biomass N and K2SO4-extractable DON pools, but added P had no effect. Microbial biomass C increased with litter addition but did not respond to either nutrient. The direction of responses to added nutrients was consistent among sites and between forest ages. We conclude that in these organic horizons limitation by N promotes mineralization of C from SOC, whereas limitation by P constrains mineralization of C from new organic inputs. We also suggest that N suppresses respiration in these organic horizons either by relieving the N limitation of microbial biomass synthesis, or by slowing turnover of C through the microbial pool; concurrent measures of microbial growth and turnover are needed to resolve this question.  相似文献   

2.
Soil invertebrates are important in nutrient cycling in soils, but the degree to which mesofauna such as Collembola are responsible for the direct movement of carbon (C) from the litter layer into soil has not yet been ascertained. We used naturally occurring stable C isotopic differences between a C4 soil and alder leaves (C3) to examine the effect of the collembolan Folsomia candida on C translocation into soil in laboratory microcosms. Collembolan numbers greatly increased in the presence of alder, but despite large collembolan populations there were no changes in decomposition rate (measured as litter mass loss, cumulative respired CO2 and alder C:N ratios). Small changes in the δ13C values of bulk soil organic matter were detected, but could not be assigned to collembolan activity. However, mean δ13C values of soil microbial phospholipid fatty acids (PLFAs) were significantly lower in the presence of alder and Collembola together, demonstrating that collembolan activities resulted in greater availability of litter-derived C to the soil microbial community. Additionally, the presence of Collembola resulted in the translocation of alder-derived compounds (chlorophyll and its breakdown product pheophytin) into soil, demonstrating that Collembola modify soil organic matter at the molecular level. These results are consistent with deposition of collembolan faeces in underlying soil and demonstrate that despite their small size, Collembola contribute directly to C transport in the litter-soil environment.  相似文献   

3.
Amino sugars are useful indicators for the accumulation of microbial residues. A 14-day incubation experiment with C4 and C3 sucrose additions was carried out to investigate the relationships between amino sugar-specific shifts in δ13C values and those of CO2 production, microbial biomass C, K2SO4 extractable C and soil organic C (SOC). High performance anion exchange chromatography (HPAEC-IRMS) was able to measure amino-sugar specific δ13C values for muramic acid (MurN), galactosamine (GalN), and glucosamine (GlcN) in the range of natural abundance. At day 7, the initial application of C4 sucrose significantly increased the δ13C value of MurN by 1.0‰ in comparison with the non-amended control treatment, whereas that of GalN and GlcN remained unchanged. This significant increase had disappeared by day 14. This means that the HPAEC-IRMS method is not useful for short-term incubation experiments in the natural abundance range, as the pool size, especially of GalN and GlcN, was too large for a significant response in δ13C values. The δ13C values significantly decreased in the order MurN (−23.2‰) > GalN (−25.7‰) > GlcN (−26.5‰) in the control treatment. Similar δ13C values were measured in GlcN, microbial biomass C, and SOC. MurN exhibited δ13C values similar to the K2SO4 extractable fraction. These results may be caused by differences in the access of bacteria and fungi to different SOC fractions or differences in metabolic fractionation in bacteria and fungi. C3 sucrose application without further nutrient supply seven days after C4 sucrose application together with N and P led to strong mineralization of freshly formed microbial residues.  相似文献   

4.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

5.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

6.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

7.
The aim was to quantify medium term litter type and litter mixture effects on the translocation and transformation dynamics of root and leaf litter C during decomposition. Partitioning of 13C-labeled root or leaf litter C (beech – Fagus sylvatica L., ash – Fraxinus excelsior L.) to CO2, water-extractable organic C (WEOC), microbial biomass C (CMB) and light (LF) and heavy soil fraction (HF) was determined in a laboratory decomposition experiment of 206 days. The proportions of C mineralized from ash leaf (34%) and root litter (29%) were higher than those from beech leaf (24%) and root litter (23%). In mixture with beech, the mineralization of ash leaf litter was enhanced. Mineralization was positively correlated with litter-derived WEOC until day 29. Water-extractable organic C declined with time, until <0.1% of litter C remained in this fraction. Litter-C recovery in CMB was higher for ash (0.7–1.0%) than for beech (0.2–0.4%). The litter C recovery in HF (4–12%) was positively correlated with that in WEOC (days 9 and 29) and CMB, but did not differ between treatments. Ash leaf litter mineralization showed different behavior in mixed treatments from pure treatments. Thus, the ability to transfer results from pure to mixed treatments is limited. The litter differed in chemical composition and in mineralization dynamics, but differences in partitioning to HF, WEOC and MB were finally of minor importance.  相似文献   

8.
We hypothesized that the combined effect of rising levels of atmospheric carbon dioxide (CO2) and increasing use of genetically modified (GM) crops in agriculture may affect soil food-webs. So we designed a study for the assessment of the effects of elevated CO2 (eCO2) concentrations and GM barley on a soil-mesofauna community employing a 2nd tier mesocosm test system. The GM barley, Hordeum vulgare cv. Golden Promise, had a modified content of amino acids and it was compared with three non-GM barley cultivated varieties including the isogenic line. Our mesocosm experiment was conducted in a greenhouse at ambient (aCO2) and eCO2 (+80 ppm) levels and included a multispecies assemblage of Collembola, Acari and Enchytraeidae with either a GM or conventional spring barley varieties. To detect food-web changes we added dried maize leaves naturally enriched in δ13C and δ15N relative to the soil substrate. Soil, plants and animals were collected after five and eleven weeks. We found that the eCO2 concentration did not affect the plant biomass, but the predatory mite and two collembolan species showed significantly lower abundances at eCO2. The densities of three collembolan species (Folsomia fimetaria, Proisotoma minuta and juveniles of Mesaphorura macrochaeta) was significantly lower in the GM treatment compared to some of the non-GM varieties. F. fimetaria was less abundant in presence of GM barley compared to the cultivated barley variety “Netto” at both CO2 levels, while the density of P. minuta was significantly reduced with the GM barley compared to variety “Netto” at aCO2 and the isogenic variety at eCO2. Maize litter acted as a food source for the community, as it was revealed by δ13C values in microarthropods. Microarthropod δ13C decreased over time, which indicates a diet change of the species towards carbon derived from barley, due to maize litter decomposition. The industrially produced CO2 gas also had a role as an isotopic marker, as the different δ13C values were reflected in the barley and in the collembolan species. GM barley did not affect δ13C and δ15N values of soil animals indicating that the overall trophic structure of the mesofauna community was not changed compared to the non-GM cultivated varieties. The mesocosm methodology integrating stable isotope analysis demonstrates the potential of the multi-species mesocosm as a tool to detect and track changes in the soil trophic interactions in response to environmental pressures, climate and novel agricultural crops.  相似文献   

9.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

10.
Microorganisms play a central role in litter decomposition and partitioning C between CO2 evolution and sequestration of C into semi-permanent pools in soils. At the ecosystem level, forest stand age influences rates of litter accumulation and quality, and micro-climatology which could affect the microbial community structure and C sequestration processes. Although numerous laboratory experiments have studied the decomposition of model 13C-labeled compounds, few studies have verified these findings under field conditions. The objective of this study was to track decomposition of 13C-labeled Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) materials into the soil microbial community using 13C-phospholipids fatty acid (PLFA) analysis in three different aged forest stands. A field experiment was conducted that had three forest stand age treatments: old-growth (>500 yrs); 8-year-old clear-cut (CC8); and 25-year-old clear-cut (CC25) (landscape reps of n = 2). Each stand age had in situ microcosms that were amended with either 13C-labeled surface litter or root material. Microcosms were destructively sampled seven times over a 22-month period and the soil was analyzed for the relative amounts of 13C incorporated (13C%INCORP) into PLFAs and the proportional distribution of 13C incorporated into PLFAs. The 13C%INCORP was affected by stand age and 13C source with greater 13C%INCORP in samples from CC8 than OG or CC25. Also, the level of 13C%INCORP was greater for labeled litter than root material in five out of the seven sample dates. In general, 18:1ω9 and 18:2ω6,9 (common fungal biomarkers) had the greatest amount of 13C incorporation throughout the study period in both clear-cut and old-growth sites, especially in plots with 13C-labeled litter. Our data showed a low fungal 13C-PLFA: bacterial 13C-PLFA ratio (0.45) 1 month after incubation was initiated compared to 5, 7 and 9 months after incubation (two of these dates were >1.0). This suggests that initially bacteria played a greater role in the decomposition of the added needles with fungi playing a more important role in subsequent sample dates. Our results illustrate that the use of 13C-labeled materials in field studies coupled with13C-PLFA profiling is a powerful tool for determining microbial dynamics during decomposition – enabling statistically significant detection of land management treatment effects on C acquisition by microbial functional groups.  相似文献   

11.
Both CO2-C production and the decomposability of grass leaf litter in a gley soil from a naturally occurring CO2 spring were previously shown to be influenced by the atmospheric CO2 concentrations under which the soil and litter were sampled. Here we investigate C mineralization in an organic soil from very high CO2 environments (range 1220-3900 μl l−1) at the same spring, and the effect of added leaf litter on CO2-C production. Carbon mineralization in the organic soil was unusual in two respects: (1) the proportion of labile components was very high, with more than 11% of the initial soil C being metabolized to CO2-C after 56 d at 25 °C; (2) rates of CO2-C production in autumn samples increased on incubation, after an initial decline. Decomposition was initially more rapid in C3 Holcus lanatus (Yorkshire fog) than in C4 Pennisetum clandestinum (kikuyu) litter, but differed little in samples from different atmospheric CO2 concentrations. Overall, the effects of environmental variables on estimates of litter decomposability in the organic soil were similar to, although much less marked than, those in the gley soil. Results suggest that organic components in the organic soil were metabolized at least as readily as those of added litter during the later stages of the 56-d incubation.  相似文献   

12.
Soil food webs are mainly based on three primary carbon (C) sources: root exudates, litter, and recalcitrant soil organic matter (SOM). These C sources vary in their availability and accessibility to soil organisms, which could lead to different pathways in soil food webs. The presence of three C isotopes (12C, 13C and 14C) offers an unique opportunity to investigate all three C sources simultaneously. In a microcosm experiment we studied the effect of food web complexity on the utilization of the three carbon sources. We choose an incomplete three factorial design with (i) living plants, (ii) litter and (iii) food web complexity. The most complex food web consisted of autochthonous microorganisms, nematodes, collembola, predatory mites, endogeic and anecic earthworms. We traced C from all three sources in soil, in CO2 efflux and in individual organism groups by using maize grown on soil developed under C3 vegetation and application of 14C labelled ryegrass shoots as a litter layer. The presence of living plants had a much greater effect on C pathways than food web complexity. Litter decomposition, measured as 14CO2 efflux, was decreased in the presence of living plants from 71% to 33%. However, living plants increased the incorporation of litter C into microbial biomass and arrested carbon in the litter layer and in the upper soil layer. The only significant effect of food web complexity was on the litter C distribution in the soil layers. In treatments with fungivorous microarthropods (Collembola) the incorporation of litter carbon into mineral soil was reduced. Root exudates as C source were passed through rhizosphere microorganisms to the predator level (at least to the third trophic level). We conclude that living plants strongly affected C flows, directly by being a source of additional C, and indirectly by modifying the existing C flows within the food web including CO2 efflux from the soil and litter decomposition.  相似文献   

13.
A broader knowledge of the contribution of carbon (C) released by plant roots (exudates) to soil is a prerequisite for optimizing the management of organic matter in arable soils. This is the first study to show the contribution of constantly applied 13C‐labelled maize and wheat exudates to water extractable organic carbon (WEOC), microbial biomass‐C (MB‐C), and CO2‐C evolution during a 25‐day incubation of agricultural soil material. The CO2‐C evolution and respective δ13C values were measured daily. The WEOC and MB‐C contents were determined weekly and a newly developed method for determining δ13C values in soil extracts was applied. Around 36% of exudate‐C of both plants was recovered after the incubation, in the order WEOC < MB‐C < CO2‐C for maize and MB‐C < WEOC < CO2‐C for wheat. Around 64% of added exudate‐C was not retrieved with the methods used here. Our results suggest that great amounts of exudates became stabilized in non‐water extractable organic fractions. The amounts of MB‐C stayed relatively constant over time despite a continuous exudate‐C supply, which is the prerequisite for a growing microbial population. A lack of mineral nutrients might have limited microbial growth. The CO2‐C mineralization rate declined during the incubation and this was probably caused by a shift in the microbial community structure. Consequently, incoming WEOC was left in the soil solution leading to rising WEOC amounts over time. In the exudate‐treated soil additional amounts of soil‐derived WEOC (up to 110 μg g−1) and MB‐C (up to 60 μg g−1) relative to the control were determined. We suggest therefore that positive priming effects (i.e. accelerated turnover of soil organic matter due to the addition of organic substrates) can be explained by exchange processes between charged, soluble C‐components and the soil matrix. As a result of this exchange, soil‐derived WEOC becomes available for mineralization.  相似文献   

14.
Submerged rice paddies are a major source of methane (CH4) which is the second most important greenhouse gas after carbon dioxide (CO2). Accelerating rice straw decomposition during the off-rice season could help to reduce CH4 emission from rice paddies during the single rice-growth season in cold temperate regions. For understanding how both temperature and moisture can affect the rate of rice straw decomposition during the off-rice season in the cold temperate region of Tohoku district, Japan, a modeling incubation experiment was carried out in the laboratory. Bulk soil and soil mixed with 2% of δ13C-labeled rice straw with a full factorial combination of four temperature levels (?5 to 5, 5, 15, 25°C) and two moisture levels (60% and 100% WFPS) were incubated for 24 weeks. The daily change from ?5 to 5°C was used to model the freezing–thawing cycles occurring during the winter season. The rates of rice straw decomposition were calculated by (i) CO2 production; (ii) change in the soil organic carbon (SOC) content; and (iii) change in the δ13C value of SOC. The results indicated that both temperature and moisture affected the rate of rice straw decomposition during the 24-week aerobic incubation period. Rates of rice straw decomposition increased not only with high temperature, but also with high moisture conditions. The rates of rice straw decomposition were more accurately calculated by CO2 production compared to those calculated by the change in the SOC content, or in its δ13C value. Under high moisture at 100% WFPS condition, the rates of rice straw decomposition were 14.0, 22.2, 33.5 and 46.2% at ?5 to 5, 5, 15 and 25°C temperature treatments, respectively. While under low moisture at 60% WFPS condition, these rates were 12.7, 18.3, 31.2 and 38.4%, respectively. The Q10 of rice straw decomposition was higher between ?5 to 5 and 5°C than that between 5 and 15°C and that between 15 and 25°C. Daily freezing–thawing cycles (from ?5 to 5°C) did not stimulate rice straw decomposition compared with low temperature at 5°C. This study implies that to reduce CH4 emission from rice paddies during the single rice-growth season in the cold temperate regions, enhancing rice straw decomposition during the high temperature period is very important.  相似文献   

15.
Partitioning of the quantities of C lost by leaf litter through decomposition into (i) CO2 efflux to the atmosphere and (ii) C input to soil organic matter (SOM) is essential in order to develop a deeper understanding of the litter-soil biogeochemical continuum. However, this is a challenging task due to the occurrence of many different processes contributing to litter biomass loss. With the aim of quantifying different fluxes of C lost by leaf litter decomposition, a field experiment was performed at a short rotation coppice poplar plantation in central Italy. Populus nigra leaf litter, enriched in 13C (δ13C ∼ +160‰) was placed within collars to decompose in direct contact with the soil (δ13C ∼ −26‰) for 11 months. CO2 efflux from within the collars and its isotopic composition were determined at monthly intervals. After 11 months, remaining litter and soil profiles (0-20 cm) were sampled and analysed for their total C and 13C content. Gas chromatography (GC), GC-mass spectrometry (MS) and GC-combustion-isotope ratio (GC/C/IRMS) were used to analyse phospholipid fatty acids (PLFA) extracted from soil samples to identify the groups of soil micro-organisms that had incorporated litter-derived C and to determine the quantity of C incorporated by the soil microbial biomass (SMB). By the end of the experiment, the litter had lost about 80% of its original weight. The fraction of litter C lost as an input into the soil (67 ± 12% of the total C loss) was found to be twice as much as the fraction released as CO2 to the atmosphere (30 ± 3%), thus demonstrating the importance of quantifying litter-derived C input to soils, in litter decomposition studies. The mean δ13C values of PLFAs in soil (δ13C = −12.5‰) showed sustained incorporation of litter-derived C after one year (7.8 ± 1.6% of total PLFA-C). Thus, through the application of stable 13C isotope analyses, we have quantified two major C fluxes contributing to litter decomposition, at macroscopic and microscopic levels.  相似文献   

16.
Bioenergy production from renewable organic material is known to be a clean energy source and therefore its use is currently much promoted in many countries. Biogas by-products also called biogas residues (BGR) are rich in partially stable organic carbon and can be used as an organic fertilizer for crop production. However so far, many environmental issues relevant when BGR are applied to agricultural land (soil C sequestration, increased denitrification and nutrient leaching) still have to be studied. Therefore a field experiment was set up to investigate the degradation of BGR and its impact on the decomposition of native soil organic matter based on a natural abundance stable isotope approach. Maize, a C4 plant has been used as bioenergy crop, therefore the δ13C of total C in BGR was −16.0‰PDB and soil organic matter was mostly derived from C3 plant based detritus, SOM thus showed a δ13C of −28.4‰PDB. Immediately after BGR application, soil-emitted CO2 showed unexpectedly high δ13C of up to +23.6‰PDB, which has never been reported earlier. A subsequent laboratory scale experiment confirmed the positive δ13C of soil-emitted CO2 after BGR addition and showed that obviously, the added BGR led to a consumption of dissolved inorganic C in soils. Additionally, it was observed that the δ13C of CO2 driven from inorganic C of BGR (BGR-IC) by acid treatment was +35.6‰PDB. Therefore, we suggest that also under field conditions the transformation of BGR-IC into CO2 contributed largely to CO2 emissions in addition to the decomposition of organic matter, which affected both the amount and the carbon isotope signature of emitted CO2 in the initial period after BGR application. Positive δ13C of inorganic C contained in BGR was attributed to processes with strong fractionation of C isotopes during anaerobic fermentation in the biogas formation process.  相似文献   

17.
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models.  相似文献   

18.
The relative contributions of sources of carbon in soils, such as throughfall, litter, roots, microbial decay products and stable organic fractions, to dissolved organic C are controversial. To identify the origin of dissolved organic C, we made use of a 4‐year experiment where spruce and beech, growing on an acidic loam and on a calcareous sand, were exposed to increased CO2 that was depleted in 13C. We traced the new C inputs from trees into dissolved organic C, into water‐extractable organic C, and into several particle‐size fractions. In addition, we incubated the labelled soils for 1 year and measured the production of dissolved organic C and CO2 from new and old soil C. In the soil solutions of the topsoil, the dissolved organic C contained only 5–10% new C from the trees. The δ13C values of dissolved organic C resembled those of C pools smaller than 50 µm, which strongly suggests that the major source of dissolved organic C was humified old C. Apparently, throughfall, fresh litter and roots made only minor contributions to dissolved organic C. Water‐extractable organic C contained significantly larger fractions of new C than did the natural dissolved organic C (25–30%). The δ13C values of the water‐extractable organic C were closely correlated with those of sand fractions, which consisted of little decomposed organic carbon. The different origin of dissolved and water‐extractable organic C was also reflected in a significantly larger molar UV absorptivity and a smaller natural 13C abundance of dissolved organic C. This implies that the sampling method strongly influences the characteristics and sources of dissolved organic C. Incubation of soils showed that new soil C was preferentially respired as CO2 and only a small fraction of new C was leached as dissolved organic C. Our results suggest that dissolved organic C is produced during incomplete decomposition of recalcitrant native C in the soils, whereas easily degradable new components are rapidly consumed by microbes and thus make only a minor contribution to the dissolved C fraction.  相似文献   

19.
The majority of dead organic material enters the soil carbon pool following initial incorporation into microbial biomass. The decomposition of microbial necromass carbon (C) is, therefore, an important process governing the balance between terrestrial and atmospheric C pools. We tested how abiotic stress (drought), biotic interactions (invertebrate grazing) and physical disturbance influence the biochemistry (C:N ratio and calcium oxalate production) of living fungal cells, and the subsequent stabilization of fungal-derived C after senescence. We traced the fate of 13C-labeled necromass from ‘stressed’ and ‘unstressed’ fungi into living soil microbes, dissolved organic carbon (DOC), total soil carbon and respired CO2. All stressors stimulated the production of calcium oxalate crystals and enhanced the C:N ratios of living fungal mycelia, leading to the formation of ‘recalcitrant’ necromass. Although we were unable to detect consistent effects of stress on the mineralization rates of fungal necromass, a greater proportion of the non-stressed (labile) fungal necromass C was stabilised in soil. Our finding is consistent with the emerging understanding that recalcitrant material is entirely decomposed within soil, but incorporated less efficiently into living microbial biomass and, ultimately, into stable SOC.  相似文献   

20.
Important due to both its role in fire-affected ecosystems, and also its proposed intentional production and application for carbon (C) management, pyrogenic organic matter (PyOM) is thought to contain very stable forms of C. However, the mechanisms behind its interactions with non-PyOM soil organic C (SOC) remain speculative, with studies often showing short-term positive and then long-term negative “priming effects” on SOC decomposition after PyOM applications. Furthermore, studies of these interactions to date have been limited to systems that do not include plants. This study describes results from a 12-week greenhouse experiment where PyOM-SOC priming effects with and without plants were investigated using stable isotope partitioning. In addition, we investigated the optimal δ13C proxies for sources of SOC, PyOM, and plant-derived CO2 emissions. The two-factorial experiment included the presence or absence of corn plants and of 13C-labelled PyOM. In order to control for pH and nutrient addition effects from PyOM, its pH was adjusted to that of the soil and optimal nutrient and water conditions were provided to the plants. The δ13C of PyOM sub-components were significantly different. Significant losses of 0.4% of the applied PyOM-C occurred in the first week. We find evidence for a “negative priming” effect of PyOM on SOC in the system (SOC losses are 48% lower with PyOM present), which occurred primarily during the first week, indicating it may be due to transient effects driven by easily mineralizable PyOM. Additionally, while the presence of corn plants resulted in significantly increased SOC losses (“positive priming”), PyOM additions counteract this effect, almost completely eliminating net C losses either by decreasing SOC decomposition or increasing corn C additions to soil. This highlights the importance of including plants in studies of PyOM-SOC interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号