首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
The effects of interactions between pseudomonads (Pseudomonas cepacia strains R55 and R85, P. aeruginosa strain R80, P. fluorescens strain R92, and P. putida strain R104) and the arbuscular mycorrhizal fungus Glomus clarum (Nicol. and Schenck) isolate NT4, on spring wheat (Triticum aestivum L. cv. Laura), grown under gnotobiotic and nonsterile conditions, were investigated. Although plant growth responses varied, positive responses to pseudomonad inoculants generally were obtained under gnotobiotic conditions. Shoot dry weight enhancement ranged from 16 to 48%, whereas root enhancement ranged from 82 to 137%. Shoot growth in nonsterile soil, however, was unaffected by pseudomonad inoculants, or reduced by as much as 24%. Shoot growth was unaffected or depressed by G. clarum NT4 whereas early root growth was enhanced by 38%. Significant interactions between the pseudomonad inoculants and G. clarum NT4 were detected. Typically, dual inoculation influenced the magnitude of response associated with any organism applied alone. The effect of these pseudomonads on G. clarum NT4 spore germination was investigated. Germination was inhibited when spores were incubated either on membranes placed directly on bacterial lawns of strains R85 and R104 (i.e., direct assay), or on agarose blocks separated from the bacteria by membranes (i.e., diffusion assay). When the agarose blocks were physically separated from the pseudomonad (i.e., volatile assay), there was no evidence of inhibition, suggesting that a nonvolatile, diffusible substance(s) produced by both strains R85 and R104 may inhibit G. clarum NT4 spore germination. Received: 11 December 1995  相似文献   

2.
The scarcity of non-renewable resources such as soils and fertilizers and the consequences of climate change can dramatically influence the food security of future generations. Mutualistic root microorganisms such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) can improve plant fitness. We tested the growth response of wheat (Triticum aestivum [L.]), rice (Oriza sativa [L.]) and black gram (Vigna mungo [L.], Hepper) to an inoculation of AMF and PGPR alone or in combination over two years at seven locations in a region extending from the Himalayan foothills to the Indo-Gangetic plain. The AMF applied consisted of a consortium of different strains, the PGPR of two fluorescent Pseudomonas strains (Pseudomonas jessenii, R62; Pseudomonas synxantha, R81), derived from wheat rhizosphere from one test region. We found that dual inoculation of wheat with PGPR and AMF increased grain yield by 41% as compared to un-inoculated controls. Yield responses to the inoculants were highest at locations with previously low yields. AMF or PGPR alone augmented wheat grain yield by 29% and 31%, respectively. The bio-inoculants were effective both at Zero and at farmers’ practice fertilization level (70 kg N ha−1, 11 kg P ha−1 in mineral form to wheat crop). Also raw protein (nitrogen × 5.7) and mineral nutrient concentration of wheat grains (phosphorus, potassium, copper, iron, zinc, manganese) were higher after inoculation (+6% to +53%). Phosphorus use efficiency of wheat grains [kg P grain kg−1 P fertilizer] was increased by 95%. AMF and PGPR application also improved soil quality as indicated by increased soil enzyme activities of alkaline and acid phosphatase, urease and dehydrogenase. Effects on rice and black gram yields were far less pronounced over two cropping seasons, suggesting that AMF and PGPR isolated from the target crop were more efficient. We conclude that mutualistic root microorganisms have a high potential for contributing to food security and for improving nutrition status in southern countries, while safeguarding natural resources such as P stocks.  相似文献   

3.
The goal of this study was first to assess the dynamics of the bacterial community during a growing season in three Indian rain-fed wheat fields which differ mainly through their fertilizer management and yield and then to study the effects of PGPR/AMF bio-inoculations on the bacterial community structure and wheat growth. The bacterial community structure of the rhizosphere soil (RS) and the rhizoplane/endorhizosphere (RE) was determined by PCR-denaturing gradient gel electrophoresis. Seed treatments consisted of consortia of two PGPR strains alone or combined with AMF or AMF alone. The PGPR strains were Pseudomonas spp. which included some or all of the following plant growth promoting properties: phosphate solubilisation and production of indole-3-acetic acid, siderophores, 1-aminocyclopropane-1-carboxylate deaminase and diacetyl-phloroglucinol. The mycorrhizal inoculum was an indigenous AMF consortium isolated from the field with the lowest level of fertilization and yield. Variation partitioning analysis of the DGGE data indicated a predominant effect of the wheat growth stage (30.4% of the variance, P=0.001) over the type of field (9.0%, P=0.027) on the bacterial community structure in the RE. The impact of plant age in the RS was less than in the RE and the bacterial community structure of the field with the highest input of fertilization was very different from the low input fields. The bio-inoculants induced a significant modification in the bacterial community structure. In the RS, the bacterial consortia explained 28.3% (P=0.001) and the presence of AMF 10.6% (P=0.02) of the variance and the same trend was observed in the RE. Plant yield or grain quality was either increased or remained unaffected. For example, protein content was significantly higher in the treated plants' grain compared to the control plants; maximum values were obtained when the PGPR were co-inoculated with the AMF. The percentage of root colonization by AMF was significantly higher in the treatments containing a mycorrhizal inoculum than in the untreated control and remained unaffected by the PGPR treatments. In conclusion, the wheat rhizobacterial community structure is highly dynamic and influenced by different factors such as the plant's age, the fertilizer input and the type of bio-inoculant. In addition, there is a distance-related effect of the root on the bacterial community. Finally, a combined bio-inoculation of diacetyl-phloroglucinol producing PGPR strains and AMF can synergistically improve the nutritional quality of the grain without negatively affecting mycorrhizal growth.  相似文献   

4.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和根围促生细菌(plant growthpromoting rhizobacteria,PGPR)能降解有毒有机物,但分解土壤中残留甲胺磷农药尚未见报道。本试验旨在测定AMF和PGPR矿化甲胺磷的效应。试验设甲胺磷0、50、100和150μg g-1下,对番茄(Lycospersicon esculentum,品种金冠)接种AMF Glomus mosseae(Gm)、Glomus etunicatum(Ge)、PGPR Bacillus subtilis(Bs)、Bacillus sp.B697(Bsp)、Pseudomonas fluorescens(Pf)、Gm+Bs、Gm+Bsp、Gm+Pf、Ge+Bs、Ge+Bsp、Ge+Pf和不接种对照,共48个处理。结果表明,接种Gm显著增加了根区土壤和根内PGPR定殖数量,而Pf处理显著提高了AMF侵染率,表明Gm与Pf能够相互促进。甲胺磷100μg g-1水平下,Gm+Pf处理的番茄株高显著高于其他处理,地上部干重显著高于其他处理(Ge+Pf除外),根系干重显著高于对照、PGPR各处理和Ge处理;而根内甲胺磷浓度则显著低于其他处理,茎叶中的则显著低于其他处理(Gm+Bs、Gm+Bsp和Ge+Pf除外)。AMF、PGPR或AMF+PGPR处理均显著降低番茄体内甲胺磷浓度。甲胺磷50~100μg g-1水平下,Gm+Pf显著降低根区土壤中甲胺磷残留量,矿化率达52%~60.6%。AMF和PGPR显著提高了根区土壤中甲胺脱氢酶活性,其中以Gm+Pf组合处理的酶活性最高。表明AMF和PGPR均能促进土壤中残留甲胺磷的降解,Gm+Pf是本试验条件下的最佳组合。  相似文献   

5.
Fertilizer application efficiently increases crop yield, but may result in phosphorus(P) accumulation in soil, which increases the risk of aquatic eutrophication. Arbuscular mycorrhizal fungi(AMF) inoculation is a potential method to enhance P uptake by plant and to reduce fertilizer input requirements. However, there has been limited research on how much P application could be reduced by AMF inoculation. In this study, a pot experiment growing asparagus(Asparagus officinalis L.) was designed to investigate the effects of AMF inoculation and six levels of soil Olsen-P(10.4, 17.1, 30.9, 40.0, 62.1, and 95.5 mg kg^-1for P0, P1, P2, P3, P4 and P5treatments, respectively) on root colonization, soil spore density, and the growth and P uptake of asparagus. The highest root colonization and soil spore density were both obtained in the P1treatment(76% and 26.3 spores g^-1 soil, respectively). Mycorrhizal dependency significantly(P 〈 0.05) decreased with increasing soil Olsen-P. A significant correlation(P 〈 0.01) was observed between mycorrhizal P uptake and root colonization, indicating that AMF contributed to increased P uptake and subsequent plant growth.The quadratic equations of shoot dry weight and soil Olsen-P showed that AMF decreased the P concentration of soil required for maximum plant growth by 14.5% from 67.9 to 59.3 mg Olsen-P kg^-1. Our results suggested that AMF improved P efficiency via increased P uptake and optimal growth by adding AMF to the suitable P fertilization.  相似文献   

6.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

7.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

8.
ABSTRACT

The present investigation was based on the hypothesis that the endophytes residing in the roots of halophytes have better adaptation to saline conditions. Six halophytic herbs were collected from Khewra salt range (EC = 4.7 dS m?1 and SAR = 25.7). From these herbs, root pieces of Cenchrus ciliaris were shade dried; finely ground to powder and three plant growth promoting rhizobacteria (PGPR), Bacillus cereus, Pseudomonad moraviensis, and Stenotrophomonas maltophilia, were isolated. Root powder in sterilized and unsterilized forms was added in the saline-sodic field on wheat and mixed with soil in pot experiment with induced NaCl (150 mM). Sterilized root powder increased organic matter NO3-N and P contents of soil and leaves, fresh weight, sugar content, and yield attributes. The root powder application in unsterilized form significantly decreased EC, SAR, and Na content of field soil with concomitant increase in soil and leaves K, P, and NO3-N. The farmer’s benefit was increased by 33% at yield. Root powder-induced salt tolerance was mediated by the PGPR (residing inside the root) through increased growth and better physiological adaptations. It is inferred that root powder harboring the PGPR may be an alternative to biofertilizer with longer shelf life and may also serve as carrier for the preparation of effective biofertilizer for saline land using other PGPR bio-inoculants.  相似文献   

9.
Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain W19 can produce secondary metabolites (iturin and bacillomycin D) effectively against Fusarium oxysporum f. sp. cubense (FOC). In this study, the ability of a bio-organic fertilizer (BIO) containing W19 strain to promote plant growth and suppress the Fusarium wilt of banana was evaluated in both pot and field experiments. The results showed that application of BIO significantly promoted the growth and fruit yield of banana while suppressing the banana Fusarium wilt disease. To further determine the beneficial mechanisms of the strain, the colonization of green fluorescent protein-tagged strain W19 on banana roots was observed using confocal laser scanning microscopy and scanning electron microscopy. The effect of banana root exudates on the formation of biofilm of strain W19 indicated that the banana root exudates may enhance colonization. In addition, the strain W19 was able to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone. The results of these experiments revealed that the application of strain W19-enriched BIO improved the banana root colonization of strain W19 and growth of banana and suppressed the Fusarium wilt. The PGPR strain W19 can be a useful biocontrol agent for the production of banana under field conditions.  相似文献   

10.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems.  相似文献   

11.
A pot experiment was conducted to evaluate different arbuscular mycorrhiza sps. (AM) for their effect on plant growth, yield and nutrient uptake by wheat. All the AM fungal sps. significantly enhanced all the plant parameters and nutrient uptake by the plant. A positive correlation was observed between percent root colonization by AM fungi and most of the plant parameters studied. Glomus macrocarpum giving best results was selected for studying interactive effect with Azotobacter, Azospirillum (well-known PGPRs), and Flavobacterium and Proteus vulgaris (less studied PGPRs). All the PGPRs significantly increased most of the plant parameters studied and their combination with AMF had a synergistic effect. Amongst PGPRs, Flavobacterium gave best response both singly and in combination with AMF and thus, is a potential new bioinoculant for wheat. Application of 120 kg nitrogen (N) ha?1was the best treatment. Inoculation with most of the PGPRs gave better response than 60 kg N ha?1.  相似文献   

12.
This study was conducted with sugar beet in greenhouse and field at two soil type with different organic matter (containing 2.4 and 15.9% OM, referred as the low- and high-OM soil) conditions in order to investigate seed inoculation of sugar beet, with five N2-fixing and two phosphate solubilizing bacteria in comparison to control and mineral fertilizers (N and P) application. Three bacterial strains dissolved P; all bacterial strains fixed N2 and significantly increased growth of sugar beet. In the greenhouse, inoculations with PGPR increased sugar beet root weight by 2.8-46.7% depending on the species. Leaf, root and sugar yield were increased by the bacterial inoculation by 15.5-20.8, 12.3-16.1, and 9.8-14.7%, respectively, in the experiment of low- and high-OM soil. Plant growth responses were variable and dependent on the inoculants strain, soil organic matter content, growing stage, harvest date and growth parameter evaluated. The effect of PGPR was greater at early growth stages than at the later. Effective Bacillus species, such as OSU-142, RC07 and M-13, Paenibacillus polymyxa RC05, Pseudomonas putida RC06 and Rhodobacter capsulatus RC04 may be used in organic and sustainable agriculture.  相似文献   

13.
Densely branched lateral roots (DBLRs) in Sesbania cannabina are formed in response to patchily distributed phosphorus (P) in volcanic soils. Little attention has been paid to morphological and physiological responses of DBLRs. Here, we investigated the relation between plant growth and DBLR development, enzymatic activities involved in P acquisition, and the influence of arbuscular mycorrhizal fungi (AMF), which contribute to P uptake, to clarify the function of DBLRs. We investigated DBLR development induced by localized application of P fertilizer and we compared the activities of phosphoenolpyruvate carboxylase (PEPCase) and acid phosphatase (APase) between DBLRs and non‐DBLRs. Additionally, plants were grown with or without AMF to investigate the effect of AMF colonization on the numbers of DBLRs and plant P uptake, and we compared AMF colonization between DBLRs and non‐DBLR roots. Secondary to quaternary lateral DBLRs were produced after the primary lateral roots passed near P fertilizer. Pi content per DBLR increased as DBLRs developed, promoting higher shoot growth. Under P deficiency, PEPCase and APase activities increased in non‐DBLR, but were significantly lower in DBLRs in the same plants. AMF inoculation changed the root system architecture by significantly decreasing the number of DBLRs, and AMF colonization was lower in DBLRs than in non‐DBLRs. Our results indicate that DBLR formation is a P‐coacquisition strategy of S. cannabina grown in P‐deficient andosolic soil. Roots that form DBLR are clearly different from non‐DBLR roots in morphological and biochemical response and AMF symbiosis.  相似文献   

14.
Pomegranate (Punica granatum L.) symbiosis with arbuscular mycorrhizae fungi (AMF) is a strategy in saline soils. In this study, two AMF (+AMF and –AMF), two phosphorus (P) fertilizer (+ P and –P), and three irrigation salinity (1, 4, and 8 dS m?1) treatments were studied. The highest salinity level decreased the root colonization by hyphae. Plant growth parameters including shoot dry weight, leaf surface area, and plant height were negatively affected by salinity. However, the growth parameters improved in AMF treatments. Salinity decreased the shoot P concentration and increased the shoot chlorine (Cl). The root and shoot sodium (Na) concentrations were the greatest in unfertilized and P-fertilized treatments, respectively. AMF treatment improved the root and shoot P concentration and reduced the negative effect of salinity on shoot Cl concentrations. In conclusion, the effects of AMF symbiosis on growth and tissue elements concentration depend on irrigation water salinity and P fertilization.  相似文献   

15.
长期保护性耕作对丛枝菌根真菌多样性的影响   总被引:3,自引:3,他引:0  
为了明确我国北方干旱地区长期保护性耕作以及深松对丛枝菌根真菌(AMF)多样性的影响,笔者于2014年在山西省临汾市连续22年实施保护性耕作的长期定位试验基地,针对免耕覆盖(NTS)、深松免耕覆盖(SNTS)及传统耕作(TT)3种处理方式,进行了不同耕作条件下土壤AMF物种丰度、孢子密度、Shannon多样性指数以及AMF侵染率等因素的比较研究。结果显示,长期保护性耕作(NTS和SNTS)共分离鉴定出AMF 7属9种,其中根孢囊霉属(Rhizophagus)和斗管囊霉属(Funneliformis)各2种,球囊霉属(Glomus)、近明球囊霉属(Claroideoglomus)、无梗囊霉属(Acaulospora)、硬囊霉属(Sclerocystis)和隔球囊霉属(Septoglomus)各1种;而传统耕作(TT)共分离鉴定出AMF 6属8种,没有检测到无梗囊霉属。NTS、SNTS和TT处理在不同土层的AMF优势种基本一致,0~40 cm土层为摩西斗管囊霉(Fu.mosseae)和变形球囊霉(G.versiforme),40~80 cm土层为摩西斗管囊霉、变形球囊霉和聚丛根孢囊霉(Rh.aggregatum),80~120 cm土层为聚丛根孢囊霉,120 cm土层以下只有NTS和SNTS处理中存在聚丛根孢囊霉,说明保护性耕作措施促进了AMF向土壤深层发展。NTS和SNTS处理在同一土层的AMF物种丰度、孢子密度和Shannon多样性指数均高于TT处理,SNTS处理高于NTS处理。同一耕作措施不同土层的AMF物种丰度、孢子密度和Shannon多样性指数均随土层加深而逐渐降低;NTS和SNTS处理在小麦各生育期的丛枝侵染率和孢子密度均高于TT处理;各处理在小麦拔节期的AMF侵染率最高,分别为14.9%、16.1%和10.6%,而在收获期的土壤孢子密度最高,分别为111.7个·(100g)~(-1)、125.0个·(100g)~(-1)和90.3个·(100g)~(-1)。研究认为,长期免耕覆盖、尤其深松免耕覆盖,提高了AMF多样性。该研究结果可为中国北方旱作农田生态系统中AMF自然潜力的充分发挥,以及保护性耕作技术的合理应用提供科学依据。  相似文献   

16.
More than 80% of plants form mutualistic symbiotic relationships with arbuscular mycorrhizal fungi (AMF), and the application of fertilizers, such as nitrogen (N) and phosphorus (P) fertilizers, is a common agricultural management practice to improve crop yield and quality. However, the potential effects of long-term N and P fertilization on the AMF community in the rainfed agricultural system of the Loess Plateau of China are still not well understood. In this study, a long-term field experiment was conducted based on orthogonal design, with three N levels (0, 90, and 180 kg ha-1 year-1) and three P levels (0, 90, and 180 kg ha-1 year-1) for wheat fertilization. Changes in AMF community and correlations between AMF community composition, soil environmental factors, and wheat yield component traits were analyzed using traditional biochemical methods and high-throughput sequencing technology. The results showed that long-term N and P addition had a significant effect on the AMF community structure and composition. Nitrogen application alone significantly reduced the richness and diversity of AMF community, whereas the combined application of N and P significantly increased the richness and diversity of AMF community. The AMF community was driven mainly by soil available P, total P, and pH. There was a significant positive correlation between Glomus abundance and wheat yield and a significant negative correlation between Paraglomus abundance and wheat yield. Long-term N and P addition directly increased crop yield and affected yield indirectly by influencing soil chemical properties and the AMF community. Combined application of N and P both at 90 kg ha-1 year-1 could improve the ecological and physiological functions of the AMF community and benefit the sustainable development of rainfed agriculture.  相似文献   

17.
Although arbuscular mycorrhizal fungi (AMF) could play important roles in zinc (Zn) uptake in host plants, the effects of AMF on Zn uptake and transport in winter wheat during the whole growth stages remain unclear. A pot experiment was conducted to investigate the effects of Funneliformis mosseae (Fm) and Claroideoglomus etunicatum (Ce) on Zn absorption, transport, and accumulation in winter wheat growing in soils spiked with different Zn levels (0, 2.5, and 25 mg kg-1). The results showed that there was a significant correlation between mycorrhizal colonization rate and Zn absorption efficiency in winter wheat roots during the post-anthesis period, but there was no significant correlation during the pre-anthesis period. Arbuscular mycorrhizal fungi significantly increased Zn concentrations (0.56-1.58 times) in wheat grains under 0 mg kg-1 Zn level, but decreased Zn concentrations in wheat grains under 25 mg kg-1 Zn level. Additionally, at the filling and maturity stages, AMF increased Zn absorption rate and the contribution of root Zn uptake to grain Zn by 3-14 and 0.36-0.64 times, respectively, under 0 mg kg-1 Zn level and 0.21-1.02 and 0.27-0.37 times, respectively, under 2.5 mg kg-1 Zn level. However, AMF decreased root Zn absorption rate (0.32-0.61 times) and increased the contribution of Zn remobilization in vegetative tissues to grain Zn (1.69-2.01 times) under 25 mg kg-1 Zn level. This study would complement the mechanisms and effects of AMF on Zn absorption and transport in winter wheat and provide a potential method for the application of AMF to enrich wheat grain Zn.  相似文献   

18.
Bacillus velezensis strains, belonging to plant growth‐promoting rhizobacteria (PGPR), are increasingly used as microbial biostimulant. However, their field application to winter wheat under temperate climate remains poorly documented. Therefore, three B. velezensis strains IT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological interaction systems were firstly developed under gnotobiotic and greenhouse conditions combined with sterile or non‐sterile soil, respectively, and finally assayed in the field during two years coupled with different N fertilization rates. Under gnotobiotic conditions, all three strains significantly increased root growth of 14 d‐old spring and winter wheat seedlings. In the greenhouse using non‐sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%). The three strains were able to improve nutrient uptake of the spring wheat grown in the greenhouse, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases in nutrient uptake were dependent on the organs and the elements. The root biomass increases in inoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under field conditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by 983 kg ha?1, or 14.9%, in relation to non‐inoculated controls. The three strains in the 2015 field trial failed to confirm the previous positive results, likely due to the low temperatures occurring during and after inoculations. The Zeleny sedimentation value, indicative of flour quality, was unaffected by the inoculants. The results are discussed in the perspective of bacterial application to wheat under temperate agricultural practices.  相似文献   

19.
This study was conducted to assess the efficacy of bio-organic phosphate (BOP) and diammonium phosphate (DAP) fertilizers for improving the growth, yield, plant phosphorus (P) content and profitability of wheat cultivation under systems of wheat intensification (direct seeding and nursery transplantation) and conventional sowing (broadcasting). BOP was formulated by enriching the compost with rock phosphate and inoculated with plant growth-promoting rhizobacterial (PGPR) strain, Bacillus thuringiensis strain K5. Results revealed the supremacy of BOP over DAP, and the direct seeding method over the other sowing methods in almost all parameters studied. The application of BOP significantly (p ≤ 0.05) increased the plant height, root length, number of tillers per plant, wheat biomass, number of grains per spike, 1000-grain weight, grain yield, straw and grain P contents in direct seeded wheat in comparison to DAP fertilization. Furthermore, application of BOP and direct seeding of wheat generated more profit per hectare compared with the other treatments.  相似文献   

20.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号