首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
除草剂草甘膦在几种土壤和矿物上的吸附研究   总被引:5,自引:0,他引:5  
通过批平衡实验考察了草甘膦在几种性质不同土壤和矿物上的吸附行为。研究发现土壤对草甘膦有较强的吸附能力,草甘膦在土壤上吸附量的大小与土壤理化性质密切相关。草甘膦在土壤和矿物上的吸附符合Freundlich吸附方程,其在土壤上的吸附常数K与土壤粘粒含量呈正相关,并随土壤氧化铁和氧化铝含量增加而增加,而与土壤的pH呈显著负相关。草甘膦在高岭石上的吸附量要比在蒙脱石上大,而草甘膦在金属离子饱和的蒙脱石和高岭石上的吸附研究结果表明,草甘膦在钠、钙、铁离子饱和的矿物上的吸附能力依次为Fe-蒙脱石〉Ca-蒙脱石〉Na-蒙脱石和Fe-高岭石〉Ca-高岭石〉Na-高岭石。  相似文献   

2.
采用批平衡实验,研究绿麦隆在单一及复合污染体系中的吸附-解吸行为。结果表明,无论是单一体系还是复合体系,吸附等温线均可用Freundlich模型进行良好的拟合。随着阿特拉津浓度的增加,土壤对绿麦隆的吸附作用降低,表明绿麦隆和阿特拉津之间存在竞争吸附,这可能与土壤的有机质类型和绿麦隆、阿特拉津的性质、结构有关。解吸实验表明,随着阿特拉津的浓度增加,绿麦隆的解吸作用增加。吸附过程的拟合指数n值大于解吸过程的对应值,即绿麦隆在不同体系中的解吸作用均存在一定的滞后性。应用Freundlich解吸等温线参数对吸附-解吸等温线的滞后作用进行量化,CT、(CT+0.5AT)、(CT+1AT)和(CT+2AT)处理解吸等温线的滞后系数ω分别为165.200,146.132,94.534和85.945,即随阿特拉津浓度增加,绿麦隆解吸等温线的滞后性降低。  相似文献   

3.
粘粒矿物和有机质对土壤胶体比表面的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
马毅杰 《土壤学报》1988,25(4):374-378
分别从黑土、黄绵土、黄棕壤、红壤和砖红壤提取<2nm的胶体,测定去有机质前后土壤胶体比表面;并用猪粪中提取的胡敏酸与上述5种土壤胶体相作用,由泥炭中提取的胡敏酸与蒙脱石、伊利石、高岭石相作用,测定其复合胶体的比表面;研究了粘粒矿物类型和胡敏酸对土壤胶体比表面的影响。结果表明,土壤胶体比表面大小与其所含主要粘粒矿物类型密切相关。5种土壤胶体比表面大小为:黑土>黄棕壤>黄绵土>红壤>砖红壤。砖红壤胶体去游离氧化铁后,胶体比表面明显降低;但黄棕壤胶体去游离氧化铁后比表面反而增加。有机质对土壤胶体比表面的影响因土壤类型不同而异,去除有机质后,黑土、黄绵土和黄棕壤胶体的比表面增加;而红壤、砖红壤胶体的比表面无明显变化。黑土和黄棕壤胶体与猪粪胡敏酸复合后,比表面降低;而砖红壤胶体与猪粪胡敏酸复合后反而增加。泥炭胡敏酸与蒙脱石、伊利石胶体复合后比表面降低;而高岭石却增加。  相似文献   

4.
选取人工合成的无定型氧化铁(AHOsFe)纯矿物,以及两种典型土壤(黑土和砖红壤)的原土(S1和S2)和AHOsFe包被土壤(AHOsFe-S1和AHOsFe-S2)为研究材料,采用批量平衡法,研究AHOsFe对土壤中阿特拉津(AT)吸附—解吸行为的影响及其机理。研究结果表明,各吸附剂对AT的吸附均能采用Freundlich方程进行较好地拟合(r≥0.996,p0.01),AHOsFe对AT具有较强的吸附性能和较高的吸附非线性,AHOsFe包被黑土和砖红壤后,两种土壤对AT的吸附能力(Kd值)分别增加56.3%和43.8%。各吸附剂对AT均存在解吸迟滞效应,两种土壤及被AHOsFe包被后,其对AT的解吸迟滞系数(HI)在AT低初始浓度时随浓度的增加而降低,而在AT高初始浓度时随浓度的增加略有增加,AHOsFe对AT的HI则随AT初始浓度的增加而增加,说明不同吸附剂在AT不同初始浓度时的解吸迟滞机制不同。与土壤相比,AHOsFe对AT具有较强的解吸迟滞效应,但AHOsFe包被土壤后,却降低了土壤对AT的解吸迟滞效应。  相似文献   

5.
几种吸附剂对阿特拉津的吸附及其 Zeta 电位特性研究   总被引:1,自引:0,他引:1  
尹敏敏  项艳  司友斌  陈涛 《土壤》2012,44(1):118-125
通过振荡吸附平衡试验,研究了蒙脱石、凹凸棒石、竹炭、木炭对阿特拉津的吸附行为,讨论了pH值、离子强度对吸附的影响,并考察了吸附剂表面的Zeta电位变化。结果表明,几种吸附剂对阿特拉津的吸附均符合Freundlich方程;竹炭、木炭的吸附能力明显高于蒙脱石和凹凸棒石。吸附剂对阿特拉津的吸附量随着悬液离子强度的增加而增加,在悬液pH一定(pH=6),离子强度为10-3mol/L NaNO3时,蒙脱石、凹凸棒石对阿特拉津的吸附量分别为538.30、609.68 mg/kg,当离子强度增加为10-2mol/L时,吸附量分别增至611.26、731.63 mg/kg;当离子强度由10-3增至10-1mol/L NaNO3时,竹炭、木炭对阿特拉津的吸附量有较多增加。当悬液pH在3~8范围时,几种吸附剂表面均带负电荷,其Zeta电位值随着pH的增加而增加,随离子强度的增加而减小。悬液离子强度一定时,随着pH的增加,吸附阿特拉津后吸附剂表面Zeta电位变化不显著。研究结果有助于从机理上解析吸附剂对有机污染物的吸附行为。  相似文献   

6.
采用酒精沉淀法,把不同施肥处理土壤胡敏酸分为7个级分,研究了胡敏酸不同级分与钙饱和蒙脱石的吸附特征。结果表明,蒙脱石对胡敏酸各级分的吸附可用单表面Langmuir、双表面Langmuir和Freundlich方程来描述。各级分的吸附量和吸附强度不是随级分数变化单一递增或递减,在7个级分中,级分4、3的吸附量和吸附强度较大,是吸附最佳级分。说明级分4、3具有与蒙脱石胶体最佳的成键吸附状态,是吸附最佳分子状态。有机肥处理,吸附最佳级分的吸附性状(吸附量和吸附强度)优于化肥、无肥处理。  相似文献   

7.
采用酒精沉淀法,反不同施肥处理土壤胡敏酸分7个级分,研究了胡敏酸不同级分与钙饱和蒙脱石的吸附特征。结果表明,蒙脱石对胡敏酸各级分的吸附可用单表面Langmuir、双表面Langmuir和Freundlich方程来描述。各级分的吸附量和吸附强度不是随级分数变化单一递增或递减,在7个级分中,级分4、3的吸附量和吸附强度较大,是吸附最佳级分。说明级分4、3具有与蒙脱石胶体最佳的成键吸附状态,是吸附最佳分子状态,有机肥处理,吸附最佳级分的吸附性状(吸附量和吸附强度)优于化肥、无肥处理。  相似文献   

8.
以17年不同施肥处理土壤胡敏酸为材料,研究了不同性质胡敏酸与钙饱和蒙脱石的 吸附特征。结果表明,钙饱和蒙脱石对土不同施肥处理胡敏酸的吸附曲线可用单表面Langmuir方程、双表面Langmuir方程以及Freundlich方程来描述。由单表面Langmuir方程计算的有机肥处理(厩肥、秸秆)胡敏酸的吸附量和吸附强度大于无肥、化肥处理。温度升高各处理胡敏酸吸附量增加,但吸附强度下降。双表面Langmuir揭示,蒙脱石对胡敏酸的吸附呈现高低两种能位的吸附。高能点位的吸附以化学吸附为主,是吸热反应,低能点位的吸附以物理吸附为主,是放热反应。有机肥处理和无肥、化肥处理相比,高能点位吸附相对减弱,低能点位吸附相对增强。  相似文献   

9.
王旭东  张一平 《土壤学报》2000,37(4):506-514
以17年不同施肥处理土壤胡敏酸为材料,研究不同性质胡敏酸与钙饱和蒙脱石的吸附特征。结果表明,钙饱和蒙脱石对娄土不同施肥处理胡敏酸的吸附曲线可用单表面Langmuir方程、双表面Langmuir方程以及Freundich方程来描述。由单表面Langmuir方程计算的有机肥处理(厩肥、秸秆)胡敏酸的吸附量和吸附强度大于无肥、化肥处理。温度升高各处理胡敏酸吸附量增加,但吸附强度下降。双表面Langmuir揭示,蒙脱石对胡敏酸的吸附呈现高低两种能位的吸附。高能点位的吸附以化学吸附为主,是吸热反应,低能点位的吸附以物理吸附为主,是放热反应。有机肥处理和无肥、化肥处理相比,高能点位吸附相对减弱,低能点位吸附相对增强。  相似文献   

10.
为了解我国亚热带山地土壤发生学性状随海拔的垂直变化特点,选择位于亚热带常湿润气候区的贵州省雷公山作为研究对象,调查与采样分析了不同海拔高度的17个土壤剖面的理化性状及其与海拔的关系。结果表明,雷公山土壤的众多发生学性状与海拔高度存在显著的相关,随着海拔的升高,呈现土壤矿物质风化减弱而有机质和养分积累增强的变化趋势。表土层厚度、砾石、有机质、全氮和全磷含量、腐殖质的H/F比,土壤粉砂含量、粉黏比、CEC、ba值、氧化铁活化度、黏粒Sa值、黏粒矿物中蛭石和云母相对比例均随海拔的升高而增加;而土体厚度、表土胡敏酸E4/E6比值、土壤黏粒含量、游离氧化铁含量、氧化铁游离度和黏粒矿物中高岭石相对比例则随海拔升高而下降。研究土壤酸化明显,pH和盐基饱和度普遍较低,随海拔升高的变化趋势不明显。研究认为,雷公山地区土壤发生学性状主要受现代成土环境影响,随海拔变化的温度可能是控制这一地区土壤空间变异的主要因素。区内土壤主要发生学性状随海拔升高呈波动状变化,多数发生学性状具有协同变化的特征;不同地理发生学分类土壤带间发生学性状存在一定的差异。根据中国土壤系统分类,研究区土壤类型主要为淋溶土和雏形土,二者也不存在海拔上的明显分界,而呈现复合分布。  相似文献   

11.
Soil organic matter (SOM) is often considered the dominant sorptive phase for organic contaminants and pesticides in soil-water systems. This is evidenced by the widespread use of organic-matter-normalized sorption coefficients (K(OM)) to predict soil-water distribution of pesticides, an approach that ignores the potential contribution of soil minerals to sorption. To gain additional perspective on the potential contributions of clays and SOM to pesticide retention in soils, we measured sorption of seven pesticides by a K-saturated reference smectite clay (SWy-2) and SOM (represented by a muck soil). In addition, we measured the adsorption of atrazine by five different K-saturated smectites and Ca-saturated SWy-2. On a unit mass basis, the K-SWy-2 clay was a more effective sorbent than SOM for 4,6-dinitro-o-cresol (DNOC), dichlobenil, and carbaryl of the seven pesticides evaluated, of which, DNOC was sorbed to the greatest extent. Atrazine was sorbed to a similar extent by K-SWy-2 and SOM. Parathion, diuron, and biphenyl were sorbed to a greater extent by SOM than by K-SWy-2. Atrazine was adsorbed by Ca-SWy-2 to a much lesser extent than by K-SWy-2. This appears to be related to the larger hydration sphere of Ca(2+) (compared to that of K(+)) which shrinks the effective size of the adsorption domains between exchangeable cations, and which expands the clay layers beyond the apparently optimal spacing of approximately 12.2 A for sorption of aromatic pesticide structures. Although a simple relation between atrazine adsorption by different K-smectites and charge properties of clay was not observed, the highest charge clay was the least effective sorbent; a higher charge density would result in a loss of adsorption domains. These results indicate that for certain pesticides, expandable soil clays have the potential to be an equal or dominant sorptive phase when compared to SOM for pesticide retention in soil.  相似文献   

12.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

13.
阿特拉津在土壤, 矿物质及堆肥中的吸附, 运输和转化   总被引:2,自引:0,他引:2  
A. MUDHOO  V. K. GARG 《土壤圈》2011,21(1):11-25
Atrazine is a widely used herbicide for controlling weeds on both agricultural and nonagricultural land,which is equally detected in water supplies beyond safe concentrations.Although the presence of atrazine metabolites is an indication of herbicide degradation,some of them still exhibit toxicity,greater water solubility and weaker interaction with soil components than atrazine.Hence,studies with atrazine in the environment are of interest because of its potential to contaminate drinking water sources.Data on atrazine availability for transport,plant uptake,and microbial degradation and mineralization are therefore required to perform more comprehensive and realistic environmental risk assessments of its environmental fate.This review presents an account of the sorption-desorption phenomenon of atrazine on soil and other sorbents by revisiting the several mechanisms of atrazine-sorbent binding reported in the literature.The retention and transport of atrazine in soils;the influence of organic matter on atrazine sorption;the interactions of atrazine with humic substances,atrazine uptake by plants,atrazine bioccumulation and microbial degradation;atrazine transformation in composting environments;and finally atrazine removal by biosorption are discussed.  相似文献   

14.
The effect of application dose and soil organic matter (SOM) stratification on changes in atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) extractable residues (ER) were investigated. Two soils [Entic Haplustoll (EH) and Typic Hapludoll (TH)] with contrasting SOM content and form and without previous atrazine exposure were selected. Sampling was carried out at two depths: 0–2 and 2–5 cm. Atrazine ER were measured at 0, 3, 7, 14, 28, and 56 days in laboratory incubation. Atrazine concentration recovered 1 h after of its application (Ct0) was used as an index of the soil capacity to reduce the atrazine extractable fraction. SOM stratification was studied by means of physical fractionation. In both soils, the higher OC concentration was found in the 200–2000 μm fraction (OCf 200–2000). Soils differed in terms of the OCf 50–200/OCf 200–2000 ratio. This ratio increased with depth in EH soil: 0.23 (0–2 cm) and 2.00 (2–5 cm). In TH soil, the ratio was 0.80 (0–2 cm) and 0.50 (2–5 cm). The t1/2 values ranged from 9 to 19 days, depending on soil type and atrazine application dose. The upper layer Ct0 and k were higher for higher atrazine doses. Implementation of a split application dose of atrazine may be an effective alternative to extend its half-life in soil solution, as well as involving a lower potential risk of soil accumulation or vertical movement in the soil profile towards deep soil layers and groundwater.  相似文献   

15.
汤婕  张银龙 《土壤》2014,46(4):599-606
全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)在土壤/沉积物–水中分配、吸附–解吸作用是影响其在环境中的残留浓度、迁移、转化及生物可利用性、毒性等的重要因素之一。本文对土壤/沉积物中PFOA、PFOS吸附–解吸行为影响因素,吸附–解吸机理,常用的土壤/沉积物中PFOA、PFOS吸附/解吸等温线方程、常数及参数等的研究情况进行综述,吸附–解吸过程Freundlich方程的相关系数为0.74~0.99,线性方程的相关系数为0.91~0.99。PFOS在土壤/沉积物中吸附常数logKoc的平均值为3.0,变异系数为23.3%;解吸常数logKoc的平均值为1.8,变异系数为15.4%。PFOA在土壤/沉积物中吸附常数logKoc的平均值为2.1,变异系数为45.6%;解吸常数logKoc的平均值为5.4,变异系数为52.3%。实验室基础上计算所得吸附常数logKoc比野外条件下实测数据计算值(PFOA为3.7,PFOS为4.2)小,野外条件下土壤/沉积物中PFOA和PFOS吸附–解吸过程和土壤–植物共生系统对其污染控制效应有待于进一步研究。  相似文献   

16.
粘土矿物固定化微生物对土壤中阿特拉津的降解研究   总被引:1,自引:0,他引:1  
以粘土矿物为载体,采用吸附挂膜法对已筛选的阿特拉津降解菌株进行固定化,并应用固定化微生物降解土壤中的阿特拉津。结果表明,该菌株在粘土矿物上生长良好,根据菌种生理生化特性、环境扫描电镜图片以及16S rDNA基因的相似性分析初步鉴定该菌株为Ochrobactrum sp.。接种降解菌能明显加快阿特拉津在土壤中的降解速率,粘土矿物固定化微生物的降解效果要明显优于游离菌,粘土矿物粒径越小,固定化微生物的降解效果越好,纳米粘土矿物固定化微生物的降解效果要好于原粘土矿物。用一级动力学方程描述阿特拉津在土壤中的降解过程,不同土壤中阿特拉津的降解速率不同。阿特拉津在红壤、砂姜黑土、黄褐土中的降解半衰期(t1/2)分别为36.9、49.1、55.0 d,投加纳米蒙脱石固定化降解菌后的半衰期则分别为16.3、25.3、21.7 d。  相似文献   

17.
通过吸附解吸实验研究了添加海泡石后典型水稻土对Cd的吸附解吸特性及其对吸附溶液pH值变化的响应。结果表明,Freundlich方程可以较好地拟合红黄泥、黄泥田和红沙泥3种典型水稻土对Cd的等温吸附过程(R2〉0.962)。在溶液初始Cd浓度相同的情况下,添加海泡石可使3种水稻土对Cd的吸附量增加20%以上,增强土壤对Cd的吸附强度,有效降低吸附Cd的解吸率,其效果随海泡石添加量的增大而增强。3种水稻土吸附Cd的解吸率均高于70%,而且都随吸附量的增加而上升。溶液的pH值是影响土壤吸附Cd的一个重要因素,在低pH值的条件下(pH〈4),随着溶液pH值的降低,土壤对Cd的吸附量迅速降低,当溶液pH值高于5时,pH值的变化对吸附量的影响较小。在溶液初始pH值2-8范围内,添加海泡石均能有效提高3种水稻土对Cd的吸附能力。  相似文献   

18.
The effect of winter weed control (WWC) management on 14C-atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) mineralization was investigated in an Entic Haplustoll in Argentina. Three WWC managements were selected: Chemical Fallow (CF) and Cereal Cover Crop (CCC), both under no-tillage, and Reduced Tillage (RT) with chisel and moldboard plow. Soil was sampled at two depths: 0–5 and 5–10 cm, to evaluate the soil stratification induced by the tillage system. To distinguish differences in atrazine degradation in soils with and without previous history of atrazine application two crop sequences were selected: continuous soybean [Glycine max L., Merr.] (CS) without previous atrazine exposure, and soybean–maize (Zea mays L.) rotation (SM) with atrazine application every winter and in alternate springs. The release of 14C-CO2 during laboratory incubations of soils treated with ring labelled 14C-atrazine was determined. Soil organic matter (SOM) distribution was determined with depth and among three soil size fractions: 200–2000 μm, 50–200 μm and <50 μm. Previous atrazine application enhanced atrazine degrading microorganims. Atrazine mineralization was influenced by both WWC management and the tillage system. Chemical fallow showed the highest atrazine mineralization in the two crop sequences. Depth stratification in atrazine degradation was observed in the two WWC treatments under the no-tillage. Depth stratification in the content of soil organic C and relative accumulation of organic C in coarsest fractions (200–2000 and 50–200 μm) were observed mainly in no-till systems. Depth stratification of atrazine degrading activity was mainly correlated to the stratification of fresh organic matter associated with the coarsest fractions (200–2000 μm). Atrazine persistence in soil is strongly affected by soil use and management, which can lead to safe atrazine use through selection of appropriate agricultural practices.  相似文献   

19.
Atrazine [6-chloro-N-ethyl-N′-(1-methyl)-1,3,5 triazine-2,3-diamine] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide] are agricultural herbicides used in large quantities and, as a consequence, are common contaminants in groundwater and surface water. The retention of these herbicides in soils and their degradation in aqueous environments is highly dependent upon their adsorption to solid surfaces. The adsorption of atrazine and alachlor was investigated on three typical Kansas and underlying aquifers known to be vulnerable to contamination. More alachlor was adsorbed to the soils and sediments than atrazine. The adsorption coefficients for atrazine were 2 to 5 times higher for soils than for aquifer sediments. For alachlor, the adsorption coefficients were 4 to 20 times higher for soil than for aquifer solids. Both linear and Freundlich isotherms represented the adsorption data well in all cases. The slope of the Freundlich isotherms, 1/n, was close to one, with the exception of alachlor adsorption onto the Topeka aquifer sediment (1/n = 0.67). The K d values found in these studies were comparable to the lower range of those reported in the literature.  相似文献   

20.
Soil samples were collected in plots from a field experiment in maize monoculture receiving 0, 60 and 120 m3 ha-1 liquid pig manure (LPM) for 19 years. Soils were sampled from the 0- to 20-cm layer in August and October 1997 and in June, July and September 1998. Subsurface samples were also evaluated in September 1998. Laboratory soil radiorespirometry was used to evaluate atrazine mineralization using [U-ring-14C]-atrazine mixed with commercially available product. The effect of atrazine dose (50, 100 and 500 mg atrazine kg-1 soil) was evaluated on soils sampled in August 1997. For the other sampling dates, the soils were spiked with 50 mg atrazine kg-1 soil. No LPM dose effect on atrazine mineralization was obtained in the different experiments. Increasing atrazine dose to 500 mg kg-1 decreased significantly the mineralization rate (Ri) and the maximum of atrazine mineralized (MAX), while the time needed to mineralize 50% of MAX (DT-50%) was not significantly affected. Sampling time had a significant effect on atrazine mineralization. Atrazine mineralization in the soils sampled in June 1998 showed lower Ri and MAX than in the soils sampled at the other dates. Atrazine mineralization in subsurface soils (20–60 cm) was very variable and quite high in some samples. This may be due to atrazine pre-exposure in subsoils resulting from atrazine deep movement by preferential flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号