首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 106 毫秒
1.
生物炭对植烟土壤氮素形态迁移及微生物量氮的影响   总被引:2,自引:0,他引:2  
为了在植烟土壤中施加生物炭,以及在不同氮素水平下验证生物炭对土壤氮素的淋洗及迁移的影响.采用大田试验,设计5个处理,在磷肥和钾肥施用量相同的基础上,除对照(CK)处理不施生物炭与氮肥外,其余4个处理都添加1 600 kg/hm2的生物炭,施氮量分别为(N0)0、(N1)37.5、(N2)52.5和(N3) 67.5 kg/hm2,对植烟土壤氮素在0~20、20 ~ 40和40 ~ 60 cm土层施加生物炭,研究全氮、碱解氮、硝态氮和铵态氮质量分数的影响及其迁移规律,以及0~20cm土层微生物量氮的变化特征.结果表明:植烟土壤施用生物炭降低了0~ 20 cm以下土壤氮素质量分数,提高了植烟土壤对氮素的固定能力.与CK相比,增施生物炭的N0在0~20 cm以下土层,土壤全氮、碱解氮、硝态氮和铵态氮质量分数降低率最高达到11.21%、49.07%、42.29%和31.35%.而施氮量对植烟土壤全氮、碱解氮和铵态氮的影响,主要集中在0 ~ 20 em土层,且土壤氮素质量分数随施氮量的增加而增加,以N3处理各氮素指标质量分数相对最高,其全氮、碱解氮和铵态氮质量分数最高分别为2.10 g/kg、261.86 mg/kg和49.80 mg/kg.土壤硝态氮质量分数随土层加深而下降,在0 ~ 20 cm土层,以N3处理最高,达264.90 mg/kg;但不同氮水平下,硝态氮质量分数在20 ~ 40 cm土层差异较其他土层更显著.施用氮肥对植烟土壤氮素的影响主要表现在烟草移栽后前30 d.增施生物炭可以提高烟草移栽后60 d时土壤微生物量氮;而施氮量对微生物量氮熵的影响主要表现在烟草移栽30 d之后.施氮量对植烟土壤氮素的影响主要表现在0~20 cm土层,且在烟草生育前期效果显著.生物炭可以明显抑制植烟土壤本身及低量氮肥施用下氮素淋失迁移,但在高量氮肥施用下的抑制作用不明显.在豫中烟区,以生物炭配施氮肥67.5 kg/hm2施肥措施,最利于植烟土壤氮素提高.  相似文献   

2.
在河北衡水潮土上进行田间试验,以当地习惯高氮用量(小麦季施N 300 kg/hm2,玉米季施N 240 kg/hm2)为对照,研究冬小麦-夏玉米轮作体系中减少氮肥用量对玉米季植株生长、氮素吸收及根际土壤中无机氮与微生物量氮的影响。结果表明,两季作物氮肥施用量减少25%和40%,对玉米产量、生物量及植株体内氮累积量未产生明显影响,氮肥利用率提高。不同氮肥施用量对根际和非根际土壤铵态氮含量的影响不显著;减少氮肥施用量,对玉米根际土壤硝态氮含量也没有明显影响。在玉米苗期、抽雄期和成熟期,习惯高施氮量处理的非根际土壤硝态氮含量较高,其中抽雄期,非根际土壤硝态氮含量较氮肥减施40%用量处理高出近一倍,但非根际土壤微生物量氮水平含量明显降低。氮肥减施未影响根际土壤微生物量碳、氮含量,反而增加了非根际土壤微生物量碳、氮水平。在高肥力的潮土上,冬小麦/夏玉米轮作体系中适当减施氮肥并未影响玉米根际土壤氮素水平,可保证玉米稳产,实现减氮增效。  相似文献   

3.
为探明生物炭与氮肥配施对土壤中氮素循环和烤烟氮素利用的影响,采用盆栽试验,设置四个处理:5 g/盆纯氮(CK),5 g/盆纯氮+100 g/盆生物炭(T1),3.5 g/盆纯氮+100 g/盆生物炭(T2),2 g/盆纯氮+100 g/盆生物炭(T3),利用15N标记的氮肥,测定生物炭与氮肥配施条件下烤烟生长不同时期土壤中15N的残留量、不同形态氮素的含量、土壤微生物量氮和移栽后90 d烟叶对不同氮源氮素的累积量。试验结果表明:相同施氮量时,生物炭的施用可以提高土壤中15N残留量、土壤无机氮、碱解氮、微生物量氮的含量和叶片对氮素的累积量。生物炭与氮肥配施时提高了肥料氮在烟叶中的占比,使15N利用率也提高了25.4%-63.3%。与对照相比,T2处理植烟土壤中铵态氮、硝态氮、碱解氮在移栽后75 d比对照分别提高了17.3%、8.0%、7.2%,碱解氮和微生物量氮的含量在移栽后90 d时也高于对照。在本试验条件下,生物炭与氮肥配施对土壤氮素的影响是显著的,施用生物炭时减少30%氮肥用量是可行的。  相似文献   

4.
氮锌配施对冬小麦产量及土壤氮素转化相关酶活性的影响   总被引:4,自引:2,他引:2  
  【目的】  锌(Zn)能够促进冬小麦对氮(N)素的吸收利用。研究氮锌配施对冬小麦土壤氮素形态转化及相关酶活性的影响,有助于探究氮锌配施促进冬小麦吸收利用氮的可能机制,为通过合理施肥提高冬小麦产量和品质提供理论依据。  【方法】  以‘郑麦379’为试材进行壤质潮土培养试验,设置CK (不施N和Zn)、Zn (施Zn 10 mg/kg)、N (施N 0.2 g/kg)、N+Zn (施N 0.2 g/kg+Zn 10 mg/kg) 共4个处理,分析了冬小麦产量及产量构成要素,测定4个生育期植株各部位N、Zn含量,土壤NO3–-N和NH4+-N含量及土壤硝酸还原酶、亚硝酸还原酶、脲酶和蛋白酶活性。  【结果】  与CK相比,Zn、N及N+Zn显著提高了冬小麦每盆穗数、穗粒数和籽粒产量,提高了不同时期小麦根、茎叶、穗和籽粒中N、Zn含量,且N+Zn处理的提高幅度明显高于Zn和N处理。随着冬小麦生育期的延长,各处理下土壤NO3–-N和NH4+-N含量有所降低,亚硝酸还原酶和脲酶活性有所提高,蛋白酶活性有所降低。N和N+Zn处理能显著提高土壤NO3–-N含量,且N+Zn在冬小麦生育后期提高土壤NO3–-N含量的幅度显著高于N处理。Zn、N及N+Zn处理能显著提高冬小麦生育后期土壤NH4+-N的含量,且N+Zn处理提高的幅度高于Zn处理。Zn处理显著降低了拔节期后土壤硝酸还原酶活性,N及N+Zn处理降低了小麦生育后期土壤硝酸还原酶活性,且N+Zn降低硝酸还原酶活性的程度高于N处理;Zn、N和N+Zn处理均降低了土壤亚硝酸还原酶活性;Zn和N处理显著降低拔节期土壤脲酶的活性,但Zn、N和N+Zn处理均显著提高了土壤蛋白酶活性。  【结论】  氮锌配施提高冬小麦籽粒产量,促进冬小麦吸收土壤氮素,这是由于氮锌配施提高了土壤脲酶和蛋白酶活性,促进了土壤有机氮向铵态氮及铵态氮向硝态氮的转化,同时降低了冬小麦生育后期土壤硝酸还原酶和亚硝酸还原酶活性,抑制了硝态氮的反硝化作用,从而提高了土壤中可供冬小麦吸收的铵态氮和硝态氮含量。  相似文献   

5.
在高肥力土壤条件下,研究了施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响。结果表明,小麦生长期间,施氮处理0100.cm土层硝态氮积累量显著大于不施氮处理;当施氮量大于150.kg/hm2时,随施氮量增加,0100.cm土层硝态氮积累量显著增加;随小麦生育进程推进,施氮处理上层土壤硝态氮下移趋势明显,至小麦成熟时,施氮1952~85.kg/hm2处理60100.cm土层硝态氮含量显著大于其它处理。小麦生长期间,0100.cm土层铵态氮积累量较为稳定,施氮处理间亦无显著差异。与不施氮肥相比,施氮提高小麦生长期间040.cm土层土壤微生物量氮含量;当施氮量小于240.kg/hm2时,随施氮量增加,土壤微生物量氮含量增加。小麦的氮肥利用率随施氮量增加而降低;施氮1051~95.kg/hm2,收获时小麦植株吸氮量、生物产量、子粒产量和子粒蛋白质含量提高;而施氮量大于240.kg/hm2时,小麦生育后期的氮素积累量降低,收获时植株吸氮量、生物产量和子粒蛋白质含量降低。说明本试验条件下,施氮1051~50.kg/hm2可满足当季小麦氮素吸收利用,获得较高的子粒产量和蛋白质含量。继续增加施氮量,土壤微生物量氮含量增加,但土壤中残留大量硝态氮,易淋溶损失。  相似文献   

6.
【目的】以秸秆还田定位试验为平台,探讨玉米秸秆还田配施氮肥对冬小麦产量、土壤硝态氮积累、氮素表观盈余和氮肥利用率的影响规律,明确砂姜黑土玉米秸秆全量还田条件下冬小麦生长季的最佳施氮量。【方法】试验以秸秆处理为主区,设秸秆还田和秸秆移除2个水平;施氮量为副区,设6个水平,分别为0、162.0、202.5、243.0、283.5、324.0 kg/hm2。测定了冬小麦播种前、拔节期、成熟期地上部植株含氮量,土壤0—20、20—40和40—60 cm硝态氮含量,小麦产量以及籽粒氮含量,计算了冬小麦生育期土壤的氮素表观盈余,小麦基施和追施氮肥的利用效率以及不同阶段的氮素盈余。【结果】玉米秸秆还田后小麦增产365 844 kg/hm2,增产率为4.2%9.3%,尤其以配施243.0 kg/hm2的增幅最高,产量达9858 kg/hm2。小麦整个生育期,秸秆还田显著增加了0—60 cm土层的土壤硝态氮累积量,而秸秆移除条件下,土壤硝态氮累积量与氮肥施用量相关,高量氮肥增加了硝态氮累积量,N施用量高于243.0 kg/hm2时,硝态氮累积量较小麦播种前增加19.8%28.6%。施氮均显著增加了植株氮素积累量;小麦播种到拔节期,植株的氮素积累量随基肥比例的增加而增加。小麦生育期不施氮处理表现为氮素亏缺,施氮处理显著增加了0—60 cm土层的土壤氮素盈余量,且随基肥、追肥量的增加而增加,盈余值每增加100.0kg/hm2,秸秆还田配施氮肥和单施氮肥的土壤剖面硝态氮积累量就会分别增加74.2和91.4 kg/hm2。秸秆还田配施氮肥提高了氮肥农学效率、植株地上部氮肥吸收利用率、籽粒氮肥吸收利用率,特别是在高氮肥时,基肥和拔节肥的利用率显著高于单施氮肥。在施氮处理间、相同氮肥施用下秸秆还田和移除处理间氮素收获指数均无显著差异。氮肥表观回收率随施氮量的增加而降低,基肥表观回收率显著高于拔节肥表观回收率。【结论】秸秆还田和施氮水平对小麦植株氮素的吸收转运没有显著影响,但可提高基施和追施氮肥的利用率,可增加土壤0—60 cm土层中硝态氮的含量。综合各项指标,冬小麦生长季玉米秸秆全量还田适宜的氮肥配施量为202.5 243.0 kg/hm2。  相似文献   

7.
冬小麦对铵态氮和硝态氮的响应   总被引:2,自引:0,他引:2  
在陕西省永寿县和河南省洛阳市分别设置了11和7处大田试验,分5层采集0~100 cm土壤样品并测定其起始硝态氮含量。永寿试验设7个处理,分别为不施氮,硝态氮、铵态氮品种、硝态氮与铵态氮2∶1组合各2个处理;洛阳试验设6个处理(硝态氮肥只有1个品种),施氮处理均施N 150 kg hm-2,研究小麦对铵态氮和硝态氮肥响应的差异及其与不同深度土层硝态氮累积量的关系。试验表明,同一形态不同氮肥品种之间的增产差异显著低于不同形态之间的差异。比较不同形态氮肥的小麦产量、增产量和增产率的平均值,硝态氮肥最高,硝态氮、铵态氮组合次之,铵态氮最低。氮肥增产量和增产率随土壤累积硝态氮量增加而显著下降;累积量越低,氮肥增产效果越突出,硝态氮的效果也越显著。由此可见,土壤累积的硝态氮量是决定氮肥肥效的主要因子,也是决定不同形态氮素效果的主要因子。只有在硝态氮累积量低的土壤上,氮肥才能充分发挥作用,硝态氮也才能表现出明显的优势。  相似文献   

8.
土壤残留氮是不容忽视的土壤氮素资源.通过田间小区试验研究了土壤高残留氮下不同施氮量(0、80、160、240和320 kg/hm2)对夏玉米土壤硝态氮积累、氮素平衡、氮素利用及产量的影响,分析了夏玉米的经济效益.结果表明,土壤剖面硝态氮积累量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理;各施氮处理土壤硝态氮在0-60 cm土层含量最高,在0--180 cm剖面呈先减少后增加的变化趋势.不施氮处理夏玉米收获后土壤无机氮残留量高达378 kg/hm2,随施氮量的增加,无机氮残留和氮表观损失显著增加.作物吸氮量、氮表观损失量与总氮输入量呈显著正相关,总氮输入量每增加l kg作物吸氮量增加0.156 kg,而表观损失量增加0.369 kg,是作物吸氮量的2.4倍.高残留氮土壤应严格控制氮肥用量,以免造成氮素资源的大量浪费.夏玉米籽粒吸氮量随施氮量的增加呈增加的趋势,氮收获指数呈降低的趋势.氮肥农学效率、氮肥生理利用率、氮肥利用率和氮素利用率在施氮量80 kg/hm2时最高,随施氮量的增加降低;增施氮肥能降低高残留氮土壤中氮肥的增产效果和利用率.综合考虑产量、氮素利用和环境效应,N 80 kg/hm2是氮素高残留土壤上玉米的合理施氮量.  相似文献   

9.
  【目的】  研究不同氮肥类型下缓释氮肥与尿素掺混对3个不同冬小麦品种生长发育、干物质累积量、产量、氮素转运、吸收利用效率以及土壤硝态氮残留的影响,探索适宜提高陕西关中地区冬小麦产量的氮肥配比,为该地冬小麦高效生产的肥料管理提供科学依据。  【方法】  本试验设置了4个氮肥处理,分别为纯尿素 (U)、纯缓释氮肥 (S)、缓释氮肥与尿素8∶2掺混 (SU1)、缓释氮肥与尿素6∶4掺混 (SU2),施氮量为180 kg/hm2;以不施氮肥 (N0) 为对照。选取关中地区农民主栽的3个冬小麦品种[小偃22 (XY22)、西农979 (XN979) 和郑麦379 (ZM379)]为试材,每个品种设5个处理。观测冬小麦在主要生育期的株高和叶面积指数,并分析冬小麦成熟期的干物质累积量、产量、植株氮素累积量和土壤硝态氮残留量。  【结果】  施氮量相等时,缓释氮肥与尿素掺施能显著促进冬小麦生长发育,增加冬小麦的产量和成熟期植株氮素累积量。SU2处理下不同冬小麦品种的株高、叶面积指数、产量和成熟期植株氮素累积量均达到最大值,且0—100 cm土层剖面硝态氮残留量最小。SU2处理下3个冬小麦品种的产量分别比U和S处理提高了31.81%~31.99%和9.66%~25.38%;营养器官的氮素向籽粒的转移率也分别提高了21.31%~51.12%和2.60%~20.78%。此外,缓释氮肥与尿素掺施能显著提高3个冬小麦品种的氮素吸收利用效率,显著促进开花后营养器官的氮素向籽粒转运,XY22、XN979和ZM379在SU处理下,冬小麦营养器官氮素转运对籽粒的贡献率分别为49.71%、48.32%和49.39%;在SU2处理下3个冬小麦品种的氮肥农学利用率和氮肥偏生产力均最大,分别为17.54和41.95 kg/kg、17.94和41.53 kg/kg、11.32和38.56 kg/kg。冬小麦收获后,XY22在SU2处理下0—100 cm土层硝态氮的残留总量在3个品种中最小, 为112.67 kg/hm2,比U处理下的硝态氮累积总量明显下降13.48%。这表明缓释氮肥与尿素掺施可以显著提高表层土壤硝态氮含量,减少硝态氮向土壤深层淋失,提高氮肥的利用效率。  【结论】  施氮量为180 kg/hm2时,缓释氮肥与尿素按6∶4掺混是本试验条件下冬小麦高效生产的最佳掺施比例。  相似文献   

10.
以在陕西关中地区户县、周至两县连续2年的20余个3414肥料田间试验为研究对象,研究了不同施氮量下冬小麦收获后土壤2 m剖面硝态氮的分布、累积及其与土壤氮素表观盈亏量间的关系。结果表明:随着氮肥用量的提高,土壤剖面硝态氮累积量明显增加,其向土壤下层淋溶的程度也越严重;当施氮量为180~240 kg/hm2时,一些试验点的土壤氮素已经表现出盈余;当施氮量达到270~360 kg/hm2,所有试验点土壤氮素均明显盈余。不同施氮量时土壤表观氮素平衡值(施氮量与氮素携出量的差值)与土壤02 m剖面硝态氮累积量之间呈极显著正相关,说明土壤表观氮素平衡和盈亏决定了土壤剖面硝酸盐的累积状况;土壤氮素表观盈余值每增加100 kg/hm2,02 m土壤剖面硝态氮累积量增加约62.5 kg/hm2。  相似文献   

11.
基于室内模拟培养试验,研究改良剂(生物质炭、过氧化钙)对旱地红壤微生物量碳、氮及可溶性有机碳、氮的影响。试验设置4个处理,即CK、Ca(过氧化钙,1.72g/kg)、C(生物质炭,21.46g/kg)、C+Ca。结果表明:各处理土壤微生物量碳、氮以及可溶性有机碳具有相同的变化趋势,即前期(3d内)都增加较快,在第3天达到最大值,随试验进行有所下降,配施效果优于单施。各处理可溶性有机氮在21d内缓慢增加;第21天时,C+Ca、Ca、C相比CK分别显著增加了62.1%,55.5%,40.9%;35d以后,配施(C+Ca)与单施过氧化钙(Ca)的效果显著优于单施生物质炭(C)和对照(CK)。120d培养期内,配施(C+Ca)处理能够明显提高微生物量碳、氮以及可溶性有机碳、氮的平均含量;微生物量碳的平均含量大小顺序为C+CaCCKCa,微生物量氮的平均含量C+Ca处理显著高于其他处理;可溶性有机碳的平均含量大小顺序为C+CaCaCCK,可溶性有机氮的平均含量C+Ca、Ca处理显著高于CK、C处理。微生物量碳、氮以及可溶性有机碳之间互为极显著正相关(P0.01),而微生物量碳与可溶性有机氮之间呈极显著负相关。因此,生物质炭和过氧化钙能有效提高旱地红壤微生物量碳、氮及可溶性有机碳、氮,且生物质炭与过氧化钙配合施用更有助于土壤改良。  相似文献   

12.
采用盆栽试验研究了不同比例有机无机肥配施对连续4茬麦-稻轮作后土壤微生物学特性的影响。结果表明,与对照相比,单施化肥处理促进了土壤微生物生物量碳、氮和微生物熵的增加,提高了土壤蔗糖酶、蛋白酶、脲酶活性,降低了过氧化氢酶活性,提高了放线菌的数量,但对土壤细菌、真菌数量的影响不明显;有机无机肥配施处理的土壤微生物生物量碳、微生物生物量氮、微生物熵、土壤酶活性及3大类土壤微生物数量显著高于单施化肥及对照处理;土壤微生物生物量碳、微生物生物量氮、微生物熵和3大类微生物数量随着有机肥配施比例的提高而增加,以配施30%有机肥处理的最高;土壤酶活性综合指数以配施20%有机肥处理的最高。可见,化肥配施有机肥特别是配施中高量有机肥更有利于改善土壤微生物学特性,提高土壤生产能力。  相似文献   

13.
  【目的】  探究生物炭配施化肥对不同粒级团聚体中微生物量碳、氮 (MBC、MBN) 含量和胞外酶活性的影响,分析影响团聚体胞外酶活性变化的主控因素,为提升土壤质量提供科学依据。  【方法】  田间微区试验在河南现代农业研究基地进行,供试土壤为石灰性潮土。设置4个处理:不施肥 (CK)、单施化肥 (NPK)、单施生物炭 (BC) 和生物炭配施化肥 (BC+NPK),生物炭是以花生壳为原料高温裂解制备而成,仅在试验开始前施用一次,化肥每季均施用。试验开始于2017年小麦季,于2019年9月玉米收获后采集耕层土壤样品,测定土壤养分含量,分析各粒径团聚体MBC、MBN含量和酶活性。  【结果】  与CK相比,NPK处理可显著提高耕层土壤有效磷、速效钾和硝态氮含量,BC处理可显著提高有机碳和全氮含量,BC+NPK处理则显著提高了以上各指标含量。与CK相比,BC处理显著降低了粒径2~0.25 mm团聚体MBN含量,并明显增加了该粒径的MBC/MBN值;BC+NPK处理显著增加了粒径 > 2 mm和0.25~0.053 mm团聚体中MBC含量 (增幅分别为59.57%和34.68%),也增加了耕层土壤、粒径 > 2 mm和2~0.25 mm团聚体中MBN含量 (增幅分别为17.33%、42.24%和19.28%)。与CK相比,NPK、BC和BC+NPK处理均显著增加粒径 > 2 mm团聚体微生物熵,而BC和BC+NPK处理则显著降低了耕层土壤、粒径2~0.25 mm和0.25~0.053 mm团聚体微生物熵。与CK相比,NPK和BC+NPK处理均显著提高了粒径2~0.25 mm和0.25~0.053 mm团聚体中β-葡糖苷酶、β-纤维二糖苷酶、α-葡糖苷酶和β-木糖苷酶活性;在粒径 > 2 mm团聚体中,仅BC+NPK处理明显提高了该四种酶的活性。与CK相比,NPK和BC+NPK处理均明显提高了粒径 > 2 mm团聚体中脲酶活性及粒径0.25~0.053 mm团聚体中乙酰氨基葡糖苷酶活性,仅BC+NPK处理可显著提高粒径 > 2 mm和0.25~0.053 mm团聚体中亮氨酸氨基肽酶活性。团聚体酶活性变化与MBC、MBN含量以及MBC/MBN值显著相关。粒径 > 2 mm团聚体中酶活性变化与微生物熵、全氮和MBC含量均显著相关,粒径2~0.25 mm团聚体中酶活性变化与MBC/MBN值显著相关,而粒径0.25~0.053 mm团聚体中酶活性变化与MBC含量显著相关。  【结论】  生物炭与化肥配施有利于土壤碳的固存,改善土壤微环境,提升土壤质量,且生物炭添加到土壤中有较长的后效。  相似文献   

14.
秸秆与地膜覆盖条件下旱作玉米田土壤氮组分生长季动态   总被引:3,自引:2,他引:1  
研究不同覆盖措施下农田土壤全氮及其活性和半活性组分在作物生长季的动态变化,有助于深入理解农田土壤氮循环过程。基于黄土高原8年春玉米覆盖定位试验,系统分析了土壤全氮、矿质氮、微生物量氮、潜在可矿化氮以及颗粒有机氮在玉米不同生育期的动态特征。试验包括全生育期9 000kg/hm2秸秆覆盖、全生育期地膜覆盖和不覆盖对照3个处理。结果表明:(1)除硝态氮和铵态氮在苗期上升外,秸秆和地膜覆盖下土壤全氮及其组分含量在春玉米生育期基本呈苗期下降、拔节期上升、大喇叭口—抽雄期下降、灌浆和收获期回升的变化趋势;(2)与对照相比,秸秆覆盖提高了大多数生育时期0—40cm土层全氮和硝态氮含量及0—20cm土层铵态氮含量,提高各生育时期0—40cm土层微生物量氮、潜在可矿化氮以及颗粒有机氮含量;(3)地膜覆盖较对照提高大多数生育时期0—40cm土层硝态氮和0—20cm土层铵态氮含量,降低作物生育后期0—20cm土层全氮和0—40cm土层颗粒有机氮含量,降低大多数时期0—40cm土层微生物量氮和10—20cm土层潜在可矿化氮含量;(4)除了地膜覆盖下20—40cm土层颗粒有机氮相对含量在作物不同生育期差异不显著外,秸秆和地膜覆盖下0—40cm土层微生物量氮、潜在可矿化氮、颗粒有机氮对土壤全氮的动态均有重要贡献。总之,黄土高原的春玉米田秸秆覆盖具有明显的提升土壤全氮及其组分含量的作用,有助于培肥地力和土壤固氮;地膜覆盖则降低了作物生育后期土壤全氮及其组分含量,同时显著提高了土壤硝态氮水平,导致农田土壤氮素淋溶风险提高。  相似文献   

15.
在内蒙古贝加尔针茅草原,分别设对照(N0)、1.5 g·m-2(N15)、3.0 g·m-2(N30)、5.0 g·m-2(N50)、10.0 g·m-2(N100)、15.0 g·m-2(N150)、20.0 g·m-2(N200)和30g·m-2(N300)(不包括大气沉降的氮量)8个氮素(NH4NO3)梯度和模拟夏季增加降水100 mm的水分添加交互试验,研究氮素和水分添加对草原土壤养分、酶活性及微生物量碳氮的影响。结果表明:氮素和水分添加对草原土壤理化性质和生物学特性有显著影响。随施氮量的增加土壤总有机碳、全氮、硝态氮、铵态氮含量呈增加的趋势,相反,土壤pH值呈降低的趋势。土壤脲酶和过氧化氢酶的活性随施氮量的增加而升高,多酚氧化酶则随施氮量的增加呈下降的趋势。氮素和水分添加对草原土壤微生物量碳氮含量有显著影响,高氮处理(N150、N200和N300)显著降低了微生物碳含量,微生物氮含量随施氮量的增加呈上升趋势。水分添加能够减缓氮素添加对微生物的抑制作用,提高微生物量碳、微生物量氮含量。草原土壤养分、土壤酶活性及土壤微生物量碳氮含量间关系密切,过氧化氢酶与全氮、总有机碳、硝态氮呈显著正相关,多酚氧化酶与铵态氮、硝态氮、全氮呈显著负相关。微生物量氮含量与土壤全氮、铵态氮、硝态氮含量以及过氧化氢酶和磷酸酶活性呈显著正相关,与多酚氧化酶呈负相关;微生物量碳与过氧化氢酶呈负相关,与多酚氧化酶活性呈正相关。  相似文献   

16.
利用位于陕西杨凌的17年长期定位试验研究了长期不施肥(CK)、单施化肥(F)、化肥配施有机肥(F+M)和化肥加秸秆还田(F+S)处理对小麦-玉米轮作体系中作物不同生长时期土壤微生物生物量碳、氮(SMBC、SMBN)和矿质态氮含量的影响。结果表明,0—10 cm土层土壤SMBC、SMBN和矿质态氮含量的变化范围分别为264.8~752.2、37.51~14.8和3.83~8.5 mg/kg。不同处理相比,F+M处理中各采样时期(小麦苗期、拔节期、灌浆期及玉米播种期、大喇叭口期、灌浆期和收获后)土壤SMBC和SMBN含量均为最高,分别为不施肥对照的1.382~.65和1.892~.50倍;F+S处理矿质态氮含量最高,SMBC和SMBN也高于F和CK处理,大部分采样时期的差异达显著水平(P0.05);与CK相比,长期单施化肥也使各时期SMBC和SMBN含量提高。在小麦拔节期到灌浆期的旺盛生长阶段各施肥处理土壤SMBN含量均下降,而矿质态氮含量变化不大,处于较低水平;在玉米大喇叭口期到灌浆期的旺盛生长阶段,F+M、F+S和F处理土壤矿质态氮含量显著下降,而SMBN含量均有所升高。表明在土壤矿质态氮含量较高时,作物首先利用矿质态氮,而在土壤矿质态氮含量处于较低水平时,微生物固持的氮素可能会释放出来供作物吸收利用。  相似文献   

17.
配施有机肥减氮对川中丘区土壤微生物量与酶活性的影响   总被引:15,自引:4,他引:11  
通过田间减施氮肥试验,设置减氮20%+不施有机肥(N_1O_0),减氮20%+普通有机肥(N_1O_1),减氮20%+生物有机肥(N_1O_2),减氮40%+不施有机肥(N_2O_0),减氮40%+普通有机肥(N2O1),减氮40%+生物有机肥(N_2O_2)处理,以不施肥(CK0)和全氮100%(N_(100))为对照,研究配施有机肥减氮对川中丘区玉米土壤微生物量碳、土壤酶活性及玉米产量的影响,为玉米生产减氮增效提高玉米氮素利用率提供理论依据。结果表明:随施氮量减少土壤脲酶、蔗糖酶、过氧化氢酶活性及微生物量碳含量逐渐降低,较N_(100)相比,N_1O_0、N_2O_0分别吐丝期微生物量碳降低25.6,35.08mg/kg;大喇叭口期脲酶降低11.1%和14.1%;蔗糖酶降低30.4%,97.1%;产量降低921.98,1 719.62kg/hm~2。配施有机肥提高了土壤脲酶、蔗糖酶、过氧化氢酶活性及微生物量碳含量和玉米产量。与N_1O_0相比N_1O_1、N_1O_2,土壤微生物量碳增加38.57%和54.45%;脲酶活性提高9.73%和14.82%;蔗糖酶提高42.75%和64.26%;过氧化氢酶提高11.05%和11.93%;增产2%和6%,且N_1O_2较N_1O_1产量提高4.0%。配施生物有机肥减氮20%降低了玉米秃尖长、增加了穗长、穗粒数、百粒重,玉米产量为8 710.83kg/hm~2。土壤微生物量碳、酶活性与玉米产量呈显著或极显著相关。说明配施生物有机肥减氮20%,可以提高玉米生育期土壤微生物量碳、土壤酶活性,改善植株根系生长环境,促进玉米产量增加。  相似文献   

18.
土壤有机碳氮是土壤肥力的关键因素,有机物料施用是提高土壤有机碳氮的有效措施。研究和比较了不同有机物料输入对土耕层(0—20 cm)土壤有机碳、全氮、可溶性有碳氮及0—200 cm剖面土壤硝态氮和含水量分布变化的后效作用。结果表明,停止施入有机物料两年后,与对照(CK)相比,秸秆与氮磷肥配施(SNP)和生物炭与氮磷肥配施(BNP)的表层(0—20 cm)土壤有机碳(SOC)分别提高了29.5%和29.8%(p<0.05);氮磷肥(NP)、有机肥与氮磷肥配施(MNP)、秸秆与氮磷肥配施(SNP)和生物炭与氮磷肥配施(BNP)的表层土壤全氮含量较CK分别提高了22.0%,14.3%,24.2%和26.4%(p<0.05)。BNP处理的土壤可溶性有机碳(DOC)显著高于其他处理(p<0.05),分别比CK,NP,MNP和SNP提高了23.4%,10.9%,21.3%,20.5%;所有施肥处理的土壤可溶性有机氮(DON)均显著高于CK(p<0.05),分别提高了39.3%,29.3%,34.5%和52.3%。与CK相比,各施肥处理显著提高了表层土壤硝态氮含量(p<0.05),增加了0—100 cm土层的硝态氮累积量。与NP处理相比,MNP和SNP显著提高了0—200 cm土层的硝态氮累积量(p<0.05),而BNP则差异不显著。相比CK,施肥处理(NP,MNP,SNP,BNP)可显著提高0—20 cm土层的含水量,增加0—40 cm土层的储水量,且BNP处理显著高于SNP和MNP。总体而言,生物炭在提高和维持表层土壤肥力以及降低剖面硝态氮淋溶风险等方面的后效作用显著优于秸秆和有机肥,是陕西关中地区旱地土上一种较好的有机物料施用方式。  相似文献   

19.
为实现秸秆资源化利用和强化生物质炭基肥生产应用,以洞庭湖芦荻秸秆热解生物质炭为基质,采用包膜和混合造粒技术,以改性淀粉为黏合剂,辅以膨润土、腐殖酸等材料制备包膜炭基肥(CT)和混合炭基肥(MT)。以生物质炭占比10%(T1),15%(T2),20%(T3),25%(T4)和30%(T5),从微观形态结构、养分释放速率、粒径及抗压强度等基本性质进行择优筛选,将筛选后的炭基肥处理(CT2、CT3、CT4和MT1、MT2、MT3)与普通复合肥(NPK)、不施肥(CK)共8个处理进行室内水稻盆栽试验,对比不同研制方式及生物质炭添加量下水稻土氨挥发及氮素渗漏流失差异。结果表明:炭肥比越大,肥料结构愈紧密,累积氮素释放率愈低,但过量的生物质炭的添加会造成肥料粒径不均匀、抗压强度不达标。包膜生物质炭基肥以15%~25%的生物质炭添加量较适宜;混合生物质炭基肥以10%~20%的生物质炭添加量较适宜。与NPK处理相比,CT2、CT3、CT4处理氨累积挥发量分别降低12.95%,27.96%,23.82%,氨挥发损失率分别降低16.56%,35.67%,30.57%,以CT3效果最好;MT1、MT2、MT3处理氨累积挥发量分别降低33.72%,41.48%,16.06%,氨挥发损失率分别降低43.31%,53.18%,20.38%,以MT2效果最好。2种炭基肥均可减少盆面水铵氮平均浓度,与NPK处理相比,最高降幅分别达20.74%(CT4)和39.90%(MT2);混合造粒炭基肥中以MT2处理的全氮、硝氮浓度降幅最大,分别达5.50%,5.09%,而包膜炭基肥各处理间差异均不显著。与NPK处理相比,施包膜炭基肥处理的渗漏水中铵氮与全氮平均浓度分别显著降低8.93%~14.00%,8.84%~16.38%,而各处理间硝氮平均浓度均无显著性差异。施混合炭基肥可降低铵氮、硝氮和全氮平均浓度,分别达11.16%~12.42%,3.22%~22.29%,11.14%~15.86%。此外,炭肥比越高,生物质炭的氮减排效应越明显,但添加量过大其氮减排量并无显著性增加。总体而言,2种工艺制备生物质炭基肥均能有效降低氨挥发损失以及减缓氮素径流渗漏损失风险。其中,包膜炭基肥以20%~25%生物炭添加量效果最优,混合炭基肥以15%最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号