首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
施氮量对植烟土壤不同土层无机氮质量含量的调控   总被引:5,自引:0,他引:5  
为研究不同施氮量对土壤各层次和烤烟各生长期土壤中无机氮质量含量的影响,大田试验中设置5个氮肥施用量并分配在基肥、苗肥和追肥时期施用,烟苗移栽后第5周开始分7次钻取3个土层样,样品冷藏贮存并用流动注射分析仪测定硝态氮和铵态氮质量含量。结果表明:各施氮处理在移栽后第6周前0~20 cm土壤中硝态氮质量含量大于铵态氮,施用氮肥越多,土壤中无机氮质量含量提高幅度越大,施氮肥对0~20 cm土壤中无机氮质量含量的影响在烟株生育前期要远大于对20~40 cm土壤中无机氮质量含量的影响,同一时期不同深度比较,0~20 cm土层中硝态氮质量含量略大于20~40 cm和40~60 cm土层的硝态氮质量含量;烟株移栽7周后,0~20 cm土层中硝态氮被极大耗竭。各施氮量在各土层铵态氮质量含量变化幅度远大于硝态氮,铵态氮质量含量从第6周即开始上下波动,并在50 mg/kg附近上下变动,第8周土壤各层铵态氮质量含量有一个上升峰,而硝态氮质量含量在第7周停止快速下降后进入0~100 mg/kg范围的较平稳波动阶段。认为:不同施氮量对于生育前期和0~20 cm土层硝态氮质量含量影响深刻,但促进烤烟打顶前足量吸收并形成健壮烟株的合适施氮量还需结合烟草产量与品质而定;铵态氮调控是调节后期氮供应的关键。  相似文献   

2.
施氮量对豫中烟区植烟土壤无机氮含量和氮素吸收的调控   总被引:3,自引:0,他引:3  
为了探讨在不同施氮水平条件下,烤烟生长、植烟土壤不同土层无机氮动态变化以及烟株各个器官氮素累积量的变化,以豫中烟区舞阳县为例,采用大田小区试验,在钾肥和磷肥施用量相同的基础上,设计5个施氮量水平(0kg/hm2,22.5kg/hm2,37.5kg/hm2,52.5kg/hm2,67.5kg/hm2),研究了氮肥施用量对烤烟农艺性状、植烟土壤硝态氮、铵态氮含量及烟株氮素吸收的影响。结果表明:在施氮量0~52.5kg/hm2范围内,团棵期、旺长期和圆顶期烟株的株高、叶数和最大叶长和宽,随着施氮量的增加均呈增加的趋势,施氮量达到67.5kg/hm2时,各指标提高不明显,且对烟叶正常落黄造成不利影响。在移栽后11周和9周之前,0—20cm土层硝态氮和铵态氮含量随着施氮水平的提高而增加。施肥对20—40cm土层硝态氮的影响较小,对铵态氮含量的影响只集中在移栽后9周之前,而40—60cm土层无机氮含量受施氮量的影响不明显。在移栽后13周前各时期烟叶的氮素累积量基本随施氮量的增加而增加的趋势。不同器官氮累积量表现为叶茎根。不同叶位之间表现为,在移栽后11周之前中部叶上部叶下部叶,打顶之后表现为上部叶中部叶下部叶。因此,在豫中烟区,施氮量为52.5kg/hm2时烟株长势相对较好,落黄较为适宜。施氮量对植烟土壤无机氮含量的调控主要集中在0—20cm土层,随着烟株生长期的推移,氮素用量的调控作用减弱。烟株从土壤中吸收的氮素主要集累在叶片中,且氮素的调控作用主要集中在打顶之前。  相似文献   

3.
  【目的】  研究不同施氮量下马铃薯的干物质积累、产量、氮肥吸收利用,结合土壤中无机氮在不同土层含量的变化,确定马铃薯产量和氮效率最优、环境风险最低的氮肥施用水平。  【方法】  试验于2018—2019年在南方典型红壤区旱地进行,供试品种荷兰15号为特早熟型马铃薯。设置N 0、60、120、150、180、210、240 kg/hm2,共7个氮肥水平。于成熟期,调查块茎产量和总干物质积累量测定氮素含量,同时取0—20、20—40、40—60 cm土层样品,分析铵态氮与硝态氮含量。  【结果】  施氮量显著影响红壤旱地马铃薯产量、干物质积累与氮肥吸收利用。马铃薯块茎产量随施氮量增加先增加后降低,均以施N 180 kg/hm2处理最高,达26250 kg/hm2 (2018年) 和27915 kg/hm2 (2019年);秸秆氮素积累量随施氮量的增加显著增加,而块茎氮素积累量随施氮量增加先增加后降低,以施N 180 kg/hm2处理最高,为97.65 kg/hm2 (2018年) 和101.09 kg/hm2 (2019年)。氮素收获指数以N150 kg/hm2处理最高,而氮肥农学利用率和氮素回收率均以N180 kg/hm2处理最高,氮肥偏生产力则随施氮量的增加而显著降低。施氮显著提高土壤中的无机氮含量,不同施氮量对无机氮的含量和分布影响不同。施N 150 kg/hm2和N 180 kg/hm2处理增加的铵态氮主要分布在0—20 cm土层,且施N 180 kg/hm2处理的铵态氮含量显著高于施N150 kg/hm2处理,施N 150 kg/hm2处理又显著高于其他处理;而N 210 kg/hm2和N 240 kg/hm2处理增加的铵态氮主要分布在20—60 cm 土层,其铵态氮含量显著高于其他处理;在施N 0—180 kg/hm2范围内对土层中的硝态氮含量影响较小,施N 210 kg/hm2和N 240 kg/hm2处理显著增加了20—60 cm土层硝态氮含量。从无机氮总量看,施N 180 kg/hm2处理可显著增加0—20 cm土层的无机氮总量,而施N 210 kg/hm2处理和N 240 kg/hm2处理则显著提高了20—60 cm土层的无机氮含量。  【结论】  极早熟型马铃薯适宜的氮肥用量范围较窄,过低或者过高施氮都会显著降低其经济产量、氮素收获指数和农学效率。在红壤条件下,施N 180 kg/hm2可以显著增加0—20 cm土层中的铵态氮和无机氮含量,而不会增加20 cm以下土层的无机氮含量,超过此用氮量,则会显著增加土壤无机氮的向下迁移。因此,红壤旱地极早熟型马铃薯品种的适宜施氮水平为N 180 kg/hm2。  相似文献   

4.
在高肥力土壤条件下,研究了施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响。结果表明,小麦生长期间,施氮处理0100.cm土层硝态氮积累量显著大于不施氮处理;当施氮量大于150.kg/hm2时,随施氮量增加,0100.cm土层硝态氮积累量显著增加;随小麦生育进程推进,施氮处理上层土壤硝态氮下移趋势明显,至小麦成熟时,施氮1952~85.kg/hm2处理60100.cm土层硝态氮含量显著大于其它处理。小麦生长期间,0100.cm土层铵态氮积累量较为稳定,施氮处理间亦无显著差异。与不施氮肥相比,施氮提高小麦生长期间040.cm土层土壤微生物量氮含量;当施氮量小于240.kg/hm2时,随施氮量增加,土壤微生物量氮含量增加。小麦的氮肥利用率随施氮量增加而降低;施氮1051~95.kg/hm2,收获时小麦植株吸氮量、生物产量、子粒产量和子粒蛋白质含量提高;而施氮量大于240.kg/hm2时,小麦生育后期的氮素积累量降低,收获时植株吸氮量、生物产量和子粒蛋白质含量降低。说明本试验条件下,施氮1051~50.kg/hm2可满足当季小麦氮素吸收利用,获得较高的子粒产量和蛋白质含量。继续增加施氮量,土壤微生物量氮含量增加,但土壤中残留大量硝态氮,易淋溶损失。  相似文献   

5.
田间试验研究了不同土壤氮素供应水平和底追比例对玉米籽粒产量、土壤硝态氮和农田氮素平衡的影响.与农民习惯施肥(N 240 kg·hm-2,基肥和大喇叭口追肥为1∶2)相比,氮肥减量10%(N 216 kg· hm-2)和20% (N 192kg·hm-2)处理的玉米产量并没有降低,而氮肥利用效率显著增加.氮肥减量后移可使耕层无机氮供应较好地与作物吸收同步,降低收获期0~100 cm土层的硝态氮积累,减少氮素的田间表观损失,提高氮肥利用效率.在本试验条件下,氮肥减量20%(N 192 kg·hm-2),基追比例1∶3∶1处理的植株产量、地上部植株氮肥吸收利用率、氮肥农学利用率均较高,0~100 cm土层未出现硝态氮明显累积,氮素表观损失量最少,是最佳施氮运筹模式.  相似文献   

6.
通过田间试验研究了高垄覆膜滴灌条件下施氮量(N 0、90、180、270、360 kg/hm2)对马铃薯产量、土壤硝态氮积累、氮素平衡及氮肥利用率的影响。结果表明,N180处理的马铃薯块茎产量最高。马铃薯收获期各处理硝态氮含量为表层土(020cm)最高,且在0120 cm剖面呈现降低的趋势;各处理040 cm土层硝态氮积累量占0120cm土层硝态氮积累总量的47.74%~53.17%。施氮量与马铃薯吸氮量、土壤硝态氮残留量、氮素表观损失量呈显著正相关,马铃薯吸氮量、硝态氮残留量和氮素表观损失量分别占增加纯氮的37.93%、45.99%和16.08%。马铃薯块茎吸氮量和收获指数随着施氮量的增加有增加的趋势;氮肥吸收利用率、氮肥农学利用效率、氮肥生理利用效率均以N 90处理最高,分别为67.97%、68.06 kg/kg和154.92 kg/kg。在内蒙古阴山北麓马铃薯主产区,覆膜滴灌施氮量应控制在90~180 kg/hm2。  相似文献   

7.
为探明生物炭与氮肥配施对土壤中氮素循环和烤烟氮素利用的影响,采用盆栽试验,设置四个处理:5 g/盆纯氮(CK),5 g/盆纯氮+100 g/盆生物炭(T1),3.5 g/盆纯氮+100 g/盆生物炭(T2),2 g/盆纯氮+100 g/盆生物炭(T3),利用15N标记的氮肥,测定生物炭与氮肥配施条件下烤烟生长不同时期土壤中15N的残留量、不同形态氮素的含量、土壤微生物量氮和移栽后90 d烟叶对不同氮源氮素的累积量。试验结果表明:相同施氮量时,生物炭的施用可以提高土壤中15N残留量、土壤无机氮、碱解氮、微生物量氮的含量和叶片对氮素的累积量。生物炭与氮肥配施时提高了肥料氮在烟叶中的占比,使15N利用率也提高了25.4%-63.3%。与对照相比,T2处理植烟土壤中铵态氮、硝态氮、碱解氮在移栽后75 d比对照分别提高了17.3%、8.0%、7.2%,碱解氮和微生物量氮的含量在移栽后90 d时也高于对照。在本试验条件下,生物炭与氮肥配施对土壤氮素的影响是显著的,施用生物炭时减少30%氮肥用量是可行的。  相似文献   

8.
氮肥减量与缓控肥配施对土壤供氮特征及玉米产量的影响   总被引:8,自引:2,他引:6  
以农民习惯施肥(单施普通尿素200kg/hm2)为对照,研究了氮肥减量10%(单施普通尿素180kg/hm2)及氮肥减量10%配施树脂包膜尿素、包膜缓释肥和有机肥对土壤供氮特征及玉米产量的影响。结果表明,氮肥减量10%单施普通尿素180kg/hm2处理较单施普通尿素200kg/hm2处理降低了拔节期、灌浆期和成熟期0—60cm土层土壤铵态氮和硝态氮含量;提高了氮收获指数、氮肥农学效率、氮肥生成效率及氮素吸收效率,但产量降低1.3%、氮肥利用率降低4.2%。氮肥减量10%配施树脂包膜尿素、包膜缓释肥、有机肥处理提高了拔节期、灌浆期、成熟期0—20cm土层土壤铵态氮含量,20—40cm、40—60cm土层土壤铵态氮含量较低;提高了灌浆期0—20cm土层土壤硝态氮含量;降低了成熟期0—60cm土层土壤硝态氮含量。氮肥减量10%配施处理较单施普通尿素200kg/hm2处理和氮肥减量10%单施普通尿素180kg/hm2处理氮肥利用率分别提高了9.12%~19.14%和13.32%~23.34%,产量分别提高了0.95%~6.89%和2.23%~8.25%,同时也提高了氮收获指数、氮肥农学效率、氮肥生成效率及氮素吸收效率,以氮肥减量10%配施包膜缓释肥处理效果最好,其氮肥表观损失量仅为1.18kg/hm2。  相似文献   

9.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升—下降—上升—下降—稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

10.
土壤残留氮是不容忽视的土壤氮素资源.通过田间小区试验研究了土壤高残留氮下不同施氮量(0、80、160、240和320 kg/hm2)对夏玉米土壤硝态氮积累、氮素平衡、氮素利用及产量的影响,分析了夏玉米的经济效益.结果表明,土壤剖面硝态氮积累量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理;各施氮处理土壤硝态氮在0-60 cm土层含量最高,在0--180 cm剖面呈先减少后增加的变化趋势.不施氮处理夏玉米收获后土壤无机氮残留量高达378 kg/hm2,随施氮量的增加,无机氮残留和氮表观损失显著增加.作物吸氮量、氮表观损失量与总氮输入量呈显著正相关,总氮输入量每增加l kg作物吸氮量增加0.156 kg,而表观损失量增加0.369 kg,是作物吸氮量的2.4倍.高残留氮土壤应严格控制氮肥用量,以免造成氮素资源的大量浪费.夏玉米籽粒吸氮量随施氮量的增加呈增加的趋势,氮收获指数呈降低的趋势.氮肥农学效率、氮肥生理利用率、氮肥利用率和氮素利用率在施氮量80 kg/hm2时最高,随施氮量的增加降低;增施氮肥能降低高残留氮土壤中氮肥的增产效果和利用率.综合考虑产量、氮素利用和环境效应,N 80 kg/hm2是氮素高残留土壤上玉米的合理施氮量.  相似文献   

11.
不同施氮水平对深层包气带土壤氮素淋溶累积的影响   总被引:18,自引:6,他引:12  
为研究深层包气带土壤中氮素的迁移规律,采用田间小区试验,研究了不同施氮水平(142.5、285和427.5kg/hm2)对夏玉米种植期间0~500cm包气带土壤中氮素淋溶累积的影响。结果表明,不同施氮水平对NO3--N、NH4+-N和总氮有显著影响,施氮越多,NO3--N、NH4+-N和总氮在土壤中的淋溶累积也就越多,夏玉米生育期间土壤中氮素的淋溶累积含量随着夏玉米生长逐渐减少。在0~200cm土层中,收获后不同施肥水平土壤中NO3--N和总氮累积量随施氮量增加而增多,285kg/hm2施氮水平NH4+-N累积量最多,427.5kg/hm2施氮水平NH4+-N累积量最少,但相差不超过0.1kg/hm2,收获后土壤中氮素累积量有损失。夏玉米生育期间不同施氮水平对土壤NO3--N、NH4+-N和总氮的影响深度主要为0~145cm。粉砂壤土中氮素更易累积,砂质壤土中氮素较易随水分淋溶至下层。142.5kg/hm2施氮水平可有效减少NO3--N在土壤中的淋溶损失,降低土壤中NH4+-N和总氮的含量,对地下水构成的潜在污染风险最小。北京地区地下水埋深较深,NO3--N不易淋溶至地下水,但长期大量施用氮肥、田间土壤大孔隙的存在等会加速NO3--N向深层土壤迁移,对地下水水质构成威胁。  相似文献   

12.
基于产量及环境友好的玉米氮肥投入阈值确定   总被引:10,自引:3,他引:7  
为了寻求河套灌区玉米高产与环境友好双赢的氮肥投入阈值,该文采用田间试验和室内分析化验相结合的方法,在内蒙古五原县连续三年定位研究了不同施氮水平对河套灌区玉米产量、土壤N素残留量及氮平衡的影响。结果表明:随着施氮量的增加,籽实产量呈先增加后下降的趋势,2 m土壤矿质氮质量分数呈指数增加趋势。随着施氮量及施氮年限的增加,土壤剖面N素含量呈增加趋势。随着土壤深度的增加,在0~80 cm土层间土壤N素含量呈下降趋势。盈余率为0时,施氮量为237 kg/hm2,籽实产量为13.7 t/hm2,2 m土壤矿质氮为478 kg/hm2,土壤氮素回收率为24%,植株氮素回收率为41%,土壤-玉米系统总回收率为65%;95%最高产量到最高产量为13.2~13.9 t/hm2,对应施氮量为193~291 kg/hm2,2 m土壤矿质氮为419~563 kg/hm2,氮素盈余率为-19%~23%,土壤氮素回收率为21%~26%,植株氮素回收率为41%,土壤-玉米系统总回收率为62%~67%。施氮量193~291 kg/hm2是既保证玉米产量又满足土壤氮素盈余较少、土壤-玉米系统氮素回收较高的合理施氮阈值。该研究为河套灌区玉米合理施用氮肥提供了科学依据。  相似文献   

13.
秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响   总被引:17,自引:7,他引:10  
【目的】探讨玉米秸秆生物炭配施氮肥对华北潮土区土壤理化特性和作物产量的影响,阐明土壤和植株对生物炭和氮肥施用的响应,旨在为该区域秸秆资源高效利用、培肥土壤及作物增产提供科学依据。【方法】以华北冬小麦–夏玉米轮作区为研究对象,研究玉米秸秆生物炭 (缺氧条件下 450℃ 热裂解 1 小时获得) 配施氮肥对土壤养分含量、微生物量以及作物产量的影响。试验采用裂区设计,以秸秆生物炭施用量为主区,施氮量为副区。秸秆生物炭用量设 0、7.5 和 22.5 t/hm2 3 个水平 (以 BC0、BC7.5、BC22.5 表示);氮肥用量设 0、150、225 和 300 kg/hm2 4 个水平 (以 N0、N150、N225、N300 表示)。小麦在 2014 年 10 月 9 日播种,次年 6 月 8 日收获;玉米在 2015 年 6 月 10 日播种,当年 9 月 28 日收获。在作物成熟期进行产量测定,并采集 0—20 cm 土壤样品以及采用常规方法进行土壤有机碳 (SOC)、全氮 (TN)、可溶性有机碳 (DOC)、铵态氮 (NH4+-N)、硝态氮 (NO3–-N)、土壤微生物量碳 (MBC) 和微生物量氮 (MBN) 的测定。【结果】生物炭对土壤养分含量、微生物量碳氮及作物产量有极显著影响。生物炭用量增加,土壤 SOC、TN、DOC、NO3–-N 含量以及土壤 SOC/TN 比值均显著增加,较 BC0 最大增加幅度分别为 165.0%、74.1%、39.1%、75.1% 和 44.0%。MBC、MBN 含量和作物产量均以 BC7.5 处理达最大值,较 BC0 最大增加幅度分别为 49.2%、57.6% 和 46.1%,BC22.5 较 BC7.5 处理平均降低 12.1%、7.3% 和 9.7%;施用生物炭降低 NH4+-N 含量,BC7.5 和 BC22.5 处理较 BC0 分别下降 18.4% 和 23.7%。随着氮肥施用量的增加,SOC、DOC、NH4+-N、MBC、MBN 含量均先增后减,在施氮水平为 150 kg/hm2 时,其含量均达最大值,较 N0 最大增加幅度分别为 29.7%、22.9%、44.8%、79.4% 和 115.3%。所有施氮的处理作物产量较 N0 均显著增加,而三个施氮处理间其产量差异不显著 (P>0.05)。【结论】在维持作物产量不降低的情况下,短期内 N150BC7.5 处理对提升土壤肥力的效果最佳,是较为理想的施肥方式,但其有效机制及长期效果还需进一步试验研究。  相似文献   

14.
李本银  刘月娟  汪金舫 《土壤》2005,37(5):551-554
采用不同灌溉水量和施N量,研究了尿素在潮土中的淋溶和转化特征。结果表明,在小麦返青期结合灌溉施尿素后,NH4 -N在40cm以上土层中积累,不会产生深层淋溶。而土层中NO3--N含量有较大变化,相同灌溉水量下,施N量越大,NO3--N向下层淋溶越深;相同施N量下,灌溉水量越大,NO3--N也有淋溶越深的趋势。在麦季,即使在超过当地的施N量(N180kg/hm2)和灌溉水量(750m3/hm2)条件下,收获时所有处理的NO3--N主要积累在130cm以上的土层中,NO3--N淋溶深度不超过130cm,不会产生对地下水的污染。  相似文献   

15.
生物质炭对不同pH值土壤矿质氮含量的影响   总被引:4,自引:0,他引:4  
为了揭示生物质炭作为土壤调理剂添加后对土壤矿质氮形态、含量等土壤性质的影响,该研究利用芒草分别在350和700℃裂解制得生物质炭,发现2个温度尤其是700℃制得的生物质炭,对NH4+有很强的吸附能力,但对NO3-的吸附能力很弱。将生物质炭分别加入到酸性(pH值为3.8)和碱性(pH值为7.6)土壤中,25℃下室内培养180d。结果表明,生物质炭提高了土壤全氮含量,酸性和碱性土壤分别平均提高了22%和17%;但使土壤铵态氮含量大幅降低至接近仪器检测限水平;生物质炭对土壤硝态氮含量的影响因生物质炭和土壤类型而异。生物质炭对土壤矿质氮形态和含量的影响,显然与生物质炭对铵的吸附作用、提高土壤pH值、增强氨挥发损失,以及形成微生物量氮等密切相关。该研究可为开展生物质炭基氮素新型肥料及制剂等方面的科学研究提供参考。  相似文献   

16.
以番茄为供试作物,采用田间微区试验的方法研究了不同灌溉方法和不同氮肥种类对氮素在土壤不同层次间的残留以及在番茄植株不同部位之间的分配。结果表明,在番茄整个生育期内,土壤中无机氮主要以NO3--N的形式存在,NH4+-N所占比例很小。0~100cm土层中,滴灌和沟灌各处理土壤中NH4+-N的含量在整个生育期内含量均比较低(低于6mgkg-1),且变化幅度不大,各土层NH4+-N的含量受灌溉方式和施肥的影响较小。无论是滴灌还是沟灌,番茄全生育期内0~20cm土层土壤NO3--N含量始终较高。沟灌易引起土壤中NO3--N向下层迁移,而滴灌对40~60cm土层及其以下各层次土壤的NO3--N分布影响作用不明显。硝态氮肥较铵态氮肥和酰胺态氮肥更易随水向深层土壤迁移。灌溉方式对肥料15N在果实、茎、叶中的分配比例没有明显影响,肥料15N在番茄地上部分各器官所含的量以果实为最高,其次为叶,茎中的含量最少;两种灌溉方法间肥料15N在果实、茎、叶的分配比例差异不大,平均为2.9∶1∶1.6。  相似文献   

17.
为解决吉林省半干旱区滴灌施肥条件下氮肥合理施用问题,通过2年(2015—2016年)田间试验,研究了覆膜滴灌条件下施氮量(0,70,140,210,280,350kg/hm~2)对春玉米产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡的影响。结果表明:施氮量在70~210kg/hm~2范围内玉米产量随施氮量的增加显著增加,当施氮量超过210kg/hm~2后,处理间产量无显著差异;将玉米产量(y)与施氮量(x)拟合,得出最佳施氮量分别为195.1,201.0kg/hm~2。施氮显著提高了玉米各生育时期氮积累量,其中灌浆期和成熟期氮积累量以施氮量210kg/hm~2处理最高。氮素当季回收率、农学利用率和偏生产力均随施氮量的增加而下降。玉米成熟期0-200cm剖面土壤硝态氮和铵态氮含量随土层深度增加呈逐渐下降的趋势;施氮提高了0-200cm土壤硝态氮和铵态氮含量,其中施氮量280,350kg/hm~2处理40-200cm土层硝态氮含量显著高于其他施氮处理。玉米吸氮量、土壤无机氮残留量和氮表观损失量与施氮量呈极显著的正相关;玉米吸氮量、土壤无机氮残留量和氮表观损失量分别占增加纯氮的21.6%~23.3%,33.0%~37.4%,41.0%~43.7%。综上所述,在本试验条件下,综合产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡等因素,在吉林省半干旱区滴灌施肥适宜施氮量应控制在195~210kg/hm~2。  相似文献   

18.
为提高我国南方丘陵地区旱地土壤作物种植的氮肥利用率,减少资源浪费和降低环境污染风险,通过采用田间小区定位试验进行土壤养分渗漏观测,研究比较了不施肥处理(T1)、普通尿素处理(T2)以及不同施氮量的控释氮肥处理(T3~T6)的TN、NO3-—N和NH4+—N的流失浓度变化及其损失负荷特征。结果表明:在168~240kg N/hm~2施氮水平变化内,渗漏水量在3 888~3 948L之间,即施肥量的增加或减少对渗漏体积的影响不显著(P0.05);控释氮肥处理T3的TN、NO3-—N和NH4+—N的平均流失浓度分别是32.66,29.41,0.26 mg/L,比等氮量施用的T2处理分别降低了24.99%(P0.01),25.56%(P0.01)和25.71%(P0.05);同样T3在损失负荷方面TN、NO3-—N和NH4+—N分别为53.07,47.14,0.47kg N/hm~2,较T2分别降低了24.10%(P0.01),25.62%(P0.01)和18.97%(P0.05)。当控释氮肥减氮10%,20%,30%时,其TN损失浓度为28.81,26.50,24.34mg/L,较T3分别降低了11.79%(P0.05),18.86%(P0.05),25.47%(P0.05);损失负荷为41.78,36.62,33.90kg N/hm~2,较T3分别降低了21.27%(P0.01),31.00%(P0.01),36.12(P0.01)。NO3-—N是渗漏氮素损失的关键成分,占TN损失负荷88.83%~92.75%,DON次之。控释氮肥在192kg N/hm~2的投入下能够有效的减少氮素渗漏损失,降低环境污染风险,并且还可以增产增效。  相似文献   

19.
滴灌棉田氮肥用量对土壤无机氮的动态影响   总被引:1,自引:0,他引:1  
刘宏平  田长彦  马英杰 《土壤》2007,39(4):599-603
通过南疆滴灌条件下N肥田间试验,研究了施用N肥对棉花生育期土壤无机N累积及收获后土壤NO3--N残留的影响.棉花生育期土壤无机N的累积规律是:花期以后,施肥量较高(N 225~337.5 kg/hm2)时,土壤无机N以NO3--N为主要形式累积于表层0~40 cm土壤中.棉花生育期施肥量影响收获后耕层土壤残留NO3--N.根据各施肥处理土壤NO3--N残留状况及产量,确定N 180~225 kg/hm2为南疆滴灌棉田土壤NO3--N发生少量累积同时获得高产的适宜施肥量范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号