首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of wheel load and tyre inflation pressure on topsoil and subsoil stresses has long been disputed in soil compaction research. The objectives of the experiment presented here were to (1) measure maximum soil stresses and stress distribution in the topsoil for different wheel loads at the same recommended tyre inflation pressure; (2) measure soil stresses at different inflation pressures for the given wheel loads; and (3) measure subsoil stresses and compare measured and simulated values. Measurements were made with the wheel loads 11, 15 and 33 kN at inflation pressures of 70, 100 and 150 kPa. Topsoil stresses were measured at 10 cm depth with five stress sensors installed in disturbed soil, perpendicular to driving direction. Contact area was measured on a hard surface. Subsoil stresses were measured at 30, 50 and 70 cm depth with sensors installed in undisturbed soil. The mean ground contact pressure could be approximated by the tyre inflation pressure (only) when the recommended inflation pressure was used. The maximum stress at 10 cm depth was considerably higher than the inflation pressure (39% on average) and also increased with increasing wheel load. While tyre inflation pressure had a large influence on soil stresses measured at 10 cm depth, it had very little influence in the subsoil (30 cm and deeper). In contrast, wheel load had a very large influence on subsoil stresses. Measured and simulated values agreed reasonably well in terms of relative differences between treatments, but the effect of inflation pressure on subsoil stresses was overestimated in the simulations. To reduce soil stresses exerted by tyres in agriculture, the results show the need to further study the distribution of stresses under tyres. For calculation of subsoil stresses, further validations of commonly used models for stress propagation are needed.  相似文献   

2.
Subsoil compaction is persistent and can affect important soil functions including soil productivity. The aim of this study was to develop recommendations on how to avoid subsoil compaction for soils exposed to traffic by machinery at field capacity. We measured the vertical stress in the tyre–soil contact area for two traction tyres at ca. 30‐ and 60‐kN wheel loads on a loamy sand at field capacity. Data on resulting stress distributions were combined with those from the literature for five implement tyres tested at a range of inflation pressures and wheel loads. The vertical stress in the soil profile was then predicted using the Söhne model for all tests in the combined data set. The predicted stress at 20 cm depth correlated with the maximum stress in the contact area, tyre inflation pressure, tyre–soil contact area and mean ground pressure. At 100 cm depth, the predicted vertical stress was primarily determined by wheel load, but an effect of the other factors was also detected. Based on published recommendations for allowable stresses in the soil profile, we propose the ‘50‐50 rule’: At water contents around field capacity, traffic on agricultural soil should not exert vertical stresses in excess of 50 kPa at depths >50 cm. Our combined data provide the basis for the ‘8‐8 rule’: The depth of the 50‐kPa stress isobar increases by 8 cm for each additional tonne increase in wheel load and by 8 cm for each doubling of the tyre inflation pressure. We suggest that farmers use this simple rule for evaluating the sustainability of any planned traffic over moist soil.  相似文献   

3.
Abstract

In this paper we describe the susceptibility of Swedish subsoils to compaction and discuss strategies for prevention of traffic-induced subsoil compaction against the background of experiences from wheeling experiments conducted in Sweden during recent years. The susceptibility of Swedish subsoils to compaction must be considered high because subsoils are often wet during field operations and machinery with high wheel loads is used. The risk of subsoil compaction could be reduced by technical solutions, such as the use of dual and tandem wheels instead of single wheels, low tyre inflation pressure or tracks. However, each of these solutions has its limitations. Results from several wheeling experiments on different soils indicate that residual deformations occur even when the applied stress is lower than the precompression stress. Hence, soil compaction could not be avoided completely by limiting the applied stress to the precompression stress.  相似文献   

4.
Field traffic may reduce the amount of air-filled pores and cavities in the soil thus affecting a large range of physical soil properties and processes, such as infiltration, soil water flow and water retention. Furthermore, soil compaction may increase the mechanical strength of the soil and thereby impede root growth.

The objective of this research was to test the hypotheses that: (1) the degree of soil displacement during field traffic depends largely on the soil water content, and (2) the depth to which the soil is displaced during field traffic can be predicted on the basis of the soil precompression stress and calculated soil stresses. In 1999, field measurements were carried out on a Swedish swelling/shrinking clay loam of stresses and vertical soil displacement during traffic with wheel loads of 2, 3, 5 and 7 Mg at soil water contents of between 11 and 35% (w/w). This was combined with determinations of soil precompression stress at the time of the traffic and predictions of the soil compaction with the soil compaction model SOCOMO. Vertical soil displacement increased with increased axle load. In May, the soil precompression stress was approximately 100 kPa at 0.3, 0.5 and 0.7 m depth. In August and September, the soil precompression stress at 0.3, 0.5 and 0.7 m depth was 550–1245 kPa. However, when traffic with a wheel load of 7 Mg was applied, the soil displacements at 0.5 m depth were several times larger in August and September than in May, and even more at 0.7 m depth. An implication of the results is that the precompression stress does not always provide a good indication of the risk for subsoil compaction. A practical consequence is that subsoil compaction in some soils may occur even when the soil is very dry. The SOCOMO model predicted the soil displacement relatively well when the soil precompression stress was low. However, for all other wheeling treatments, the model failed to predict that any soil compaction would occur, even at high axle loads.

The measured soil stresses were generally higher than the stresses calculated with the SOCOMO model. Neither the application of a parabolic surface load distribution nor an increased concentration factor could account for this difference. This was probably because the stress distribution in a very dry and strongly structured soil is different from the stress distribution in more homogeneous soils.  相似文献   


5.
Subsoil compaction is a severe problem mainly because its effects have been found to be long-lasting and difficult to correct. It is better to avoid subsoil compaction than to rely on alleviating the compacted structure afterwards. Before recommendations to avoid subsoil compaction can be given, the key variables and processes involved in the machinery–subsoil system must be known and understood. Field traffic-induced subsoil compaction is discussed to determine the variables important to the prevention of the compaction capability of running gear. Likewise, technical choices to minimise the risk of subsoil compaction are reviewed. According to analytical solutions and experimental results the stress in the soil under a loaded wheel decreases with depth. The risk of subsoil compaction is high when the exerted stresses are higher than the bearing capacity of the subsoil. Soil wetness decreases the bearing capacity of soil. The most serious sources of subsoil compaction are ploughing in the furrow and heavy wheel loads applied at high pressure in soft conditions. To prevent (sub)soil compaction, the machines and equipment used on the field in critical conditions should be adjusted to actual strength of the subsoil by controlling wheel/track loads and using low tyre inflation pressures. Recommendations based on quantitative guidelines for machine/soil interactions should be available for different wheel load/ground pressure combinations and soil conditions.  相似文献   

6.
Subsoil compaction is a major problem in modern agriculture caused by the intensification of agricultural production and the increase in weight of agricultural machinery. Compaction in the subsoil is highly persistent and leads to deterioration of soil functions. Wheel load‐carrying capacity (WLCC) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low‐pressure top tyres) and for soil under different tillage and cropping systems (mouldboard ploughing, direct drilling, permanent grassland), and the computed WLCC was compared with real wheel loads to obtain the number of trafficable days (NTD) for various agricultural machines. Wheel load‐carrying capacity was higher for the top than the standard tyres, demonstrating the potential of tyre equipment in reducing compaction risks. The NTD varied between years and generally decreased with increasing wheel load of the machinery. The WLCC simulations presented here provide a useful and easily interpreted tool to guide the avoidance of soil compaction.  相似文献   

7.
The spectacular increase in the weight of self-propelled harvesters since the early 1980s also applies to trailed implements such as slurry spreaders, compost spreaders, cutter-blowers and general farm trailers. With axle loads exceeding 10 tonnes/axle (tandem 20 tonnes, tridem 27 tonnes), risks of severe compaction can now be expected, not only in field crops but also in grassland. Calculation tables for accurately evaluating contact surfaces of transport tyre, given their properties, load and inflation pressure, are insufficient at the present time. Equations for traction tyres are not suitable for trailer tyres.To overcome this deficiency, contact areas in the field were recorded on 19 sites, from soft to hard surfaces, using 24 different trailer tyres, with varying loads and inflation pressures. The regression calculations for evaluating the contact area apply to a total of 143 measurements.The dimensions of the tyre (width × unladen diameter), the load on the wheel and the inflation pressure are all highly significant variables for evaluation of the soil contact area. Considering the average residual standard deviation for each regression calculation, the best approximations are achieved by taking into account the tyre structure (cross-ply and radial), the width of tyre for cross-ply tyres and the type of tyre, in the case of a radial tyres (low profile or terra profile).Moreover, contrary to expectations, observations show that with low levels of load, reducing inflation pressure can also reduce the contact area.As regards soil hardness, observations show that there is no direct link between a hard soil and a reduced contact area; this relationship does not appear to be linear. The calculations are considered to be reliable on semi-firm to firm soil, frequently found on temporary grassland or natural grassland (penetration resistance 6.5–25.0 MPa).  相似文献   

8.
履带式行走机构压实作用下土壤应力分布均匀性分析   总被引:1,自引:1,他引:1  
履带式行走机构因具有较小的接地压力而被逐渐应用在大型农业车辆上,以减小对土壤的压实。然而由于履带下应力分布的不均匀,导致农业车辆对土壤的最大应力并未有效减小,对土壤较长的压力作用时间反而增加了土壤被压实的风险。应力分布的不均匀还会造成履带沉陷量的增大,降低车辆在软土地面的通过性能。为了研究履带式行走机构压实作用下土壤内的应力分布规律以及如何提高应力分布的均匀性,以缓解履带车辆对土壤压实作用、提高履带车辆软地通过能力,该文采用侧断面水平钻孔埋设压力传感器的方法,测得了履带式行走机构压实作用下履带中心线横截面内0.35 m深度土壤内沿履带长度方向上的垂直及水平应力分布;同时研究了履带张紧力大小对应力分布均匀性的影响。结果表明,履带式行走机构下的垂直应力在各负重轮的轴线处呈现一个应力峰值;水平应力在各负重轮轴线的前、后方分别呈现一个应力峰值,且最小应力在轴线处。各负重轮下的应力峰值大小不同。最大垂直应力出现在履带式行走机构后端的导向轮处;最大水平应力出现在后支重轮与导向轮之间。适当减小履带张紧力能够提高垂直及水平应力分布的均匀性。履带张紧力由1.8×10~4k Pa减小至1.6×10~4k Pa时,履带下的最大垂直及水平应力分别减小了约37.3%和21.7%;平均最大垂直及水平应力分别减小了约26.4%和20.4%。研究结果可为履带式行走机构结构的优化提供理论依据,以期提高履带下应力分布的均匀性。  相似文献   

9.
Due to its persistence, subsoil compaction should be avoided, which can be done by setting stress limits depending on the strength of the soil. Such limits must take into account soil moisture status at the time of traffic. The objective of the work presented here was to measure soil water changes during the growing period, use the data to calibrate a soil water model and simulate the soil susceptibility to compaction using meteorological data for a 25-year period. Measurements of soil water content were made in sugarbeet (Beta vulgaris L.) from sowing until harvest in 1997 on two sites classified as Eutric Cambisols in southern Sweden. Sampling was carried out at 2-week intervals in 0.1 m layers down to 1 m depth, together with measurements of root growth and crop development. Precompression stress of the soil at 0.3, 0.5 and 0.7 m depth was determined from uniaxial compression tests at water tensions of 6, 30, 60 and 150 kPa and adjusted as a logarithmic function of the soil water tension. Soil water content was simulated by the SOIL model for the years 1963–1988. Risk calculations were made for a wheel load of 8 t and a ground pressure of 220 kPa, corresponding to a fully loaded six-row sugarbeet harvester. Subsoil compaction was expected to occur when the major principal stress was higher than the precompression stress. The subsoil water content was very low in late summer, but increased during the autumn. At the end of August, there was practically no plant available water down to 1 m depth. There was in general good agreement between measured and simulated values of soil water content for the subsoil, but not for the topsoil. In the 25-year simulations, the compaction risk at 50 cm depth was estimated to increase from around 25% to nearly 100% between September and late November, which is the period when the sugarbeet are harvested. The types of simulation presented here may be a very useful tool for practical agriculture as well as for society, in giving recommendations as to how subsoil compaction should be avoided.  相似文献   

10.
In a field experiment, a sandy loam was subjected to single passes with a sugar beet harvester at two different soil water potentials. Different hopper fillings resulted in ground contact pressures of 130 kPa (partial load) and 160 kPa (full load) underneath the tyre. Bulk density, macroporosity (equivalent pore radius >100 μm), penetrometer resistance, air permeability and pre-consolidation pressure were measured within and next to the wheel tracks at depths of 0.12–0.17, 0.32–0.37 and 0.52–0.57 m. Furthermore, the soil structure at two horizons (Ahp 7–24 cm, B(C) 24–38 cm) was visually assessed and classified.

The moist plot responded to a wheel load of 11.23 mg (160 kPa) with an increase in bulk density and pre-consolidation pressure as well as with a decrease in air permeability and macroporosity at a depth of 0.12–0.17 m. With a wheel load of 7.47 mg (130 kPa) on the moist plot and with both wheel load levels on the dry plot, only slight changes of the soil structure were detected. At a depth of 0.32–0.37 and 0.52–0.57 m, the measurements did not indicate any compaction. An ANOVA indicates that the factor “soil water potential” and the factor “wheel load” significantly influence the bulk density at a depth of 0.12–0.17 m. No interactions occurred between these two factors. The wheel traffic on the test plot had no effect on the yield of winter wheat planted after the experimental treatment.

Bulk density, macroporosity and pre-consolidation pressure proved to be sensitive to detect compaction because they varied only slightly and are easy to measure. In contrast, the standard deviation of air permeability is large. The soil structure determined visually in the field confirms the values measured in the laboratory. The results of the penetrometer resistance measurements were not explainable.  相似文献   


11.
轮式和履带式车辆行走对农田土壤的压实作用分析   总被引:3,自引:3,他引:0  
由履带式行走机构代替轮胎被认为是减缓大型农业车辆对土壤压实的有效手段之一。与轮胎相比,履带具有更大的接地面积,能够有效减小车辆对土壤的平均压力。然而履带与土壤接触面间的应力分布极不均匀,应力主要集中在各承重轮下方,履带减缓土壤压实的能力是目前有待研究的问题。该研究通过在土壤内埋设压力传感器,测试比较了相近载质量的轮胎和履带式车辆作用下,0.15和0.35 m深度土壤内的最大垂直及水平应力,同时研究了车辆行驶速度对土壤内垂直及水平应力大小的影响。基于土壤压实分析模型计算了轮胎和履带压实的0.1~0.7m深度土壤内的最大垂直及水平应力分布。通过对0.15和0.35 m深度的土样进行室内测试,比较了轮胎和履带式车辆压实对土壤透气率、先期固结压力及干容重大小的影响。结果表明,履带相比较于轮胎,能够减小土壤内的垂直及水平应力,但垂直应力的减小量比水平应力大;轮胎对0.15和0.35m深度土壤作用的平均最大垂直应力分别约为履带的2.2及2.0倍,而平均最大水平应力仅分别约为履带的1.2及1.1倍。轮胎作用下的最大垂直及水平应力在表层土壤内明显大于履带,但两者的应力差值随着土壤深度的增加逐渐减小,分别在0.7和0.4 m深度时无明显差别。轮胎和履带压实作用下,0.15和0.35 m深度土壤内的垂直及水平应力均随车辆行驶速度的增加而减小,履带作用下的应力减小速度大于轮胎。履带作用下0.15和0.35 m深度内土壤的透气率均明显小于轮胎,但土壤的先期固结压力及干容重无显著区别。研究结果为可为农业车辆行走机构的选择及使用提供参考。  相似文献   

12.
The long-term effects of high axle load traffic on soil structure were investigated in three field experiments. Two of the experiments were located on fine-textured mineral soils (Vertic Cambisol). The clay soil had 48 g clay (particle size less than 2 μm) per 100 g in the topsoil and 65 g per 100 g in the subsoil, and the loam soil had clay contents of 30 g and 42 g per 100 g in the topsoil and subsoil, respectively. One experiment was located on an organic soil (Mollic Gleysol) consisting of well-decomposed sedge peat mixed with clay from 0.2 to 0.4–0.5 m depth, and underlain by gythia (organic soil with high clay content). In the autumn of 1981, one pass and four repeated passes with a heavy tractor-trailer combination compacted the soils to 0.4–0.5 m depth. The trailer tandem axle load was 19 Mg on the clay and 16 Mg on the other soils.

For 9 years after the experimental traffic, the main crops grown were spring cereals. During this time, the maximum axle load applied during field operations was 5 Mg and the maximum tyre inflation pressure was 150 kPa. The clay and loam froze to 0.5 m depth for 6 and 2 years, respectively. During several growing seasons all three soils dried and cracked. In the ninth year after the loading, soil penetrometer resistance, saturated hydraulic conductivity (Ksat), macroporosity and number and area of cylindrical biopores were measured and the visual structure of the soils examined.

Compaction in the plough layer was alleviated by ploughing and natural processes, whereas in the subsoil the effects of the compaction were still measurable, in all experiments, in the ninth year after the high axle load traffic. In the clay soil in the 0.3–0.5 m layer and in the organic soil in the 0.28–0.4 m layer, the penetrometer resistance was 22–26% greater and the soil structure more massive in the plots compacted with four passes than in the control plots. In the 0.4–0.55 m layer in all soils, the loading with four passes decreased Ksat by 60–98% and macroporosity (diameter greater than 300 μm) by 37–70%. In the fine-textured mineral subsoils, cylindrical biopores were found in all treatments. The trend of the results was, however, for biopores to be fewer in compacted than in control plots.  相似文献   


13.
Heavy sugarbeet harvesters may compact subsoil. But it is very difficult to study this by field experiments that resemble agricultural practice. Therefore, an analysis was made by a finite element method (FEM) for a relevant calcaric fluvial soil profile, the mechanical properties of which were largely known. Measuring data of this Lobith loam soil includes preconsolidation stress, compression index and swelling index, all as a function of depth. Using these three types of soil parameters calculations have been done for tyre sizes, inflation pressures and wheel loads that occur with heaviest sugarbeet harvesters available on the European market in 1999. Because no values on soil cohesion were available, the calculations were done for several cohesion levels. The results include the detection of regions with Mohr–Coulomb plasticity and regions with cap plasticity (compaction hardening). For the soil studied—a typical soil strength profile for arable land with ploughpan in the Netherlands in the autumn of 1977—all studied combinations of wheel load and inflation pressure did not induce compaction in and below the ploughpan. The size of the region with Mohr–Coulomb plasticity decreased with increasing cohesion. It appeared from a sensitivity analysis that, although soil modelling may use a great number of soil parameters, the most important parameters seem to be: preconsolidation stress and cohesion. There is an urgent need for data of these parameters that are measured on a great range of subsoils and subsoil conditions.  相似文献   

14.
Short-term effects of high axle load traffic on soil total porosity and pore size distribution were examined in field experiments on a clay (Vertic Cambisol) and an organic soil (Mollic Gleysol) for 3 years after the heavy loading. The clay soil had 48 g clay (particle size less than 2 μm) per 100 g in the topsoil and 65 g per 100 g in the subsoil. The organic soil consisted of well-decomposed sedge peat mixed with clay below 0.2 m depth down to 0.4–0.5 m and was underlain by gythia (organic soil with high clay content). The experimental traffic was applied with a tractor-trailer combination in autumn 1981. The trailer tandem axle load was 19 Mg on the clay and 16 Mg on the organic soil. There were three treatments: one pass with the heavy axle vehicle, with wheel tracks completely covering the plot area, four repeated passes in the same direction, and a control treatment without experimental traffic. During loading, the clay was nearly at field capacity below 0.1 m depth. The organic soil was wetter than field capacity.

One and four passes with the high axle load compacted both soils to a depth of 0.4–0.5 m. On the clay soil the total porosity was reduced by the heavy loading nearly as much as macroporosity (diameter over 30 μm) to 0.5 m depth. On the organic soil, macroporosity was reduced and microporosity (under 30 μm) increased in the 0.2–0.5 m layer by the heavy loading. Total porosity did not reveal the effects of compaction on the organic soil. The compaction of the clay below 0.1 m persisted for 3 years following the treatment despite annual ploughing to a depth of 0.2 m, cropping and deep cracking and freezing. Likewise, in the subsoil (below 0.2 m) of the organic soil, differences in pore size distribution persisted for a period of at least 3 years after the heavy loading.  相似文献   


15.
Soil compaction is one of the most important factors responsible for soil physical degradation. Soil compaction models are important tools for controlling traffic-induced soil compaction in agriculture. A two-dimensional model for calculation of soil stresses and soil compaction due to agricultural field traffic is presented. It is written as a spreadsheet that is easy to use and therefore intended for use not only by experts in soil mechanics, but also by e.g. agricultural advisers. The model allows for a realistic prediction of the contact area and the stress distribution in the contact area from readily available tyre parameters. It is possible to simulate the passage of several machines, including e.g. tractors with dual wheels and trailers with tandem wheels. The model is based on analytical equations for stress propagation in soil. The load is applied incrementally, thus keeping the strains small for each increment. Several stress–strain relationships describing the compressive behaviour of agricultural soils are incorporated. Mechanical properties of soil can be estimated by means of pedo-transfer functions. The model includes two options for calculation of vertical displacement and rut depth, either from volumetric strains only or from both volumetric and shear strains. We show in examples that the model provides satisfactory predictions of stress propagation and changes in bulk density. However, computation results of soil deformation strongly depend on soil mechanical properties that are labour-intensive to measure and difficult to estimate and thus not readily available. Therefore, prediction of deformation might not be easily handled in practice. The model presented is called SoilFlex, because it is a soil compaction model that is flexible in terms of the model inputs, the constitutive equations describing the stress–strain relationships and the model outputs.  相似文献   

16.
A computerized empirical model for estimating the crop yield losses caused by machinery-induced soil compaction and the value of various countermeasures is presented, along with some examples of estimations made with it. The model is based mainly on results of Swedish field trials, and predicts the effects of compaction in a tillage system that includes mouldboard ploughing. It is designed for use at farm level and predicts four categories of effects: (1) Effects of recompaction after ploughing. The calculations are based on the wheel track distribution in the field and the relationship between “degree of compactness” of the plough layer and crop yield. (2) Effects of plough layer compaction persisting after ploughing. Crop yield losses are estimated from traffic intensity in Mgkm ha−1 (Mgkm = the product of the weight of a machine and the distance driven), soil moisture content, tyre inflation pressure and clay content. (3) Effects of subsoil compaction. The calculations are similar to those presented under point (2), but only vehicles with high axle load are considered. These effects are the most persistent. (4) Effects of traffic in ley crops. The estimations are based on wheel track distribution, soil moisture content and several other factors.  相似文献   

17.
This study highlights the previously expressed concerns of soil researchers who have indicated that compaction pressures or stresses in the deeper layers of soil are determined by the amount of surface load. Modifications of Boussinesq theory by Froelich and further modification of Froelich's equations by Soehne were used to predict and develop graphical relationships for maximum allowable loads and/or mean surface contact pressures beneath loaded farm machinery tyres. Vertical compressive stresses at different subsoil depths were calculated and design loads for a currently used high flotation tyre were examined for comparative purposes. For highly compactible soils the results indicate that mean surface contact pressures should not exceed maximum allowable stresses in the subsoil for individual wheel loads which exceed approximately 30 kN. Thus, it appears that future designs based upon limited ground contact pressures are essential. This will require limitations on vehicle wheel loads and the use of more tyres and axles on heavy equipment.  相似文献   

18.
Methods are described for measuring the changes in the horizontal and vertical distribution of packing state and cone resistance following the passage of wheels and tracks over prepared beds of soil. A gamma-ray transmission system was employed with automatically controlled scanning in a 2 × 2 cm grid in soil sections of 1.08 m length by 0.3 m depth, using a scintillator/photomultiplier detector assembly with stabilized pulse-height analysis and magnetic tape recording. Changes in cone resistance were measured in a 2 cm (vertical) by JO cm (horizontal) grid in a section 1.4 m length by 0.5 m depth using an electrically driven penetrometer with load and displacement simultaneously recorded on an XY plotter and magnetic tape. Results were analysed and displayed graphically by computer with packing state expressed by a number of optional properties (dry bulk density, total porosity, air-filled porosity, void ratio, or specific volume). Pronounced differences in packing state and soil strength were observed as a result of the passage of a two-wheel-drive tractor, with and without cage wheels, and a crawler tractor. Adding a cage wheel decreased slightly the compaction below the rubber tyre, but formed a partially compacted zone below the cage wheel. Increases of dry bulk density and soil strength were recorded below the crawler track but the values for these properties did not reach the maximum values found below the rubber tyre.  相似文献   

19.
“Close-to-nature forest stands” are one central key in the project “Future oriented Forest Management” financially supported by the German Ministry for Science and Research (BMBF). The determination of ecological as well as economical consequences of mechanized harvesting procedures during the transformation from pure spruce stands to close-to-nature mixed forest stands is one part of the “Southern Black Forest research cooperation”. Mechanical operations of several typical forest harvesting vehicles were analysed to examine the actual soil stresses and displacements in soil profiles and to reveal the changes in soil physical properties of the forest soils. Soil compaction stresses were determined by Stress State Transducer (SST) and displacement transducer system (DTS) at two depths: 20 and 40 cm. Complete harvesting and trunk logging processes accomplished during brief 9-min operations were observed at time resolutions of 20 readings per second. Maximum vertical stresses for all experiments always exceeded 200 kPa and at soil depths of 20 cm for some vehicles and sequences of harvesting operations approached ≥500 kPa. To evaluate the impacts of soil stresses on soil structure, internal soil strengths were determined by measuring precompression stresses. Precompression stress values of forest soils at the field sites ranged from 20 to 50 kPa at soil depths of 20 cm depth and from 25 to 60 kPa at soil depths of 40 cm, at a pore water pressure of −60 hPa. Data obtained for these measured soil stresses and their natural bearing capacities proved that sustainable wheeling is impossible, irrespective of the vehicle type and the working process. Re-occurring top and subsoil compaction, increases in precompression stress values in the various soil horizons, deep rut depths, vertical and horizontal soil displacements associated with shearing stresses, all affected the mechanical strengths of forest soils. In order to sustain naturally “unwheeled” soil areas with minimal compaction, it is recommended that smaller machines, having less mass, be used to complete forest harvesting in order to prevent or at least to maintain currently minimal-compacted forest soils. Additionally, if larger machines are required, permanent wheel and skid tracks must be established with the goal of their maximum usefulness for future forest operations. A first step towards accomplishing these permanent pathways requires comprehensive planning with the Federal State Baden-Württemberg. The new guideline for final opening with skid tracks (Landesforstverwaltung Baden-Württemberg, 2003) proposes a permanent skid track system with a width of 20–40 m.  相似文献   

20.
Modern systems of crop production are tending to increase both the number of passes and the loads carried on the wheels of agricultural vehicles. Therefore, compaction problems may arise, especially in seedbed preparation, spraying and harvesting operations. Because of the difficulty and cost of subsoil cultivation it appears likely that more importance will be attached to the avoidance of subsoil compaction since there is widespread evidence that such compaction may persist for many years even when deep freezing is a regular occurrence in winter.Compaction from wheel traffic has often been found to influence adversely all stages of crop growth, responses being particularly marked in the early phases of establishment. However, in some situations crop responses to compaction are beneficial. In both cases crop responses show marked interaction with weather conditions, particularly water status, during the growing period of the crop.Opportunities exist for reducing the compaction from vehicles. Apart from the combination of field operations to permit fewer wheel passes there would be additional benefits from reductions in load and tyre inflation pressure and by confining some or all traffic to pre-arranged strips for use solely as unplanted wheel tracks (“controlled traffic”). Changes in the demand for traction and in the amounts of applied sprays, amendments and fertilisers may permit a radical departure from current tractor design which could greatly reduce the incidence of compaction problems.The financial disadvantages attributable to the incidence of compaction in crop production are increasingly recognised but quantitative information is rarely sufficient to permit a cost/benefit analysis to be undertaken for those techniques which allow compaction to be avoided rather than ameliorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号