首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonies of the fungus Mortierella isabellina (Oudem) were grazed by the collembolan Onychiurus armatus (Tullb.) for short periods interrupted by incubation without grazing in laboratory experiments. The grazed fungus had a lower respiration than ungrazed when Collembola were present on the mycelium. Fungal respiration was significantly increased with grazing when Collembola were periodically removed from the mycelium. Metal contamination of the substrate increased fungal respiration, regardless of grazing. Length of fungal mycelium was significantly greater in a natural soil in the presence of Collembola but reduced in a metal-polluted soil. Factors that may determine the impact of grazing on fungi are discussed.  相似文献   

2.
Laboratory microcosms containing litter from three tussock grasslands were used to assess the impact of grazing by a collembolan, Onychiurus procampatus, on the abundance, nutrient release, and respiration of the saprotrophic fungus, Phoma exigua. The fungal biomass and respiration rate were significantly reduced only when Collembola were present in excess of mean field densities but perhaps more typical of spatial aggregations in the soil. A high efficiency of nutrient immobilization by P. exigua was demonstrated but nutrient release was not significantly affected by the fauna. Problems associated with the use of microcosms in the simulation of field conditions are discussed.  相似文献   

3.
The fungi Mycena galopus (Pers. ex Fr.) Kummer and Marasmius androsaceus (L. ex Fr.) Fr. produced over 99% of the fruit bodies on a site under Picea sitchensis Carr. In the laboratory M. androsaceus colonized litter from both the L and F1 horizons more than twice as fast as M. galopus, but in the field its distribution was restricted to the L horizon whereas M. galopus occurred in the F1 horizon. The collembolan Onychiurus latus Gisin, the most abundant mycophagous arthropod at the field site which consistently had basidiomycete hyphae in its gut, was found throughout the autumn in the litter horizons in densities up to 600 m?2. This collembolan showed a marked preference for the mycelium of M. androsaceus rather than that of M. galopus in both laboratory and field tests. These results suggest that selective grazing by O. latus may be an important factor in determining the vertical distribution of these two fungi in the field.  相似文献   

4.
Summary Laboratory microcosms were used to study microbial populations and biomasses developing in fragmented litter of Pinus nigra Arnold var. nigra (A. et G.). Direct observations (fungal standing crop and fluorescein-stainable mycelia), litter enzyme analyses (cellulase and dehydrogenase), and measurements by physiological methods (microbial CO2 production and total microbial, fungal, and bacterial viable biomasses) were made at 3-week intervals for 15 weeks. Most variables showed great changes during this period, which were ascribed to a rise in litter moisture content during the initial phase of the experiment, and to substrate depletion towards its final phase. The addition of the collembolan Tomocerus minor (Lubbock) for 1 week enhanced cellulase activities by 4%. When the animals were introduced after 6 weeks, the fungal standing crop was enhanced, and the percentage of fluorescein-stainable mycelia was reduced. Dehydrogenase activity was increased by grazing when the microbial population had been established for 9 weeks or longer. Eucaryotic and procaryotic substrate-induced respiration were positively correlated, which was explained by partial segregation of resources for the two groups. Litter cellulase and dehydrogenase activity showed correlations by other techniques, indicating their suitability as parameters for microbial activity in general, and for the collembolan grazing impact on microbial activity in particular.  相似文献   

5.
Fragmented (2–4 mm) and mechanically ground (0.1–0.2 mm) oak litter was inoculated with faeces of Oniscus asellus or Glomeris marginata and incubated in the laboratory. After 40 days microbial respiration rates were the same for both litter treatments. Woodlice or millipedes were then added in various numbers and CO2 evolution measured for a further 40 days.Microbial respiration in fragmented litter was initially increased to twice the control rates by four Oniscus and to 1.6 times control rates by six Glomeris but subsequently declined to rates slightly above controls. But in treatments with ten Oniscus respiration was depressed below the controls after 20 days. Cumulative CO2 measurements showed that microbial respiration was inhibited by grazing pressures higher than optimum values.Animals feeding on previously-ground litter produced a similar, but reduced response, suggesting that litter comminution by the animals was the main factor contributing to the enhancement of C mineralization.Disturbance of fragmented litter, either by Oniscus or by mechanical means, produced no significant changes in respiration. In ground-litter cultures there was a small enhancement of CO2 evolution for the first 10 days.Fungal standing crop was reduced to one-third of controls by Oniscus; the effects being particularly pronounced during the first 3 days of the experiment. Bacterial standing crop increased to a maximum of 10 times control levels.  相似文献   

6.
Soil invertebrates are important in nutrient cycling in soils, but the degree to which mesofauna such as Collembola are responsible for the direct movement of carbon (C) from the litter layer into soil has not yet been ascertained. We used naturally occurring stable C isotopic differences between a C4 soil and alder leaves (C3) to examine the effect of the collembolan Folsomia candida on C translocation into soil in laboratory microcosms. Collembolan numbers greatly increased in the presence of alder, but despite large collembolan populations there were no changes in decomposition rate (measured as litter mass loss, cumulative respired CO2 and alder C:N ratios). Small changes in the δ13C values of bulk soil organic matter were detected, but could not be assigned to collembolan activity. However, mean δ13C values of soil microbial phospholipid fatty acids (PLFAs) were significantly lower in the presence of alder and Collembola together, demonstrating that collembolan activities resulted in greater availability of litter-derived C to the soil microbial community. Additionally, the presence of Collembola resulted in the translocation of alder-derived compounds (chlorophyll and its breakdown product pheophytin) into soil, demonstrating that Collembola modify soil organic matter at the molecular level. These results are consistent with deposition of collembolan faeces in underlying soil and demonstrate that despite their small size, Collembola contribute directly to C transport in the litter-soil environment.  相似文献   

7.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   

8.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

9.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g−1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g−1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g−1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g−1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

10.
The hypothesis that selective grazing by Onychiurus latus Gisin altered the outcome of competition between two basidiomycetes, Mycena galopus (Pers. ex Fr.) Kummer and Marasmius androsaceus (L. ex Fr.) Fr. on Sitka spruce litter was tested. Without grazing M. androsaceus had the higher colonizing ability of litter in the laboratory whereas with grazing the position was reversed. Field exclusion experiments also suggested that higher densities of O. latus resulted in a reduction in the activity of M. androsaceus and an increase in that of M. galopus and vice versa. It is suggested that selective grazing may be an important factor determining the field distribution of these fungi, since M. androsaceus, the preferred food source, was restricted to the L litter horizon where the density of O. latus was not high enough to alter the outcome of competition whereas M. galopus predominated in the F1 horizon. The rate of decomposition of Sitka spruce litter in the laboratory caused by M. androsaceus (17% dry weight loss over 6 months at 11°C) increased by 4–14% in the presence of grazing by O. latus whereas that of M. galopus (11.5%) decreased by 12–16%.  相似文献   

11.
We hypothesized that the combined effect of rising levels of atmospheric carbon dioxide (CO2) and increasing use of genetically modified (GM) crops in agriculture may affect soil food-webs. So we designed a study for the assessment of the effects of elevated CO2 (eCO2) concentrations and GM barley on a soil-mesofauna community employing a 2nd tier mesocosm test system. The GM barley, Hordeum vulgare cv. Golden Promise, had a modified content of amino acids and it was compared with three non-GM barley cultivated varieties including the isogenic line. Our mesocosm experiment was conducted in a greenhouse at ambient (aCO2) and eCO2 (+80 ppm) levels and included a multispecies assemblage of Collembola, Acari and Enchytraeidae with either a GM or conventional spring barley varieties. To detect food-web changes we added dried maize leaves naturally enriched in δ13C and δ15N relative to the soil substrate. Soil, plants and animals were collected after five and eleven weeks. We found that the eCO2 concentration did not affect the plant biomass, but the predatory mite and two collembolan species showed significantly lower abundances at eCO2. The densities of three collembolan species (Folsomia fimetaria, Proisotoma minuta and juveniles of Mesaphorura macrochaeta) was significantly lower in the GM treatment compared to some of the non-GM varieties. F. fimetaria was less abundant in presence of GM barley compared to the cultivated barley variety “Netto” at both CO2 levels, while the density of P. minuta was significantly reduced with the GM barley compared to variety “Netto” at aCO2 and the isogenic variety at eCO2. Maize litter acted as a food source for the community, as it was revealed by δ13C values in microarthropods. Microarthropod δ13C decreased over time, which indicates a diet change of the species towards carbon derived from barley, due to maize litter decomposition. The industrially produced CO2 gas also had a role as an isotopic marker, as the different δ13C values were reflected in the barley and in the collembolan species. GM barley did not affect δ13C and δ15N values of soil animals indicating that the overall trophic structure of the mesofauna community was not changed compared to the non-GM cultivated varieties. The mesocosm methodology integrating stable isotope analysis demonstrates the potential of the multi-species mesocosm as a tool to detect and track changes in the soil trophic interactions in response to environmental pressures, climate and novel agricultural crops.  相似文献   

12.
The rationale of the study was to investigate microbial activity in different soil horizons in European forests. Hence, activities of chitinase and cellulase, microbial biomass carbon (Cmic) and basal respiration were measured in litter, fragmentation, humus and mineral soil layers collected several times from various beech and spruce forests. Sites were selected to form a gradient in N availability. Analyses were also performed on beech litter from a litterbag transplant experiment. Furthermore, microbiological parameters were measured in horizons of beech and spruce chronosequence sites with different stand age in order to investigate the influence of forest rotation, and hence changes in soil organic matter (SOM) dynamics, on microbial activity. Finally in horizons of one beech forest, the seasonal variation of selected microbiological parameters was measured more intensively. β-Glucosaminidase and cellobiohydrolase activities were measured using fluorogenic 4-methylumbelliferyl substrates to estimate chitinase and cellulase activities, respectively. On a spatial scale, chitinase and cellulase activities, Cmic determined by substrate induced respiration, and basal respiration ranged from 144 to 1924 and 6-177 nmol 4-MU g−1 org-C h−1, 8-48 mg C g−1 org-C and 11-149 μg CO2-C g−1 org-C h−1, respectively; in general values were significantly lower in layers of humus and mineral soil than of litter. Chitinase activity, Cmic and basal respiration from humus and mineral soil layers, together, correlated positively, while none correlated with cellulase activity. Similarly in the litter layer, no correlations were found between the microbiological parameters. On a seasonal scale, a time lag between a burst in basal respiration rate and activities of both enzymes were observed. In general, activities of cellulase and chitinase, Cmic and basal respiration, did not change with stand age, except in the humus layer in the spruce chronosequence, where Cmic decreased with stand age. In the litter layer, cellulase activity was significantly and positively related to the C:N ratio, while only a tendency for chitinase activity was shown, indicating that enzyme activities decreased with increasing N availability. In accordance, the enzyme activities and Cmic decreased significantly with increasing chronic N deposition in the humus layer, while basal respiration only tended to decrease with increasing N deposition. In contrast, enzyme activities in beech litter from litterbags after 2 years of incubation were generally higher at sites with higher N deposition. The results show different layer-specific responses of enzyme activities to changes in N availability, indicating different impacts of N availability on decomposition of SOM and stage of litter decomposition.  相似文献   

13.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g?1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g?1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g?1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g?1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

14.
《Applied soil ecology》2003,22(3):271-281
Simple structures aimed at regulating the amount of rain water dropping into the forest floor were installed to determine the impact of rainfall on leaf litter mass loss, respiration rates, microbial biomass C (Cmic) and metabolic quotient (qCO2). The rainfall manipulation treatments were (I) fully covered (100% reduction); (II) partially covered (50% reduction) and (III) control (fully exposed). Using the litterbag technique, the mass losses of covered Quercus serrata, Quercus acutissima, Acer rufinerve and Pinus densiflora leaf litter were reduced (P<0.01) by 19–26% compared to fully exposed litter. A positive linear relationship (r=0.90; P<0.0001) between litter Cmic and mass loss was noted across all litter types and covering regimes. The mass losses in fully exposed litter were attributed to the leaching effect of rainfall coupled with the synergistic actions of microbes and soil fauna, as suggested by their respiration and microbial biomass. In the covered litter, Cmic was generally reduced (P<0.01) while fully and partially exposed litter were comparable (P>0.05). On the other hand, respiration rates and qCO2 were variable and showed no consistent treatment effect except for respiration rates at 3 months. Similarly, soil respiration rates and Cmic were not consistently affected by cover treatments. Evidently, the zero-rainfall condition negatively affected some biological processes in the litter layer but sporadically affected soil processes. The absence of rainfall, even if the soil moisture content was maintained, could affect organic matter turnover in the forest floor.  相似文献   

15.
Saprotrophic microorganisms in soils have traditionally been assumed to be carbon (C) limited, since additions of readily assimilable carbohydrates usually result in increased respiration. In many forest soils, however, rapid nitrogen (N) immobilization and increased microbial growth in response to N addition indicate N limitation. Here we test whether this apparent contradiction could be explained by changes in C allocation between microbial growth and respiration (i.e. changed C-use efficiency) under controlled conditions in laboratory microcosms. Respiration, mycelial production and needle mass loss were monitored after application of glucose or ammonium sulphate to Pinus sylvestris needles inoculated with the litter decomposer fungus Mycena epipterygia. Addition of ammonium resulted in a 32% increase in respiration, 31% increase in needle mass loss and increased mycelial production, indicating that both growth and activity of the fungus were N limited. In spite of N limitation, additions of glucose resulted in a 19% increase in respiration but had no effect on mycelial production and led to a 17% decrease in needle mass loss, indicating a reduced C-use efficiency of the fungus. The capacity of individual fungi to adapt their C-use efficiency to C availability implies that additions of labile C could increase respiration even under N-limited conditions.  相似文献   

16.
Summary The functional roles of the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum during the decomposition of Pinus nigra needles were studied in mesocosms filled with two different types of F1 litter, obtained from two different forest soils. The effects of the animals on the availability of K+, Ca2+, NO inf3 sup- , NH inf4 sup+ , and PO inf4 sup3- and on the respiration, dehydrogenase, and cellulase activity of microorganisms were measured over one growing season. The animals were introduced into the F1 litter in three densities. The most important animal effect was a buffering effect, in that addition of the animals increased nutrient availability and microbial activity where the corresponding values in control mesocosms without animals were low, and decreased the nutrient availability and microbial activity where control values were high. This effect occurred for both species and was most evident in the substrate with the highest temporal fluctuations. The effects on nutrient availability are attributed to an animal effect on the activity of and successional stage reached the microbial community, with NH inf4 sup+ availability seen as the most important factor. The concept of functional groups in relation to these animal effects is discussed.  相似文献   

17.
Intensive studies reveal that there is much uncertainty regarding how ecosystem and soil respiration will respond to warming and grazing, especially in the alpine meadow ecosystem. We conducted a first of its kind field-manipulative warming and grazing experiment in an alpine meadow on the Tibetan plateau to determine the effects of warming and grazing on ecosystem and soil respiration for 3-years, from 2006 to 2008. Generally, warming and grazing did not affect seasonal average ecosystem respiration (Re), and there was no interaction between grazing and warming. However, they significantly affected the Re early in the growing season and by the end of the growing season. Warming significantly increased seasonal average soil respiration (Rs) by 9.2%, whereas the difference mainly resulted from data gathered early in the growing season, before June 2007. Positive correlations between soil temperature and Re and Rs were observed, and soil temperature explained 63-83% of seasonal Re variations during the 3-year study and 19-34% of Rs variations in 2007. Seasonal Re in 2008 and Rs in 2007 were slightly negatively correlated to soil moisture, but interannual average Re decreased with a decrease in precipitation for all treatments. Warming and grazing reduced the Q10 value of Re in 2007 and 2008 but did not affect the Q10 value of Rs. The Q10 values of Rs were much lower than the Q10 values of Re in 2007. These results suggest that grazing may reduce the temperature sensitivity of Re and that Re was mainly controlled by soil temperature rather than moisture which varied with timescale in the alpine meadow.  相似文献   

18.
Changes in soil caused by drought and wildfire in a Dipterocarp rainforest in Sabah, Malaysia were assessed by phosphorus fractionation, extractable nitrogen and nutrient limited respiration kinetics (after addition of glucose+N or P). Fire increased the concentration of total phosphorus (P) in the litter layer (per ha and per dry soil) by raising the 0.2 M NaOH extractable-P. In the soil organic layer, membrane exchangeable P was reduced by fire while 1.0 M HCl extractable-P, and 0.5 M NaHCO3 extractable-P increased. Microbially available P increased after the fire and was most closely related to NaOH extractable-P that has been considered available to plants only over long time-scales. Total nitrogen (N) increased in the litter layer (per ha and per dry soil) due to post-fire litter fall, while the NO3 increased up to 10-fold down to the 10 cm mineral soil. In contrast, the microbially available N decreased by 50%. Basal respiration and substrate-induced respiration increased in the litter layer and decreased in the organic horizon (per dry soil and per organic matter). P limited microbial growth resulted in a slow and non-exponential increase in respiration, presumably reflecting the P-fixing nature of the soils, while N limitation resulted in a fast exponential increase. However, higher respiration rates were eventually achieved under P limitation than under N limitation.  相似文献   

19.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

20.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号