首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary Using microcosms containing decomposing Pinus nigra litter, the effects of introducing two species of soil arthropods, the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum, have been studied. The effects of these animals on microbial respiration, on dehydrogenase and cellulase activity, and on the concentration of exchangeable macronutrients (Ca2+, Mg2+, K+, NO inf3 sup- , NH inf4 sup+ , PO inf4 sup3- ) were measured. Both species enhanced microbial activity and the concentration of exchangeable nitrate, ammonium, and phosphate. Ca2+ and Mg2+ concentrations were lowered in the microcosms with animals. The differences between the two species were mainly quantitative, and it appears that the effect of isopods is direct, whereas the collembolans show direct and indirect effects. Positive effects of the presence of animals were found when microbial activities or concentrations of exchangeable nutrients in microcosms without animals were low; negative effects were found when they were relatively high. Thus, soil arthropods have a buffering role in soil processes. These results ae discussed against a background of a supposed succession of sugar fungi/bacteria to more slowly growing decomposing fungi.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

2.
The effects of radial O2 loss from roots on nitrification and NO inf3 sup- availability were studied. Plants of the flooding-resistant species Rumex palustris and the flooding-sensitive species Rumex thyrsiflorus were grown on drained and waterlogged soils with an initially high nitrifying capacity. Nitrate reductase activity in the plant leaves was used as an indicator of NO inf3 sup- availability to the plants. In a separate experiment these species were shown to have higher levels of nitrate reductase activity when NO inf3 sup- was added to the soils compared to when only NH inf4 sup+ was provided. In drained soils nitrification was maintained and both plant species showed relatively high nitrate reductase activities in their leaves. In the water-logged series planted with R. thyrsiflorus, nitrification was inhibited, NH inf4 sup+ accumulated, and the plants grew less well compared to those on drained soils. In contrast, waterlogged soils planted with R. palustris had a redox potential high enough for O2 to be continuously replenished. Furthermore, the nitrifying capacity of these latter soils was maintained at a high level. R. palustris grew well and NO inf3 sup- must have been available to the plant, since a high level of nitrate reductase activity was observed in the leaves.  相似文献   

3.
In a field study using soil mesocosms in an acid spruce forest soil we investigated the effects of mesofauna and macrofauna on microbial biomass, dissolved organic matter, and N cycling. Intact soil monoliths were taken from the ground, defaunated by deep-freezing, and wrapped in nets of various mesh-sizes to control re-immigration of different faunal size-classes. The monoliths were then replanted in the field. Three treatments of mesocosms were prepared: (1) with only microbiota, (2) microbiota and mesofauna, and (3) microbiota, mesofauna, and macrofauna (= complex fauna). After 8 months of exposure the mesocosms and the unmanipulated control plots (treatment 4) were destructively sampled. We estimated microbial biomass by substrate-induced respiration and the chloroform fumigation-extraction method. N cycling was measured by monitoring microbial N mineralization, the NH inf4 sup+ content, and selected amino acids and the activities of protease, urease, and deaminase. The results from the L/F layer showed that the pool of the microbial biomass was not changed by the activity of the mesofauna. However, the mesofauna and macrofauna together enhanced SIR. An increase in microbial N mineralization was only observed in treatment 3 (microbiota + complex fauna). Protease activity and NH inf4 sup+ content increased in treatments 2 (microbiota + mesofauna) and 3 (microbiota + complex fauna). The complex fauna induced a soil pH increase in treatment 3 as opposed to treatment 1 and the control. This increase was presumably due to excretory NH inf4 sup+ . Principal component analysis revealed that the complex fauna in treatment 3 caused a significantly higher N turnover per unit of microbial biomass.  相似文献   

4.
A pot experiment was conducted to compare the uptake and dry matter production potential of NH inf4 sup+ and NO inf3 sup- and to study the effect of Baythroid, a contact poison for several insect pests of agricultural crops, on growth and N uptake of maize (Zea mays L.). Nitrogen was applied as (15NH4)2SO4, K15NO3, or 15NH4NO3 and in one treatment Baythroid was combined with 15NH4NO3. Source of N had, in general, a nonsignificant effect on dry matter and N yield, but uptake of NO inf3 sup- was significantly higher than that of NH inf4 sup+ when both N sources were applied together. Substantial loss of N occurred from both the sources, with NH inf4 sup+ showing greater losses. Baythroid was found to have a significant positive effect on dry matter yield of both root and shoot; N yield also increased significantly. Uptake of N from both the applied and native sources increased significantly in the presence of Baythroid and a substantial added nitrogen interaction (ANI) was determined. The positive effect of Baythroid was attributed to: (1) a prolonged availability of NH inf4 sup+ due to inhibition of nitrification, (2) an increased availability of native soil N through enhanced mineralization, and (3) an enhanced root proliferation.  相似文献   

5.
Erythrina poeppigiana, a woody tropical plant, was inoculated with vesicular-arbuscular mycorrhizal (VAM) fungiGlomus etunicatum Becker and Gerdeman,G. mosseae Nicol. and Gerd. Gerdeman and Trappe, orG. intraradices Schenk and Smith. Growth, N uptake, and nutrition were evaluated in VAM-inoculated plants and controls fertilized with two levels (3 or 6 mM) of either NH inf4 sup+ -N or NO inf3 sup- -N. The response by the mycorrhizal plants to N fertilization, according to N source and/or level differed significantly from that of the control plants. In general, the growth of the mycorrhizal plants was similar to that of the non-mycorrhizal plants when N was provided as NH inf4 sup+ . When the N source was NO inf3 sup- the control plants grew significantly less than the VAM plants. Inoculation with VAM fungi gave yield increases of 255 and 268% forG. etunicatum-colonized plants, 201 and 164% forG. mosseae-colonized plants and 286 and 218% forG. intraradices-colonized plants fertilized with 3 and 6 mM NO inf3 sup- -N, respectively. The increased growth and acquisition of nutrients by plants fertilized with NO inf3 sup- -N and inoculated with VAM shows that VAM mycelium has a capacity for NO inf3 sup- absorption. The results also showed thatE. poeppigiana seedlings preferred NH inf4 sup+ as an N source.G. etunicatum was the most effective endophyte, not only increasing N, P, Ca, Mg, and Zn uptake in the presence of NO inf3 sup- fertilizer but also P and Mg in the presence of NH inf4 sup+ applications. From these results we conclude that VAM symbiosis affects N metabolism inE. poeppigiana plants and that this species can overcome limitations on the use of NO inf3 sup- -N by the mediation of VAM fungi.  相似文献   

6.
Summary A pot experiment in the greenhouse was conducted to compare the contribution of N derived from the atmosphere or from biological N2 fixation by Sesbania rostrata inoculated with Azorhizobium caulinodans, applied either to roots or to roots and stems (single or multiple stem inoculation). Two subsequent crops were grown for 50 days under flooded conditions. N derived from air was estimated by 15N dilution using 15N enrichment of soil NH inf4 sup+ -N and of Echinochloa crusgalli as the non-N2-fixing reference datum and compared with estimates obtained by the N-difference method. The first crop was grown to stabilize the 15N into the soil organic N fraction. The 15N enrichment of soil NH inf4 sup+ -N in the second crop declined slowly. The extractability ratio (15N enrichment of extractable soil N to 15N enrichment of total soil N) decreased from 4.8 to 4.1 50 days after planting. The enrichment of soil NH inf4 sup+ -N was comparable to that of E. crus-galli, resulting in similar estimates of N derived from air when either soil NH inf4 sup+ -N or enrichment of E. crus-galli was used as a non-fixing reference. The N-difference method did not always provide reliable estimates of N derived from air; percentages ranged from 75 to more than 80 by 50 days after planting in both crops and did not differ among treatments. The study demonstrates the potential of using 15N enrichment of soil NH inf4 sup+ -N as a non-N2-fixing reference for reliable BNF estimates of crops in lowland puddled soil.  相似文献   

7.
Summary Forest floor litter, duff, and underlying soils were assembled in laboratory microcosms representing pinyon, juniper, and interspace field conditions. Burning removed more than 95% of both N and C from the litter, with losses from the duff dependent on soil moisture conditions. No significant changes in total N or C were noted in the soil. Immediate increases were observed in soil NH inf4 sup+ , decreasing with depth and related to soil heating. The greatest increases were noted in both the pinyon and juniper soils that were dry at the time of the burn, with interspace soils exhibiting the least changes. Soil NH inf4 sup+ closely approximated the controls on day 90 after the burns in all treatments. Ninety days after the burn microbial biomass N was highest in the controls, followed by the wet and then the dry-burned soils, in both the pinyon and juniper microcosms. This was inversely related to the levels of accumulated NO inf3 sup- . Nitrifying bacteria populations were indirectly correlated to soil temperatures during the burn. Population levels 90 days after the burn showed increases in both the wet- and the dry-burn treatments, with those in the pinyon treatments exceeding those found in the nitial controls of pinyon soils.The use of trade and company names in this paper is for the benefit of the reader; such use does not constitute an official endorsement or approval of any service or product by the U.S. Department of Agriculture to the exclusion of others that may be suitable  相似文献   

8.
Summary Mineral N concentrations ranged from 133.1 to 167.8 g g-1 dry soil in fresh casts of the endogeic earthworm Pontoscolex corethrurus fed on an Amazonian Ultisol; this was approximately five times the concentration in non-ingested soil. Most of this N was in the form of NH inf4 sup+ . N also accumulated in microbial biomass, which increased from a control value of 10.5–11.3 to 67.5–74.1 g g-1 in fresh casts. During a 16-day incubation, part of the NH inf4 sup+ -N was nitrified and/or transferred to the microbial biomass. Total labile N (i.e., mineral+biomas N) decreased sharply at first (ca. 50% in the first 12 h), and then more slowly. The exact fate of this N (microbial metabolites, denitrification, or volatilization) is not known. After 16 days, the overall N content of the casts was still 28% higher than that of the control soil. Incubation of the soil before ingestion by the earthworms significantly increased the production of NH inf4 sup+ in casts. We calculate that in a humid tropical pasture, 50–100 kg mineral N may be produced annually in earthworm casts. Part of this N may be conserved in the compact structure of the cast where the cast is not in close contact with plant roots.  相似文献   

9.
Summary Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as 15NH inf4 sup+ or 15NO inf3 sup- . Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as 15NH inf4 sup+ or 15NO inf3 sup- at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of 15N in mycorrhizal plants was 38 or 40%, respectively, when 15NH inf4 sup+ or 15NO inf3 sup- was applied. The corresponding values for non-mycorrhizal plants were 7 and 16%. The higher 15N recovery observed in mycorrhizal plants than in non-mycorrhizal plants suggests that hyphal transport of N from the applied 15N sources towards the host plant had occurred. The concentration of mineral N in the soil of hyphal compartments was considerably less in mycorrhizal treatments than in controls, indicating that the hyphae were able to deplete the soil for mineral N.  相似文献   

10.
In 1991, field experiments on loess (with winter wheat) and sandy soils (with summer barley) were conducted to study N dynamics in the microbial biomass and non-exchangeable NH inf4 sup+ . The measurements showed a mass change in microbial N, with a maximum increase of 100 kg N ha-1 30 cm-1 from March to July in the loess soil, and a change for only 1 month (May) in the sandy soil. Plots treated with conventional levels of N fertilizer (213 kg N ha-1 on a loess soil to winter wheat and 130 kg ha-1 on the sandy soil to summer barley), reduced levels of N (83% and 62% of the conventional N application), or no N showed no consistent fertilizer N effect on microbial biomass N. From March to July, non-exchangeable NH inf4 sup+ in loess soils under winter wheat decreased by 110 kg N ha-1 30 cm-1 in conventionally fertilized plots and by 200 kg N ha-1 30 cm-1 in a plot with no N fertilizer. After harvest, the pool of non-exchangeable NH inf4 sup+ increased due to increasing mineral N concentrations in the soil.  相似文献   

11.
To estimate the availability of nonexchangeable NH inf4 sup+ –N for soil microorganisms four incubation experiments were conducted under controlled conditions. The following results were obtained: Incorporating glucose as a source of readily oxidizable organic material favored the release of nonexchangeable NH inf4 sup+ –N. Mobilization of NH inf4 sup+ from the interlayers of the clay minerals was decreased by the application of K++, while Ca2+, which is supposed to expand the lattice of the clay minerals, had no influence on the release of NH inf4 sup+ . Soil temperature had no effect on microbiological mobilization of NH inf4 sup+ . It is assumed that, generally, the influence of nitrifying bacteria on the mobilization of nonexchangeable NH inf4 sup+ –N is negligible. However, in soils with abundant amounts of available carbon promoting the activity of heterotrophic soil microorganisms, the release of NH inf4 sup+ from clay minerals is favored under fallow conditions.  相似文献   

12.
Summary Recent developments in biotechnology industries produce increasing amounts of byproducts with potential uses in agriculture. The present research focused on the nitrification of NH inf4 sup+ -N in biotechnology byproducts added to soils, and on the effects of 29 naturally occurring organic acids (19 aliphatic and 10 aromatic) on nitrification in soils. A 10-g soil sample was incubated for 10 days at 30°C with 2.0 mg NH inf4 sup+ -N in a byproduct or with 10 or 50 mol organic acid and 2.0 mg reagent-grade NH inf4 sup+ -N. In condensed molasses-fermentation solubles, produced during the microbial fermentation of sugar derived from corn (Zea mays L.) and molasses derived from beets (Beta sp.), in the production of lysine as a supplement in animal food, the nitrification of NH inf4 sup+ -N was similar to that of byproduct or reagent-grade (NH4)2SO4. Nitrite accumulated when either of these materials was added to a calcareous Canisteo soil. The NH inf4 sup+ -N in slops (produced during microbial fermentation processes occurring in the production of citric acid) was not nitrified in soils. Some organic acids inhibited, whereas others activated, nitrification in soils. Formic, acetic, and fumaric acids enhanced the production of NO inf2 sup- -N in a calcareous Canisteo soil, whereas all other aliphatic and aromatic acids studied decreased the accumulation of NO inf2 sup- -N. It is concluded that the addition or production of organic acids in soils affects the microbial dynamics, leading to significant changes in rates of nitrification and possibly in other N-transformation processes in soils.  相似文献   

13.
We measured the growth, nutrition, and N assimilation of arbuscular-mycorrhizal and non-mycorrhizal lettuce (Lactuca sativa L.) as affected by forms of N and drought. Moisture was maintained at 80% water-holding capacity, and N was applied as NO inf3 sup- , NH inf4 sup+ , or NO inf3 sup- /NH inf4 sup+ (3:1, 1:1, or 1:3). The growth of Glomus fasciculatum-colonized plants was comparable to that of uncolonized P-supplemented plants when N was provided as NH inf4 sup+ or combined NO inf3 sup- /NH inf4 sup+ . When N was supplied solely as NO inf3 sup- , G. fasciculatum-colonized plants produced a higher yield than P-fertilized plants, suggesting that the uptake and/or assimilation of NO inf3 sup- was particularly affected by mycorrhizal status in this water-limited situation. Nutrient availability, except Ca, was less limited for mycorrhizal plants than for P-fertilized plants. P fertilization increased the growth, glutamine synthetase activity, and protein content of lettuce to the same extent that G. fasciculatum colonization did when N was applied as NH inf4 sup+ . With NO inf3 sup- -fertilization, G. fasciculatum-colonized plants showed increased growth, nitrate reductase activity, and protein content compared to P-fertilizer treatment. Plants colonized by G. mosseae showed increased photosynthetic activity and proline acumulation, and these mechanisms may be important in adaptation by the plant to drought conditions. The present results confirmed that under drought conditions, the uptake or metabolism of N forms is particularly affected in mycorrhizal fungi-colonized plants, depending on the mycorrhizal endophyte and the N source added. Thus the significance of arbuscular-mycorrhizal fungus selection for plant growth in drought conditions is a consideration for management strategy.  相似文献   

14.
The decomposition of oak leaf litter was studied by means of a litterbag experiment in an oak forest in the Netherlands. The contribution of microbial activity and leaching to weight loss and element dynamics during the first 6 weeks of decomposition was investigated by means of frequent respiration measurements and extractions of the litter and by a qualitative comparison of throughfall and litter percolation water chemistry. The oak-leaf litter lost 9.3% of its initial dry weight during the first 6 weeks. In total, 90% of this observed weight loss was explained by the processes studied. About 5.9% (64% of the total) of this weight loss was attributed to microbial tespiration and 0.5% (5%) to the loss of inorganic solutes. Leaching of dissolved organic compounds was estimated to account for 2.0% (21%). The results indicated a fast leaching of K and Cl out of the fresh litter during the first 2 weeks, while Mg, Fe, Mn, Si, ortho P, and dissolved organic N were released at a much lower rate. At the same time, small amounts of H+, NH inf4 sup+ and NO inf3 sup- were retained in the litter.  相似文献   

15.
We studied the turnover of interlayer NH inf4 sup+ in three soils cropped with sugar beet. The three soils chosen for this study (Carpi, Cadriano, and Ozzano) are typical of the soils in the Po Valley where sugar beet is grown. The variation in interlayer NH inf4 sup+ content during the growing season was significant and very similar for the Carpi and Cadriano soils, while there was no significant variation in the NH inf4 sup+ content in the Ozzano soil during the same period. The turnover of interlayer NH inf4 sup+ in the Carpi and Cadriano soils was high, and appeared to cover a substantial amount of the N requirement of the crop. The turnover in these two soils showed a significant decrease during the initial phase followed by a period during which the pool of interlayer NH inf4 sup+ was replenished and reached the initial levels again. The spatial distribution of the root system, the pattern of N uptake by the sugar beet crop, and the processes of immobilization-mineralization of organic N all have an influence on the mechanisms of adsorption and release of interlayer NH inf4 sup+ . The release of interlayer NH inf4 sup+ , and thus its availability for plant uptake, was greater at the beginning of the growing season. The physicochemical characteristics of the soils, the K concentration, and the types of clay minerals present were found to be important in determining the dynamics of interlayer NH inf4 sup+ turnover of soils.  相似文献   

16.
A laboratory experiment was conducted on an Aquic Udifluvent Belgian soil in order to study the movement of urea and its hydrolysis products. This study was carried out at two moisture levels (10 and 20%) upon the addition of three types of urease inhibitors: hydroquinone, phenylphosphorodiamidate (PPDA), and N-(n-butyl)phosphorothioic triamide (NBPT). The results clearly show the effects of the inhibitors in retarding the hydrolysis of urea. The highest effect was observed with NBPT, followed by hydroquinone, and PPDA. The effect was more pronounced at 10% than at 20% moisture content. It was clear that subsequent nitrification of the NH inf4 sup+ formed was inhibited at the lower moisture level. At 10% moisture, from the 7th day of incubation on, some NH inf4 sup+ moved about 3 cm and reached the top of the soil column. At 20% moisture, no NH inf4 sup+ reached the surface as it was quickly nitrified. After 17 days of incubation and at 20% moisture, the total mineral N was more or less homogeneously distributed within the soil column. In contrast, at 10% moisture, the remaining urea and the hydrolysis products were still concentrated at the place of application. The distribution of urea and its hydrolysis products was comparable with 7 days of incubation at 20% moisture and 17 days at 10%.  相似文献   

17.
A laboratory incubation experiment was conducted to compare the effects of NH inf4 sup+ and NO inf3 sup- on mineralization of N from 15N-labelled vetch (Vicia villosa Rotn) in an Illinois Mollisol, and to determine the effect of a nitrification inhibitor (nitrapyrin) on mineralization of vetch N when used with NH inf4 sup+ . The addition of either NH inf4 sup+ or NO inf3 sup- (100 and 200 mg N kg-1 soil) significantly increased mineralization of vetch N during incubation for 40 days. The effect was greater with NH inf4 sup+ than with NO inf3 sup- , and a further increase occurred in the presence of nitrapyrin (10 mg kg-1 soil). The addition of NO inf3 sup- retarded the nitrification of NH inf4 sup+ -N derived from vetch.  相似文献   

18.
Summary Three Illinois Mollisols were incubated for 2 weeks at 25°C after treatment with different amounts of glucose and/or 15N-labelled (NH4)2SO4 or 15N-labelled KNO3. The objectives were: (1) to compare the immobilization and interaction of NH inf4 sup+ –N and NO inf3 sup- –N with the native soil N, and (2) to study the relationship between immobilization of applied N and the added N interaction. As determined, immobilized N refers to forms not extractable with 2 MKCl (immobilized 15N+clay-fixed 15NH inf4 sup+ ). In all cases, both NH inf4 sup+ –N and NO inf3 sup- –N were actively immobilized and transformed into organic forms in the presence of glucose. In the absence of glucose, a higher proportion of NH inf4 sup+ than NO inf3 sup- was recovered in organic forms. Although the three soils differed considerably in the amounts of applied N immobilized, similar trends in N immobilization were observed. A positive added N interaction occurred with all soils, the magnitude increasing with the rate of N addition. In the absence of glucose, higher added N interactions were obtained for NH inf4 sup+ than NO inf3 sup- , whereas there was very little difference between NH inf4 sup+ and NO inf3 sup- in the presence of glucose. The results indicate that under conditions of rapid immobilization (e.g., in the presence of glucose), NH inf4 sup+ and NO inf3 sup- will show comparable interaction with the native soil N, whereas in unamended soil, the extent of this interaction will be greater with NH inf4 sup+ than with NO inf3 sup- . Significant correlations were observed between applied N immobilized and the added N interaction only in one soil having a high initial mineral N content.  相似文献   

19.
Effects of vegetation and nutrient availability on potentail denitrification rates were studied in two volcanic, alluvial-terrace soils in lowland Costa Rica that differ greatly in weathering stage and thus in availability of P and base cations. Potential denitrification rates were significantly higher in plots where vegetation had been left undisturbed than in plots where all vegetation had been removed continuously, and were higher on the less fertile of the two soils. The potential denitrification rates were correlated strongly with respiration rates, levels of mineralizable N, microbial biomass, and moisture content, and moderately well with concentrations of extractable NH inf4 sup+ , Kjeldahl N, and total C. In all plots, denitrification rates were stimulated by the removal of O2 and by the addition of glucose but not by the addition of water or NO inf3 sup- .This is Paper 2772 of the Forest Research Laboratory, Oregon State University  相似文献   

20.
Streptomycin and cycloheximide were added (3 and 2 mg g-1 dry soil, respectively) single and in combination to a forest soil to follow their possible degradation and their effects on soil mineralization-immobilization processes. After 0, 1, 2, 4, 7, and 10 days of incubation at 25°C and 60% water-holding capacity, measurements were taken of microbial biomass C and N, the evolution of CO2, exchangeable NH inf4 sup+ , 0.5M K2SO4-extractable organic C, and total N in both unfumigated and CHCl3-fumigated soil. The results indicated that during the first 2 days of incubation, soil microorganisms were killed by the antibiotics and/or by CHCl3 and used subsequently as a substrate by the survivors. Thereafter, surviving microorganisms probably also started to use biocidal molecules as an energy and nutrient source. The ratios of biomass C to biomass N and of CO2 evolved to net NH inf4 sup+ produced indicated that both biocides had non-target effects for most of the incubation. Thus, streptomycin and cycloheximide are not suitable in determining the relative contribution from fungi and bacteria to mineralization-immobilization processes in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号