首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that calcium (Ca) nutrition in tomato (Lycopersicon esculentum Mill.) significantly affected the resistance to bacterial wilt caused by Ralstonia solanacearum Smith. To elucidate the mechanisms underlying the Ca-dependent resistance, the effect of the Ca concentration in the nutrient solution applied before and after inoculation with the pathogen on the resistance of tomato seedlings to bacterial wilt was studied. One week before inoculation, seedlings were transferred to nutrient solutions containing Ca at concentrations of 0.4, 4.4, or 20.4 mM. Soon after inoculation, the seedlings that were treated with each concentration of Ca before inoculation were transferred to solutions containing the same three concentrations of Ca. Although the disease development was not affected by the concentration of Ca in the solution before inoculation, a higher concentration of Ca after inoculation reduced the disease severity. This result suggests that the concentration of Ca in the host, especially in the cell walls, before infection may not be directly involved in the Ca-dependent resistance of tomato seedlings to bacterial wilt.  相似文献   

2.
Bacterial wilt of tomato (Lycopersicon esculentum Mill.) caused by Ralstonia solanacearum Smith is a serious disease in Japan. We previously reported that calcium (Ca) nutrition in tomato significantly affected the resistance to the disease, and that highly resistant cultivars were characterized by a high Ca uptake. We examined the relationship between the Ca uptake and resistance using mutually grafted seedlings of tomato cultivars differing in their resistance. A susceptible (‘Ponderosa’) or moderately resistant (‘Zuiei’) cultivar (scion) was grafted on the rootstock of a susceptible, moderately resistant, or highly resistant cultivar (‘Hawaii 7998’). Roots or petioles of the grafted seedlings were inoculated with the pathogen, and the development of bacterial wilt was observed. Although Ca uptake by shoot increased by grafting on the rootstock of a highly resistant cultivar, the development of the disease was not influenced by the difference in Ca uptake, and depended on the resistance of the cultivar to which the inoculated part of the graft belonged. It was concluded that the differences in Ca uptake of the shoot of the grafted tomato seedlings might not be related to the expression of the resistance to bacterial wilt.  相似文献   

3.
Effects of NaCl on the seed germination and growth of Casuarina equisetifolia seedlings and multiplication of the Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia were examined. The germination rate of the seeds markedly decreased as the NaCl concentration increased and germination did not occur at 300 mM NaCl. The fresh weight of both shoots and roots of the seedlings treated with NaCl for 6 weeks apparently decreased as the NaCl concentration increased. However, root nodules were formed by inoculation with the Frankia Ceq1 strain in some seedlings treated with 300 mM NaCl and the viability of the seedlings at 500 mM NaCl was almost the same as that of the seedlings not subjected to the NaCl treatment. The Na+ concentration in the shoots sharply increased with the elevation of the NaCl concentration in the ambient solution, but the level was approximately 300 mM even in the seedlings treated with 500 mM NaCl for 6 weeks. On the other hand, the increase of the Na+ concentration in the roots by the NaCl treatment was much smaller than that in the shoots and the level was less than 150 mM. The growth of the free-living Frankia Ceq1 strain was approximately linearly suppressed as the NaCl concentration in the medium increased and the hyphae became somewhat thicker and shorter or disintegrated in the medium containing NaCl at a concentration above 150 mM. The Na+ concentration in the cells increased as the NaCl concentration in the medium increased, but the level was maintained at less than 30 mM even in the medium containing 500 mM NaCl. The cells whose growth was suppressed by the NaCI treatment grew actively again at almost the same rate as the control cells (not subjected to the NaCl treatment) when they were transferred to NaCl-free medium. These results strongly suggested that both C. equisetifolia seedlings and Frankia Ceq1 strain are highly tolerant to salt and this symbiotic system is useful for the recovery of the vegetation in areas with severe salt accumulation.  相似文献   

4.
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules.  相似文献   

5.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

6.
To obtain direct evidence for the translocation of cadmium (Cd) via the phloem, we measured the Cd concentrations in the phloem sap of 5-week-old rice plants (Oryza sativa L. cv. Kantou) treated with a nutrient solution containing Cd. The phloem sap was collected from the leaf sheaths through the cut ends of stylets of the brown planthopper (Nilaparvata lugens Stål.). Cd concentrations in the phloem sap from the plants treated with 10 and 100 µM Cd for 3 d were 4.6 ± 3.4 and 17.7 ± 9.8 µM, respectively. Detection of Cd in the phloem sap indicated that Cd was translocated via sieve tubes in rice plants. Cd concentrations in the xylem exudate collected from the cut basis of the leaf sheaths of the plants treated with 10 and 100 µM Cd for 3 d were 18.9 ± 6.4 and 64.2 ± 14.6 µM, respectively. Cd concentrations in the phloem sap were significantly lower than those in the xylem exudate, indicating that Cd is not concentrated during the transfer from xylem to phloem. To our knowledge, this is the first determination of Cd concentrations in the phloem sap of plants, and the first direct proof that Cd is translocated via sieve tubes in rice plants.  相似文献   

7.
A short-term experiment was conducted to investigate whether the effect of rootstock on plant response to salinity depends on the solanaceous species used as scion. Tomato cv. ‘Ikram’ and eggplant cv. ‘Black Bell’ were grafted onto two tomato interspecific hybrids (‘Beaufort’ and ‘He-Man’). Plants were grown in an open soilless cultivation system and supplied with two nutrient solutions: non-saline control and a saline solution (adding 15 mM Na2SO4, 3.7 dS m?1). Plant dry biomass production and partitioning were influenced by salinity, but its effect was depending on the rootstock/scion combination. ‘Beaufort’ eliminated the deleterious effect of salinity when tomato was used as scion, but reduced (?29.6%) the shoot biomass of eggplant. ‘He-Man’ had a different effect on scion growth under saline conditions: shoot biomass was less reduced in eggplant (?20.6%) than in tomato (?26.8%). Under salt stress, ‘Beaufort’ reduced the accumulation of Na+ in tomato leaves more than in eggplant, whereas no differences were observed between tomato and eggplant grafted onto ‘He-Man’. Stem Na+ accumulation followed a different pattern. The increase of Na+ in the stems was similar for tomato and eggplant grafted onto ‘Beaufort’, whereas stems of tomato accumulated more Na+ compared to eggplant grafted onto ‘He-Man’. The opposite response of the tested rootstocks to salt stress when the scion was either tomato or eggplant seems to be partially related to the capacity of the rootstock and scion to exclude Na+ from the shoot. However, the results of nutrient accumulation within plant tissues imply that other mechanisms in addition to ion competition are involved in the salt resistance of grafted plants.  相似文献   

8.
Two plant species, tomato (Lycopersicon esculentum Mill.) and bitter gourd (Momordica charantia), were used for in‐depth studies on the dynamics of silicon (Si) uptake and translocation to the shoots and compartmentation of Si in the roots. The experiments were conducted under controlled environmental conditions in nutrient solutions, which were partly amended with 1 mM Si in the form of silicic acid. At harvest, xylem exudates were collected, and Si concentrations and biomass of roots and shoots were determined. Mass flow of Si was calculated based on the Si concentration of the nutrient solution and transpiration determined in a parallel experiment. Plant roots were subjected to a fractionated Si analysis, allowing attributing Si to different root compartments. Silicon concentrations in the roots compared to the shoots were higher in tomato but lower in bitter gourd. A more ready translocation from the roots to the shoots in bitter gourd was in agreement with Si concentrations in the xylem exudates which were higher than in the external solution. In tomato, the xylem‐sap Si concentration was lower than in the nutrient solution. Calculated Si mass flow to the root exceeded Si uptake in tomato, which was consistent with the measured accumulation of Si in the root water‐free space (WFS). In contrast, Si concentration in the root WFS was lower than in the nutrient solution in bitter gourd, reflecting the calculated Si depletion at the root surface based on the comparison of Si mass flow and Si uptake. Within the roots, more than 80% of the total Si was located in the cell wall and less than 10% in the cytoplasmic fractions in tomato. In bitter gourd, between 60% and 70% of the total root Si was attributed to the cell‐wall fraction whereas the proportion of the cytoplasmic fraction reached more than 30%. Our results clearly confirm that tomato belongs to the Si excluders and bitter gourd to the Si‐accumulator plant species for which high Si concentrations in the cytoplasmic root fraction appear to be characteristic.  相似文献   

9.
Effects of Al, Ca, Mg, and Si on the growth and mineral accumulation of M. malabathricum (Melastoma malabathricum L.), which is an Al accumulator plant, were investigated using the water culture method. Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) were used as control plants. After Al application, growth was inhibited in barley, but stimulated in M. malabathricum and rice. The growth of M. malabathricum was not reduced by very low Ca and Mg concentrations (0.1 mm Ca and 0.05 mm Mg). However, it was depressed in the absence of Ca. Ca and Mg contents somewhat decreased by Al application, which was most evident in young leaves and roots. M. malabathricum accumulated more than 10,000 mg kg-1 Al in mature leaves, and more than 7,000 mg kg-1 even in the youngest leaf. Al content in leaves of M. malabathricum did not decrease by the Ca or Mg application, but slightly decreased by in the absence of Ca.

Although Si is a strong ligand of Al in solution, in M. malabathricum, Si application hardly affected the growth, Al accumulation and nutrient uptake.  相似文献   

10.
The effects of calcium (Ca) deficiency on cation uptake and concentration of xylem sap from tomato roots after excision of the aerial parts, were studied. The measurements were made on tomato plants grown on nutrient solutions with +Ca or without‐Ca, over a period of 48 hours. Calcium deficiency entailed a significant increase of the flux of xylem sap between the 6th and 14th hour on the first day after excision. In spite of the lack of Ca in the nutrient solution, the Ca concentration in xylem sap was unaffected in regard to that of excised roots with +Ca. The maintenance of the Ca concentration in xylem sap of plants grown on a Ca deficient solution was related to a reuse of the Ca from the apoplastic root stores. So, this regulation indicates a possible translocation of the Ca available in the root supply and a mobility of this element out of the roots only during the early stages of exposure to a Ca deficiency. The presence of NH4 + in xylem sap with both +Ca and‐Ca treatments confirms the nitrogenous reduction activity of tomato roots. The accumulation of free ammonium 24 h after excision in both xylem saps (+Ca and‐Ca) is likely to be evidence of an alteration process of protein synthesis which is related to the depletion of the root water soluble carbohydrate supply.  相似文献   

11.
A method for determination of nitrate concentration and estimation of kinetic parameters of nitrate uptake by spectroscopy based on absorbances at multiple wavelengths has been developed to estimate nitrate uptake by barley (Hordeum vulgare L. cv. Steptoe) seedlings. Nitrate concentration in the nutrient solution was determined from the slope of the linear regression line of the absorbances to nitrate absorption coefficients at 12 wavelengths. Interference by root exudates was only due to an absorption component changing with wavelength in correlation with nitrate absorption. The standard error of the determination decreased in reverse proportion to the square root of the number of the wavelengths. A linear form of the net uptake equation, NUR = ImaxC/Km+C‐E, could be expressed as NUR = (Imax ‐ E) ‐ Km NUR/C ‐ KmE I/C where NUR is net uptake rate, Imax is maximum influx, C is concentration, Km is the Michaelis constant, and E is an efflux constant. The method described here was used to determine the time course of nitrate depletion by barley seedlings from their nutrient solution. The isotherm of net nitrate uptake rates derived from the time course was analyzed after modifications based on the linear form of the net uptake equation. The analysis yielded highly significant results (P<0.0001).  相似文献   

12.
生物质炭载体联合有益菌防控番茄土传青枯病的效果研究   总被引:2,自引:0,他引:2  
土传青枯病是由青枯菌(Ralstonia solanacearum)引起的一种细菌性病害。根际有益细菌在青枯病的防控中发挥着重要作用,其在根际有效定殖是发挥生防作用的前提。以玉米秸秆、木块(松木)和稻壳为原料制成的3种生物质炭为有益菌Bacillus amyloliquefaciens T-5的载体,探究生物质炭对有益菌防控番茄土传青枯病效果的影响,并利用室内模拟试验探究生物质炭对青枯菌的吸附、固持以及对根系分泌物的吸附作用,旨在阐述施用生物质炭提升有益菌T-5抑制病原青枯菌能力的可能机制。温室试验结果表明:单独施用3种生物质炭均显著降低青枯病的发病率和根际青枯菌的数量,其中具有高比表面积的木块生物质炭的防控效率达到60.56%。3种生物质炭作为有益菌T-5的载体均能够显著提升有益菌T-5的根际定殖数量及其防病效率,其中木块生物质炭的提升效果最好。与仅接种青枯菌的对照相比,木块生物质炭与有益菌T-5组合处理的根际青枯菌数量降幅达97.42%;与单独有益菌T-5处理相比,有益菌T-5以木块生物质炭为载体使其根际定殖数量提高了5.71倍。进一步研究发现,木块生物质炭能够有效吸附青枯菌,吸附...  相似文献   

13.
Roots of the Fe-efficient tomato (Lycopersicon esculentum Mill., cultivar Floradel) were cultured in an inorganic medium supplemented with glycine, thiamine, pyridoxine, and nicotinic acid, with sucrose as an energy and carbon source. Iron was supplied as ferric hydroxyethylethylenediaminetriacetic acid (FeHEDTA) and the initial PH was 5.5. Root growth was limited when less than 40 μm FeHEDTA was supplied. Roots grown at lower Fe concentrations decreased the pH of the FCR assay medium to a greater extent than did roots grown at higher Fe concentrations. Cultured roots grown with 10 μm FeHEDTA had increased levels of ferric chelate reductase (FCR) activity compared to roots grown with either lower or higher concentrations of FeHEDTA. Low FCR activity of roots grown at 2.5 or 5 μm FeHEDTA was attributed either to impaired metabolism due to Fe-deficiency or the lack of sufficient Fe for enhanced FCR formation. Roots of hydroponically grown tomato plants exhibited typical increases in FCR activity with Fe-deficiency. Based on these preliminary results, cultured roots were found to exhibit similar Physiological responses to Fe-deficiency stress as intact root systems. Cultured roots should provide a useful system for the investigation of the role of the root in plant Fe-deficiency stress responses as previously suggested by Bienfait et al.(Plant Physiol., 83, 244–247, 1987).  相似文献   

14.
以“影武者”为砧木,“宝大903”为接穗,在营养液栽培条件下,对80 mmol/L Ca(NO3)2胁迫下番茄嫁接苗和自根苗的生长、叶片抗氧化酶活性、活性氧代谢以及渗透调节物质含量进行了比较。结果表明,Ca(NO3)2胁迫明显抑制植株生长,显著提高植株抗氧化酶活性,显著增加植株O2.-生成速率以及H2O2、MDA、脯氨酸和可溶性蛋白含量,但胁迫后嫁接苗的生物量显著高于自根苗,抗氧化酶活性、脯氨酸和可溶性蛋白含量均显著高于自根苗,而O2.-生成速率、H2O2和MDA含量则显著低于自根苗。以上结果表明,Ca(NO3)2胁迫下较高的抗氧化酶活性和渗透调节物质含量以及较低的氧化损伤与番茄嫁接苗耐盐性增强有关。  相似文献   

15.
Plant growth, nutritional status, and proline content were investigated in non-grafted and grafted greenhouse tomato plants onto five rootstocks of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato, exposed to 0, 5, and 10 mM sodium bicarbonate (NaHCO3) to determine whether grafting could improve alkalinity tolerance of tomato. The leaf fresh mass of ungrafted and grafted tomato plants decreased significantly as NaHCO3 levels increased. Despite other rootstocks and ungrafted plants, alkalinity had no significant effect on stem and root fresh mass and shoot phosphorus (P), potassium (K) and magnesium (Mg) concentrations of datura grafted plants. The lowest solution pH and electrical conductivity (EC) values and the highest leaf proline content were observed in the plants grafted onto datura rootstock. Moreover, sodium (Na) concentration in shoots was lower in plants grafted onto datura rootstock than in other plants especially under high NaHCO3 levels. Overall, using datura rootstock improved alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

16.
Nodule growth of a hypernodulating soybean (Glycine max (L.) Merr.) mutant line NOD1-3 was compared to that of its wild-type parent cv. Williams from 14 to 18 days after planting (DAP) in the absence of nitrate treatment (hereafter referred to as “0 mM treatment”) or with 5 mM nitrate treatment. The growth rate determined by increase in the diameter of the nodules was relatively lower in the mutant NOD1-3 than that of the parent Williams under nitrogen-free conditions (0 mM nitrate). The inhibition of nodule growth by 5 mM nitrate started at 1 d after the onset of the nitrate treatment in Williams, while the inhibition did not occur before the application of the nitrate treatment for 2 d in NOD1-3. The nodule growth was completely inhibited after 2 d in Williams and after 3 d in NOD1-3 during the 5 mM nitrate treatment period. After 4 d of 5 mM nitrate treatment, the nodule dry weight decreased by 22% in NOD1-3 and by 58% in Williams, respectively. The treatment with 5 mM nitrate decreased the acetylene reduction activity (ARA) in NOD1-3 by 60% per plant and by 50% per nodule g DW and these parameters were less sensitive to the treatment than those in Williams in which the inhibition rate was 90% per plant and 80% per nodule g DW. These results indicate that NOD1-3 is partially nitrate-tolerant in terms of individual nodule growth as well as total nodule dry weight and Nz fixation activity. A whole shoot of Williams and NOD1-3 plants was exposed to 14CO2 for 120 min followed by 0 or 5 mM nitrate treatment for 2 d, and the partitioning of the photoassimilates among the organs was analyzed. Under 0 mM nitrate treatment, the percentages of the distribution of 14C radioactivity between the nodules and roots were 63 and 37% in Williams and 89 and 11% in NOD1-3. Under the 5 mM nitrate conditions, the percentages of the distribution of 14C between the nodules and roots changed to 14 and 86% in Williams and 39 and 61% in NOD1-3, respectively. These results indicated that the hypernodulating mutant NOD1-3 supplied a larger amount of photoassimilates to the nodules than to the roots under nitrogen-free conditions, and that the nitrate depression of photoassimilate transport to the nodules was less sensitive than that of the parent line.  相似文献   

17.
Fusarium wilt is one of the major soil-borne diseases of tomato crop globally. The study aimed to evaluate the efficacy of medicinal plants in the control of Fusarium wilt in tomato. Methanolic extracts of Monsonia burkena and Moringa oleifera were assessed in vitro and under greenhouse conditions. The in vitro experiments evaluated the effect of both extracts on Fusarium oxysporum f. sp lycopersici growth and response to varying concentrations. In greenhouse experiment, tomato seedlings cv. HTX14 were inoculated with conidial suspension of F. oxysporum and transplanted into pasteurised growth media amended with plant extract. Seedlings were treated with aqueous extracts at varying concentrations with an interval of 7 days between applications. Control treatments were treated with sterile distilled water. Both plant extracts significantly reduced pathogen growth in vitro and reduced wilt severity under greenhouse conditions. The highest mycelial growth suppression was observed in Mon. burkeana treatments. Under greenhouse conditions, both plant extracts significantly (P?≤?0.05) reduced Fusarium wilt severity and had a positive effect on plant growth parameters. A significant increase in soil-pH was also recorded in extract treated soil resulting in reduction in disease severity. The results further provide new scientific information on how their effect on soil pH can be beneficial in the control of Fusarium wilt.  相似文献   

18.
Short-term (72 h) responses of the water and nutritional status to Na-salinization were investigated in rice (Oryza sativa L. cv. Koshihikari) and tomato (Lycopersicon esculentum Mill cv. Saturn). The short-term effect of supplemental K and Ca to the nutrient solution on the water status and absorption and transport of ions in the plants was also investigated. In both species, Na salinity resulted in the deterioration of the water status of tops and in nutritional imbalance. However, in rice, it was possible to prevent the deterioration of the nutrient status by enhancing the transport of cations, especially K, while tomato could maintain an adequate water status by inhibiting the water loss associated with transpiration. On the other hand, the water status in rice and the nutritional status in tomato markedly deteriorated by high Na level in the solution. Supplemental K and Ca could not ameliorate th.e water status in both species, and even worsened the status in rice. In rice, a close relationship was observed between the osmotic potential (OP) of the solution, water uptake and water content. The water status of rice, therefore, seemed to depend on OP of the solution. Supplemental K and Ca, on the other hand, were effective in the amelioration of the nutritional status. In tomato, supplemental Ca could improve the nutritional balance by suppressing the transport of Na and enhancing that of the other cations in avoidably the deterioration of the water status. Thus, the differences in the responses of the water and nutritional status of rice and tomato to high Na salinization and to supplemental K and Ca were evident in a short-term study and supported a similar tendency observed in a long-term study.  相似文献   

19.
The addition of exogenous proline (10 mm) to Na100-saline culture medium, modified LS medium (Linsmaier and Skoog 1965: Physiol. Plant., 18, 100–127) with 100 mm NaCl promoted the growth of tobacco (Nicotiana tabacum L., cv. Bright Yellow-2) suspension cells unadapted to salt stress without maintaining a high ratio of K+ to Na+ ions under salinity conditions. The addition of exogenous glutamic acid or alanine were not comparable to that of exogenous proline. The proline contents of the NaCl-unadapted cells became much higher when the cells were grown in Na100-saline culture medium with 10 mm proline than when the cells were cultured without proline. The accumulation of K+, Na+, counter ions was sufficient to compensate for the increase of the water potential of the cells caused by salinity. These results suggest that exogenous proline does not act as a nitrogen store and that proline may act as a protectant for enzymes and membranes against salt inactivation rather than as a compatible solute in tobacco suspension cells.  相似文献   

20.
The area of planting of Vitis vinifera L. cv. “Dattier de Beiruth” (DB) grafted on the SO4 (Selection OPPENHEIM 4) rootstock is significant and constantly growing in Northern Algeria. A hydroponic culture was carried out with DB to investigate the effects of potassium-magnesium (K-Mg) ratio on plant growth and mineral nutrition. Four nutrient solutions were tested on which the K-Mg ratio is variable (nutritive solution (NS)1 = 0.3 K: 3.8 Mg, NS2 = 2.1 K: 2 Mg, NS3 = 2.6 K: 1.5 Mg and NS4 = 3.8 K: 0.3 Mg). The results showed that DB was characterized by a high capacity for K uptake. No significant differences among the treatments were detected in the leaf concentrations of calcium (Ca), however Mg uptake was inhibited by increase of K: Mg in the nutrient solution. Results showed that DB is sensitive to the variation of the cation composition in the nutrient solution. Antagonism between K-Mg was apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号