首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
With regard of the problems of soil acidification and soil degradation caused by high intensive planting in south China, a 2-year pot experiment consisting of six harvests under a rice–rice–vegetable rotation cropping system was conducted to assess the effects of NPK+ rice straw (RS) and combined application of RS with peanut bran, biochar, and organic fertilizer on soil chemical and microbial characteristics in paddy soil. The control treatment received chemical fertilizer alone. Results showed that RS and the combination of RS with organic ameliorants, especially NPK+ rice straw + biochar (RSBC) treatment led to the greatest improvement of soil pH, soil organic carbon, microbial biomass carbon, and total nitrogen (TN) content, and urease (UE), acid phosphatase (ACP) and catalase (CAT) activities concurrently without yield sacrificing, which inferred that RSBC treatment could be an effective measure to alleviate soil acidification, boost carbon sequestration and nutrients content as well as soil enzyme activities in rice-rice-vegetable rotation system. Besides, Pearson’s correlation analysis showed that soil mineral nitrogen (Nmin) content was negatively related to pH, and the available potassium (AK) content was positively related to UE and CAT activity but negatively related to ACP activity. Canonical correspondence analysis demonstrated the Nmin and AK explained 27.2% and 13.7% of the variation in microbial species, respectively. Therefore, it is believed that soil Nmin and AK content could be the primary factors of soil microbial properties under the rice-rice-vegetable rotation system.  相似文献   

2.
A study on the rice–wheat cropping system was conducted at Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India, to assess the effects of long-term manuring and fertilization on transformation of the inorganic phosphorus (P) fraction in soil after 22 years of the crop cycle. Soil samples were collected after Kharif from seven treated plots having different types of organic amendments like farm yard manure, paddy straw and green manuring with 50% substitution of nitrogen levels in rice crop only. The result showed that the yield trend of rice was maintained due to the buildup of P from various organic inputs. Although cultivation for 22 years without adding any fertilizer caused a significant decrease in almost all the forms of P viz. avail-P, saloid P, iron phosphorus fraction (Fe–P), aluminum phosphorus fraction (Al–P), calcium phosphorus fraction (Ca–P) and total P in control. Partial substitution of inorganic fertilizer N (50%) with organics, however, caused a significant increase in almost all the P fractions in soil over the control. The relative abundance of all the fractions of inorganic P irrespective of treatments was as follows: Fe–P > reductant soluble P fraction > occluded P > Al–P > Ca–P > saloid P. Saloid and Fe–P were the dominating fractions responsible for 92% variation of available P and total P levels, respectively.  相似文献   

3.
Labile fractions of soil organic C (SOC) can respond rapidly to changes in C supply and are considered to be important indicators of soil quality. An attempt is made in this paper to investigate into the dynamics of total organic C (C tot), oxidisable organic C (C oc), very labile C (C frac 1), labile C (C frac 2), less labile C (C frac 3), non-labile C (C frac 4), microbial biomass C (C mic), mineralizable C (C min) and particulate organic C (C p) in relation to the system productivity of a 20-year-old rice (Oryza sativa L)–berseem (Trifolium alexandrium L) cropping system with different management strategies [no fertilization, only NPK and NPK + FYM (farmyard manure) applied in different seasons] in the hot humid, subtropics of India. Cultivation over the years caused a net decrease, while balanced fertilization with NPK maintained the SOC. About 62% of the C applied as FYM was stabilized into SOC. The passive pool (C frac 3 + C frac 4) constituted about 55% of the C tot. A larger proportion (63%) of applied C was stabilized in the passive pool of SOC. Of the analysed pools, C frac 1, C mic, C p and C min were influenced most by the treatments imposed and explained higher per cent variability in the yield of the crops.  相似文献   

4.
The aim of this study was to determine whether by applying biochar, it is possible to augment the beneficial effects of legume–crop rotation systems on soil fertility and crop performance. Repeated experiments were established in 2012 and 2013 in South-western Benin using a split-split plot design. Two legumes, Mucuna pruriens (mucuna) and Vigna unguiculata (cowpea), were planted for 42 days on biochar-amended and unamended plots and subsequently cut and applied as mulch 5 days before planting rice. Rice plants were either fertilized or not using a fertilizer rate of 60, 30, and 30 kg ha?1 of N, P2O5, and K2O, respectively. The results showed that the application of legume green manures and fertilizer, either singly or in combination, improved soil nutrient availability, CEC, shoot yield, and grain yield of rice on both biochar-amended and unamended plots. However, the effect was significantly (p < 0.05) greater on biochar-amended plots. The mean grain yield for all cropping seasons was 1.8 t ha?1 for biochar-amended plots and 1.3 t ha?1 for unamended plots. The greater grain yield of rice on biochar-amended plots was associated with improved soil fertility and increased N uptake.  相似文献   

5.

Purpose

A field experiment with a reclamation chronosequence under rice?Cbarley cropping was conducted to investigate soil enzyme activities and microbiology in a coastal saline soil. The aim of this study was to test whether changes in enzyme activity and microbial community structure are directly impacted by changes in soil pH, electrical conductivity (EC), and organic carbon (SOC) due to reclamation.

Materials and methods

The research area is located in south-eastern China. Four experimental sites were reclaimed in 1976, 1984, 1996, and 2006, respectively, and each site was divided into three plots, each of which was 22?m?×?10?m. Each year, the plots were planted with rice (cv Xiushui) in summer and barley (cv Yanmai) in winter. Soil pH and EC were determined in an aqueous suspension with a 1:5 ratio of soil and water. Soil organic carbon content was measured by dichromate oxidation with heating. Measured soil enzyme activities included catalase, urease, and protease. Soil microbial community structures were assessed using denaturing gradient gel electrophoresis.

Results and discussion

Reclamation under rice?Cbarley cropping reduced EC and pH, but increased SOC, the activities of catalase, urease and protease, and the cell numbers of bacteria, actinomycetes, and fungi, resulting in an increase in the bacterial community diversity. The enzyme activities and bacterial community diversity were significantly positively correlated with SOC, and negatively correlated with pH and EC. Five bacterial groups related to Gaetbulibacter, Sporosarcina, Flavobacterium, Aequorivita, and Gillisia, which have been associated with saline waters, did not appear in the soils that had been reclaimed prior to 1996.

Conclusions

Results of this field study suggest that soil properties which affect microbial activity such as EC, pH, and SOC significantly influence the activities of catalase, urease, and protease, and microbial community composition. More than 10?years after reclamation under rice?Cbarley cropping, EC had decreased and bacteria typically found in marine and saline environments had disappeared from the soil.  相似文献   

6.
Soil–plant water dynamics is a major driving factor on crop yield which could be improved under optimal irrigation strategy. The soil water dynamics under partial root-zone drying (PRD) and its consequent effects on maize economics returns were investigated in a two-year field study in the research field of Sari Agricultural Sciences and Natural Resources University. Irrigation treatments included full irrigation (FI) and two PRD treatments including PRD1 and PRD2, receiving 100%, 75% and 55% of crop water demand at each irrigation event, respectively. TDRs were used for measuring soil water contents on a daily basis. Economic analysis was done based on net present value (NPV), benefit-to-cost ratio (B/C) and internal rate of return (INRR) indices. Applying PRD1 treatment increased soil wetting front advance by 110–330% compared those for other treatments which caused 50% increase in root water uptake. Improved soil water dynamics under PRD1 prevented a significant reduction in maize grain yield, leading to 37.7%, 6.14% and 192% increase in NPV, B/C and INRR, respectively, under PRD1 than those for FI treatment. Thus, PRD1 was the most economic water-saving irrigation strategy under which 25% of irrigation water would be saved due to a better utilization of soil water supply.  相似文献   

7.
The Penman–Monteith (PM) equation was introduced as one of the most reliable equations to determine crop ETc, without using crop coefficient or ETo values. In this study, the PM equation was evaluated using lysimeters in a semi-arid region for wheat and maize. Different equations for aerodynamic resistance (r a) and canopy resistance (r c) were tested in the PM equation and they were ranked using statistical analysis. It was shown that the combined method of r a and r c in FAO-56 does not lead to a good prediction of ETc for wheat and maize in comparison with the lysimeter-measured data. The results indicated that a modified equation for r c was the most accurate method for both wheat and maize. Using this equation, the suggested model of FAO-56 and another investigation for r a led to the best results for wheat and maize, respectively. Furthermore, it was shown that the previously modified equation for r c was newly modified as a function of vapor pressure deficit (VPD) and the results were as accurate as before. Therefore, an equation as a function of VPD can be used when solar radiation (R n) is not available easily.  相似文献   

8.
Effect of long-term addition of chemical fertilizers with or without amendments was studied on different forms of potassium and the yield of maize and wheat. Continuous application of chemical fertilizers and amendments for 40 years influenced different fractions of potassium significantly. Integrated use of a balanced dose of chemical fertilizer, with farmyard manure (FYM) or lime, sustained higher yields of maize and wheat in comparison to inorganic fertilizers alone. Application of urea (100%) N alone for 40 years resulted in zero yield level. Continuous application of chemical fertilizers either alone or in combination with FYM or lime influenced different fractions of potassium significantly. Continuous cropping without fertilization resulted in depletion to the order of 21.5%, 16.6%, 11.7%, and 5.5% in water-soluble, exchangeable, 0.5 N HCl extractable, and non-exchangeable K, respectively. Different fractions of potassium were found to be positively and significantly correlated with grain and stover/straw yield of maize and wheat.  相似文献   

9.
We have been making year-round measurements of mass and energy exchange in three cropping systems: (a) irrigated continuous maize, (b) irrigated maize–soybean rotation, and (c) rainfed maize–soybean rotation in eastern Nebraska since 2001. In this paper, we present results on evapotranspiration (ET) of these crops for the first 5 years of our study. Growing season ET in the irrigated and rainfed maize averaged 548 and 482 mm, respectively. In irrigated and rainfed soybean, the average growing season ET was 452 and 431 mm, respectively. On average, the maize ET was higher than the soybean ET by 18% for irrigated crops and by 11% for rainfed crops. The mid-season crop coefficient Kc (=ET/ET0 and ET0 is the reference ET) for irrigated maize was 1.03 ± 0.07. For rainfed maize, significant dry-down conditions prevailed and mid-season Kc was 0.84 ± 0.20. For irrigated soybean, the mid-season Kc was 0.98 ± 0.02. The mid-season dry down in rainfed soybean years was not severe and the Kc (0.90 ± 0.13) was only slightly lower than the values for the irrigated fields. Non-growing season evaporation ranged from 100 to 172 mm and contributed about 16–28% of the annual ET in irrigated/rainfed maize and 24–26% in irrigated/rainfed soybean. The amount of surface mulch biomass explained 71% of the variability in non-growing season evaporation totals. Water use efficiency (or biomass transpiration efficiency), defined as the ratio of total plant biomass (YDM) to growing season transpiration (T) was 5.20 ± 0.34 and 5.22 ± 0.36 g kg?1, respectively for irrigated and rainfed maize crops. Similarly, the biomass transpiration efficiency for irrigated and rainfed soybean crops was 3.21 ± 0.35 and 2.96 ± 0.30 g kg?1. Thus, the respective biomass transpiration efficiency of these crops was nearly constant regardless of rainfall and irrigation.  相似文献   

10.

Purpose

The effects of commercial compost fertilizer application on trace gas emissions are not well understood due to a lack of field experiments. The objective of this study was to evaluate the emissions of methane (CH4) and nitrous oxide (N2O) along with grain yield from a rice paddy as affected by different organic–inorganic mixed fertilizer (OIMF) treatments.

Materials and methods

A field experiment was initiated in 2006 with chemical compound fertilizer (CF) and three OIMF amendments including pig manure compost (PMC), Chinese medicine residue compost (CMC), and rapeseed cake compost (RCC), from a rice paddy in southeast China. The emissions of CH4 and N2O were simultaneously measured using the static opaque chamber method over the entire rice growing season in 2011. Soil biotic parameters were measured in soil collected after the rice was harvested in 2011.

Results and discussion

Relative to the control, the OIMF treatments significantly increased CH4 emissions by 56–99 %, mainly due to exogenous organic substrate input, whereas no difference was observed in the CF treatment. The N2O emissions were stimulated substantially by an average of 40 % due to nitrogen fertilization compared with the control. Consecutive OIMF application tended to increase the grain yield, making it marginally higher than that of the CF treatment (7 %, P?=?0.06). Compared with the control, the CF treatment slightly decreased the global warming potential and greenhouse gas (GHG) intensity, while they were remarkably increased in the OIMF treatments. Over the 5-year period of 2006–2011, the annual soil carbon sequestration rate was estimated to be 1.19 t C ha?1 year?1 for the control and 1.73–1.98 t C ha?1 year?1 for the fertilized treatments.

Conclusions

Our results suggest that despite the beneficial effects of increasing both grain yield and soil organic matter, OIMF application such as PMC, CMC, and RCC may be responsible for increased global warming due mainly to the stimulated CH4 emissions. This effect should be thus taken into account when balancing agricultural production and GHG mitigation.  相似文献   

11.
Corn field experiments with two treatments, NP and NPK, where N in the form of urea, P in the form of calcium phosphate, and K in the form of KCl were applied at rates of 187.5, 33.3, and 125 kg ha^-1, respectively, on soils derived from Quaternary red clay were conducted in the hilly red soil region of Zhejiang Province, China. Plant grains and stalks were collected for determination of K content. Seven equations were used to describe the kinetics of K release from surface soil samples taken before the corn experiments under electric field strengths of 44.4 and 88.8 V cm^-1 by means of electro-ultrafiltration (EUF) and to determine if their parameters had a practical application. The second-order and Elovich equations excellently described K release; the first-order, power function, and parabolic diffusion equations also described K release well; but the zero-order and exponential equations were not so good at reflecting K release. Five reference standards from the field experiments, including relative grain yield (yield of the NP treatment/yield of the NPK treatment), relative dry matter yield (dry matter of the NP treatment/dry matter of the NPK treatment), quantity of K uptake in the NP treatment (no K application), soil exchangeable K, and soil HNO3-soluble K, were used to test the effectiveness of equation parameters obtained from the slope or intercept of these equations. Correlations of the ymax (the maximum desorbable quantity of K) in the second-order equation and the constant b in the first-order and Elovich equations to all five reference standards were highly significant (P ≤ 0.01). The constant a in the power function equation was highly significant (P 〈 0.01) for four of the five reference standards with the fifth being significant (P ≤ 0.05). The constant b in the parabolic equation was also significantly correlated (P ≤ 0.05) to the relative grain yield and soil HNO3-soluble K. These suggested that all of these parameters could be used to estimate the soil K supplying capacity and the crop response to K fertilizer.  相似文献   

12.
Poultry litter (PL) is an important nutrient source; however, no information is available regarding its value in supplying N and P in rice–wheat (RW) production. A three-year field study was conducted at Ludhiana, Punjab, India on a loamy sand soil to identify optimum combination of PL and N and P fertilizers for a sustainable RW production. The litter was applied to rice at 5 Mg ha−1 as a single application and supplemented with different rates of N. The residual effect of PL and the direct effects of the different combinations of N and P were studied in the following wheat. Nitrogen and P mineralization from PL was studied under controlled conditions in the laboratory, and macronutrient input–output balances were estimated from field results. About 46% of the N from PL was released after 60 days of incubation. The release of P from the PL occurred mainly during the initial 20 days after incubation, accounting for 15–17% of the total P. Combining PL with fertilizer N (40 kg ha−1) increased rice yield and nutrient uptake similar to what was obtained with the application of recommended fertilizer N (120 kg ha−1). In the following wheat, the residual effect of PL was equal to 30 kg N ha−1 and 13 kg P ha−1. After three annual cropping cycles and PL application, mean soil organic C increased by 17%, Olsen-P by 73%, and NH4OAc-extractable-K by 24%. Most treatments had positive P but negative K balances. About 11% of the net P balance was recovered from the soil as Olsen-P. The study showed that optimum N and P fertilizer doses for an RW system receiving 5 Mg ha−1 of PL are 40 kg N ha−1 for rice and 90 kg N + 13 kg P ha−1 for the following wheat. Safe and effective management of PL should be based on P balance, particularly when regular applications of PL are to be made in the RW system.  相似文献   

13.
Laboratory and greenhouse investigations were carried out with 65Zn-labeled sources to study the kinetics of desorption, transformation, and availability of Zn applied to soil as zinc-enriched biosludge from distillery molasses (ZEMB) or as zinc sulfate heptahydrate (ZSH). Desorption (0.5 to 72 h) of added Zn by the column method followed a biphasic kinetics with an initial (up to 12 h) faster phase followed by a slower desorption phase. The desorption rate coefficient (K) of the latter phase and the amount of Zn desorbed during 12 to 72 h were significantly higher with ZEMB than with ZSH. Sequential extraction of Zn added as ZEMB and ZSH showed that Zn added as ZEMB was present in higher proportion as water soluble + exchangeable, carbonate bound, organically bound, and reducible fractions than Zn applied as ZSH, which showed a higher proportion of residual fraction. Under greenhouse conditions, dry matter yield (35 days) and total Zn uptake by rice fertilized with ZSH applied at 5 kg Zn ha−1 were statistically similar to those of rice treated with 2.5 kg Zn ha−1 supplied as ZEMB. The highest Zn uptake (167.08 μg pot−1) by rice was recorded in the treatment with 5 kg Zn ha−1 as ZEMB. For wheat plants grown after the harvest of rice, significantly higher dry matter yield over control was recorded in the treatment with ZEMB applied at 5 kg Zn ha−1 to rice. Total Zn uptake by wheat was statistically similar for both ZEMB and ZSH treatments at 5 kg Zn ha−1 dose. Both zinc derived from fertilizer and the percent utilization of fertilizer Zn by rice and by the subsequent wheat crop were significantly higher with ZEMB than with ZSH. Patent filed No. 757/MUM/2007 dated 19.04.2007  相似文献   

14.
The present study was carried out on pot experiments with rice (Oryza sativa L. cv. Wuyujing 7) and winter wheat (Triticum aestivum L. cv. Yangmai 6) rotation in a sandy and a clayey soil fertilized with 15N-labeled ammonium sulfate (AS) and 15N-labeled rabbit feces so as to study the mechanisms of reduction of fertilizer N loss by organic fertilizers. The treatments included: (1) control without any N fertilizer application; (2) fertilization with 15N-labeled AS (IF); (3) fertilization with labeled rabbit feces (OF); (4) fertilization with either 40% 15N-labeled rabbit feces and 60% unlabeled AS (IOF1) or (5) 40% unlabeled rabbit feces and 60% 15N-labeled AS (IOF2). In the rice season, the IOF treatments compared to the IF treatment decreased the percentage of lost fertilizer N from the sandy and clayey soils, whereas it increased the percentage of fertilizer N, present as mineral N and microbial biomass N (MBN). During the second season, when soils were cropped to winter wheat, the IOF treatments in comparison with the IF or OF treatment increased mineral N and MBN contents of soils sampled at tillering, jointing, and heading stages, and such increases were derived from the organic N fertilizer in the sandy soil and from the inorganic N fertilizer in the clayey soil. The increased MBN in the IOF treatments was derived from inorganic fertilizers applied both soils. Therefore, in the IOF treatment, during the rice season, the organic N increased the immobilization of inorganic N in MBN, while the inorganic N fertilizer applied to both soils stimulated the uptake of organic N and the organic N fertilizer increased the uptake of inorganic N by winter wheat; the inorganic N increased the recovery of organic N in the plant-soil system after harvesting the winter wheat.  相似文献   

15.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

16.
This research was conducted to quantify total phosphorus (TP) losses in poorly drained-consolidated paddy fields equipped with different surface and shallow subsurface drainage systems including drain depth of 0.9 m and drain spacing of 30 m (D0.9L30), drain depth of 0.65 m and drain spacing of 30 m (D0.65L30), drain depth of 0.65 m and drain spacing of 15 m (D0.65L15), drain spacing of 15 m and drain depths of 0.65 and 0.9 m as alternate depths (Bilevel). Typical surface drainage system of consolidated paddy fields was also considered as conventional practice of the study area (control). The subsurface drained fields were under year-round crop production of rice-canola, while the surface drained fields experienced only rice cropping once a year. During three rice-canola-rice growing seasons, TP losses through drainage and leaching in the D0.9L30, Bilevel, D0.65L30, D0.65L15 and control treatments were respectively, 1.12, 0.98, 1.44, 1.53 and 24.48 kg ha?1, equivalent to about 3.9%, 3.4%, 5.1%, 5.3% and 85.7% of applied triple superphosphate fertilizer. In the rice growing seasons, TP losses through surface runoff were higher than those through subsurface drainage effluents. Shallow subsurface drainage systems were promising for the study area compared surface drainage as phosphorus risks were reduced by 79%, 77%, 64% and 57% through D0.9L30, Bilevel, D0.65L30 and D0.65L15, respectively. These results demonstrated that, by providing suitable condition for winter cropping, subsurface drainage systems can diminish concerns related to phosphorus losses from poorly drained paddy fields in the north of Iran.  相似文献   

17.
With P being a non-renewable resource, the use of microbial inoculants and waste products for more efficient and sustainable P use in plant production has been proposed. We investigated the ability of Penicillium bilaii to mobilize P in a low-fertility soil with or without amendment of sewage sludge as additional P source. Maize was grown for 27 days in rhizoboxes enabling studies of root growth in addition to plant and soil parameters. P. bilaii was inoculated either at the seed or the sewage sludge patch. At early growth stages, P. bilaii inoculation of seeds increased maize shoot length. However, at the end of experiment, the effect had ceased. Root growth was increased by seed P. bilaii inoculation alone and in combination with sewage sludge, whereas patch inoculation was less effective. Colonization studies performed at harvest showed that P. bilaii could not be detected in the maize rhizosphere but stayed at the place of inoculation. In sewage sludge patches, the growth of Penicillium strains other than P. bilaii was stimulated; hence, using sewage sludge for combined P resource and carrier of microbial inoculants is discussed. Unexpectedly, the greater root development of seed-inoculated plants did not result in increased plant P uptake and neither did inoculation at the sewage sludge patch. This study raises the question if the soil P status can be too low for a beneficial effect of additional early root growth and thus a beneficial effect of seed inoculation of P. bilaii.  相似文献   

18.
A 2-year field experiment was conducted to determine crop yield and N use efficiency (NUE) from a saline–sodic soil (clay loam) with and without application of gypsum. Treatments included two N application rates (15% and 30%) higher than the recommended one to the normal soil, and gypsum added at 50% and 100% of soil gypsum requirement (SGR) to the saline–sodic soil, both cultivated with rice and wheat during 2011–2013. Results revealed a decrease in pH of saturated soil paste (pHs), electrical conductivity of saturation extract (ECe), sodium adsorption ratio (SAR) and exchangeable sodium percentage with N fertilizer along with gypsum application in saline–sodic soil. However, the effect was most prominent when gypsum was added at 50% of SGR. Crop yield and NUE remained significantly lower (p < 0.05) in saline–sodic-soils as compared to normal soil. However, gypsum application reduced this difference from 47% to 17% since both yield and NUE increased considerably. Crop yield and NUE remained higher for wheat than for rice. During first year, higher doses of N with gypsum application at 50% SGR proved most effective, whereas, in subsequent year, recommended N along with gypsum at 50% SGR became more profitable. All these results lead us to conclude that gypsum application can ameliorate saline–sodic soil thereby increasing crop yield and NUE.  相似文献   

19.
20.
For the purpose of studying the contamination, bioaccumulation and transfer of heavy metals and understanding the effects of soil properties on these, the work was carried out on a regional scale. A total of 30 sets of soil and pairing rice tissues samples (root, straw and grain) were collected in Xiangzhou of Guangxi, China; soil properties and Cd, Cu, Pb and Zn of different rice tissues were analyzed. The mobility and bioaccumulation of Cd, Cu, Pb and Zn were assessed by transfer coefficients and bioaccumulation factors of them. The results indicated that the excess proportions of Cd and Pb were 50%, 3.33% and 30%, 6.67% in soil and rice grain, respectively, according to Chinese maximum permitted concentrations of heavy metals. Cd and Zn showed stronger bioaccumulation and mobility capability; the bioaccumulation and transfer of Cu were slightly lower than Cd and Zn; Pb had the weakest mobility. The bioaccumulation and mobility of heavy metals from soil to rice were restrained by soil pH, CaO, SOC, Fe oxides and Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号