首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于拉瓦尔效应的超音速喷嘴雾化性能分析与试验   总被引:1,自引:0,他引:1  
为提高喷嘴的雾化性能,得到理想的雾滴粒径和均匀的雾云分布,该文首先对超音速雾化喷嘴的雾化原理进行了分析,应用拉瓦尔喷管超音速原理,对雾化喷嘴内部阀芯的锥形结构作了改进,结合Fluent流体动力学软件,分析了拉瓦尔式阀芯结构内部流场速度分布规律,然后通过喷雾试验对比分析了改进前后喷嘴的雾化效果,并探究了不同运行参数对拉瓦尔式结构喷嘴雾化性能的影响规律。数值仿真结果表明,拉瓦尔式阀芯能够产生超音速气流,对增大气液两相速度差具有显著效果;试验结果表明,改进后的拉瓦尔式喷嘴在雾化性能和效果上优于原锥形式喷嘴,气压和气液压力比的增大以及水压的减小均有利于雾滴粒径的减小,其中气液压力比在0~3区间内,雾滴粒径下降幅度高达90.56%,当气液压力比为6时,雾滴粒径达到最小值18.52μm。该文研究内容可为超音速雾化喷嘴进一步研究以及新型喷雾设备的研发提供参考。  相似文献   

2.
航空施药旋转液力雾化喷头性能试验   总被引:13,自引:6,他引:7  
无人机航空喷雾将会在未来几年的植物病虫害防治作业中发挥重要作用。为实现无人机低空、低量、高功效的喷洒需求,该文针对兼备液力雾化和离心雾化优点的旋转液力雾化喷头进行了性能试验研究,利用喷头雾化性能测试系统对喷孔直径、喷雾压力、电机转速因素对喷头雾滴粒径、沉积分布、喷幅和功率消耗的影响进行了试验研究。结果显示,喷头旋转电机电压相比喷孔直径、喷雾压力参数对雾滴粒径影响更显著,随着电机电压增加,雾滴粒径变小,雾化效果好;电机电压对幅宽也有明显影响,随着电极电压增加,喷雾角度变大,幅宽明显增加,雾滴沉积量在喷幅范围内呈现正态分布。通过试验结果优选出适合无人机的旋转液力雾化喷头的最佳工作参数:电机电压为10 V,喷雾压力为0.35 MPa,喷嘴孔径是0.7 mm,该工作参数下,液泵功率消耗率最低,雾滴平均粒径为112.35μm,喷幅为3.88 m,电机功率消耗为8.6 W。该文的研究结果为开发适用于无人机的新型喷洒雾化装置,提高无人机作业质量和喷洒功效提供理论依据和技术支持。  相似文献   

3.
远射程风送式喷雾机风场中雾滴粒径变化规律   总被引:1,自引:1,他引:0  
对风送式喷雾机的研究集中在喷雾机结构的优化、雾滴沉积、雾滴飘移及回收方面,但远射程风送式喷雾机雾滴在空间风场中的变化规律尚未明确。该文以远射程风送式喷雾机为试验平台,研究雾滴由喷嘴喷出后在风力的裹挟运动过程中雾滴参数(主要指粒径或直径)在喷幅内和射程内的变化规律。结果表明,远射程喷雾机喷出的雾滴粒径均大于50μm,雾滴中粒径大于400μm的粗雾滴体积累计所占的百分比在0.4%以下;在远射程风送式喷雾机方向水平喷出的雾滴柱中,距离喷嘴7、8、9 m处的7个高度上,雾滴体积中值直径呈现出从上到下逐渐变大的规律;雾滴在风场中向前运动的过程中,雾滴体积中值直径的变化分为3个阶段:近出风口处高速气流对雾滴的破碎使得雾滴体积中值直径变小;在中速气流作用下,雾滴之间发生碰撞与聚合,雾滴体积中值直径变大;低速气流使雾滴发生扩散弥漫、浓度变低,雾滴体积中值直径在空气的蒸发作用下变小;风场中的雾滴谱分布中出现了2个谱峰。研究可为远射程风送式喷雾机的喷雾技术参数的优化提供参考。  相似文献   

4.
农用无人机超低容量旋流喷嘴的雾化特性分析与试验   总被引:9,自引:5,他引:4  
针对农用植保无人机超低容量喷施作业时,使用液力喷嘴产生的雾滴粒径较大,离心喷嘴结构复杂、价格较高等不足,基于旋流雾化的原理并采用模块化方法,提出了一种超低容量旋流喷嘴结构。通过对旋流喷嘴内流场的流体动力学行为和雾化特性进行数值分析与试验,明确了流体的物理特性和旋流喷嘴的结构参数等对雾化性能的影响规律。研究结果表明,液膜表面的正弦波失稳是导致锥形液膜碎化为雾滴的主要原因,在旋流喷嘴的结构参数中,喷嘴出口直径是喷嘴雾化性能的主要影响因素。当喷嘴出口直径从1增大至1.5 mm,喷雾流量平均增大了46.23%,喷雾角平均增大了29.77%,产生雾滴的索特平均直径平均增大了15%。此外,喷雾流量还与旋流槽数量成比例,旋流槽的螺旋角主要影响喷雾角。喷嘴入口处的流体相对压强则对喷雾角及雾滴粒径有较大的影响,其中喷雾角随着相对压强的增大而增大,而雾滴的索特平均直径随压强的增大呈非线性递减,当流体的相对压强从70增大至160 k Pa时,系列化旋流喷嘴的索特平均直径降低了约25%~35%。此外对于旋流喷嘴而言,流体黏度的增大会导致喷雾角的减小,但适当增加流体的黏度(不超过纯水黏度的200%)可显著降低雾滴的平均粒径,提高喷嘴的雾化质量。该研究可为农用无人机超低容量变量喷洒系统的研发提供参考。  相似文献   

5.
喷雾助剂类型及浓度对喷头雾化效果影响   总被引:8,自引:5,他引:3  
为达到农药减施增效的目的,助剂逐渐成为农药喷洒过程中必不可少的部分,其效果及浓度直接影响着施药过程中农药利用率。为探索不同助剂及浓度对喷头雾化效果的影响,该文利用激光粒度仪比较分析了IDK120-025型和LU120-015型喷头喷施不同浓度典型增效剂意欧、减量增产助剂激健、尿素时,其雾滴体积中径及雾滴分布相对跨度差异。两款喷头应用广泛,喷雾角度相同、喷腔雾化结构相异。结果表明:3种助剂溶液对IDK120-025型喷头的影响效果相比于LU120-015型喷头更为显著,但是LU120-015喷头喷雾雾滴均匀性较优于IDK120-025。激健溶液配比为1:3 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加20.43%,粒径分布相对跨度减小1.74%;意欧溶液配比为1:2 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加11.10%,粒径分布相对跨度减小8.86%;意欧溶液配比1:3 000时,在0.2 MPa喷雾压力条件下,与水相比可将LU喷头雾滴体积中径减小5.99%,粒径分布相对跨度增大1.56%;尿素溶液在配比1:2 000时,在0.4 MPa喷雾压力条件下,与水相比可将IDK喷头雾滴体积中径增加16.92%,粒径分布相对跨度减小6.92%。该试验可为田间农药施用中助剂及喷头的选择提供依据,为进一步研究喷头及助剂提供数据基础。  相似文献   

6.
脉宽调制变量控制喷头雾化性能及风洞环境雾滴沉积特性   总被引:7,自引:7,他引:0  
脉宽调制(pulse width modulation, PWM)技术是实现变量喷雾的重要手段,其工作参数与环境条件决定着施药的精准性。为探究PWM变量喷头雾化及风洞环境沉积特性,该文研制了脉宽调制变量喷雾系统,以农业施药常用空心圆锥雾化喷头喷雾的雾化、沉积特性为研究对象,在IEA-II型常规风速风洞内,通过点阵式放置电容式雾滴沉积传感器测定计算雾滴沉积与沉积评价指数(deposition evaluation index,DEIX),并利用Spraytec雾滴粒径仪测试其雾滴体积中径(volume median diameter,VMD)和雾滴相对分布跨度(relative span,RS)。试验结果表明:占空比在10%~40%间,随占空比增大,雾滴体积中径呈减小趋势,与占空比10%时相比,占空比40%时的雾滴体积中径下降了7.9%;PWM占空比60%时分布跨度最小,较占空比20%时雾滴分布跨度下降9.52%,雾滴谱最窄,获得的雾滴粒径分布最集中。雾滴沉积方面,风速1 m/s条件下,雾滴主要沉积在距喷头3.3 m内,此范围内沉积量占总沉积量的95.7%,当风速超过3 m/s时,在气流作用下,雾滴沉降距离增大,导致雾滴运动偏离施药靶标区域。PWM占空比增加,雾滴沉积评价指数DEIX值降低,雾滴的飘移率增大;相同工况下,风速及喷头高度越大,DEIX越小,施药雾滴越易飘移。该研究可为农业田间实际生产中脉宽调制变量施药技术应用及其工况参数的选择提供依据,为PWM变量调节装置的进一步优化提供研究基础。  相似文献   

7.
气液两相流流型影响喷嘴喷雾形态及液滴粒径分布   总被引:2,自引:1,他引:1  
为了获得气泡雾化喷嘴内不同气液两相流流型对喷雾形态及液滴粒径分布的影响规律,该文建立了气泡雾化喷雾可视化试验系统,采用试验方法获得喷嘴内气液两相流流型及宏观喷雾形态;该文建立了喷嘴内和喷雾场中气液流动模型。研究结果表明,泡状流时喷孔出口含气率呈周期振荡衰减且含气率较低,搅拌流时喷孔出口截面含气率脉动幅度及其变化较小且含气率较高(较泡状流高1倍);搅拌流时喷雾形态脉动不明显,喷雾半锥角分布比较集中,而泡状流时正好相反,搅拌流时喷雾半锥角在8°~14°范围内的占比超过70%,而泡状流不到40%。搅拌流时喷孔出口附近液滴粒径分布更加集中且随轴向距离增加分布范围变化更大,液滴平均粒径比泡状流小4%左右;在喷孔出口附近,搅拌流时液滴粒径标准差明显小于泡状流时液滴粒径标准差,较泡状流小30%以上;不同气液两相流流型时液滴粒径分布的差异随轴向距离的增加而减小。研究结果可为气泡雾化喷射技术的发展以及不同领域喷嘴内流型的合理选择提供一定的理论和试验依据。  相似文献   

8.
压力及孔径对管道喷雾空心圆锥雾喷头雾滴参数的影响   总被引:1,自引:0,他引:1  
雾滴参数是衡量喷雾效果的重要指标。为研究管道喷雾设施中喷雾压力与喷头孔径的改变对果园用空心圆锥雾喷头雾滴参数的影响,通过喷雾性能综合试验平台和激光粒度仪,测量3种孔径的空心圆锥雾喷头在8种压力下的雾滴颗粒群的散射谱,获得了雾滴参数随压力和孔径的变化规律,给出了各工况下的雾滴谱曲线,分析了雾滴粒径的大小、分布和均匀性,建立了基于压力和孔径的雾滴参数模型。结果表明:压力越大,孔径越小,雾滴越细小越均匀;数据拟合误差均小于0.012;雾滴均较细小且较均匀,主要以气溶胶的形式存在;主要是粒径小于40μm的雾滴(79.659%~93.374%);雾滴谱峰值均在30μm附近出现;压力大于0.80 MPa后喷雾效果更好,其中体积中值粒径(volume median diameter,VMD)为30.610~31.632μm,雾滴很细小,扩散比(diffusion ratio,DR)为0.901~0.916,雾滴很均匀,VMD和DR均随压力呈二次多项式变化规律(R~2均大于0.968),VMD和DR与孔径和压力均有良好的二元线性关系(R~2分别为0.928和0.937)。研究结果验证了研发管道恒压喷雾装置的重要性,为喷头选型,管道恒压喷雾装置的优化、喷雾压力的设定和喷雾效果的优化提供了参考。  相似文献   

9.
为了获得GP-81A系列航空喷头的雾滴粒径分布情况,该文针对GP-81A系列航空喷头进行了风洞条件和飞行条件下的雾滴粒径及分布测试,通过高速风洞测试系统模拟飞行时产生的高速气流开展了气流大小对雾滴粒径及分布的影响研究;基于农用航空常用的Y5B飞机开展了不同型号喷嘴航空喷雾时的雾滴粒径及分布研究;同时,比较了相近喷雾压力条件下,相同喷嘴在风洞条件和飞行条件下的雾滴粒径及分布差距。试验结果表明,风洞条件测试时,当风速小于33.8 m/s时,雾滴粒径随气流的增加而增大;而当风速大于33.8 m/s时,雾滴粒径随气流的增加而减小,足够大的气流可以使雾滴进一步雾化。当气流在33.8 m/s时,7#喷嘴雾滴粒径最大,为491.1μm;当气流在84.87 m/s时,2#喷嘴雾滴粒径最小,为202.1μm。该系列喷头的6种不同喷孔的喷头的雾滴粒径均大于150μm,说明该喷头航空喷雾时的飘移损失较小。在喷雾压力基本相同的条件下,风洞条件下的雾滴粒径测试结果略高于飞行试验结果,主要原因是距离喷头出口的测试位置不同。风洞条件和飞行条件下的雾滴谱相对宽度S值均较小,表明雾滴分布较均匀,而飞行条件下的雾滴分布更均匀些。该研究为进一步优化航空喷头的作业参数,开展减少雾滴飘移研究提供参考。  相似文献   

10.
微型指数振子低频超声雾化喷头的研制及喷雾试验   总被引:3,自引:3,他引:0  
针对现有低频超声雾化喷头存在驱动电压高、工作效率低、电路和喷头发热严重以及体积较大等缺点,该文研制了一种工作频率为60kHz的微型指数振子超声雾化喷头及喷头的驱动电路。根据频率方程确定了喷头的基本尺寸,建立了喷头的有限单元模型,根据该模型进行了喷头的模态分析和谐响应分析,该喷头的谐振频率计算值为61550Hz,驱动电压为36V时雾化面振幅计算值为8μm;应用阻抗分析仪Pvc70A和激光微位移传感器CD5-L25对该喷头样机的谐振频率和雾化面的振幅进行了测试,喷头谐振频率的测试值为59699 Hz,与设计频率的相差0.5%,与有限元模态计算的频率相差3.0%,驱动电压为36V时振幅的测试值为8.63μm,与有限元谐响应分析结果相差7.8%;应用Winner318B工业喷雾激光粒度分析仪对驱动电压分别为36和30 V喷头所产生的雾滴尺寸进行了测量,测量结果表明,电压对雾滴粒径分布没有显著影响,但是对最大雾化量影响较大;与28 kHz的超声雾化喷头相比,喷头的最大雾化量基本一致,体积和质量分别仅为28kHz超声雾化锥状喷头的5.54%和9.81%,并且其产生的雾滴更细。  相似文献   

11.
Somatic chromosome numbers of 131 accessions belonging to 55 Paspalum species from subtropical South America have been determined. All species had x = 10 as a basic chromosome number, except P. almum which had x = 6. Six ploidy levels were found among species with tetraploidy as the most frequent condition. New diploid and octoploid counts were reported. For Paspalum lilloi and P. glabrinode (both 2n = 2x = 20), and for P. ellipticum, P. erianthoides, P. ovale and P. remotum (all 2n = 8x = 80) sporophytic chromosome numbers are presented for the first time. Records that differ from previously reported counts are given for the following species: P. paucifolium (2n = 2x = 20), P. ceresia (2n = 6x = 60), P. conjugatum (2n = 6x = 60), P. alcalinum (2n = 6x = 60) and P. aff. arundinellum (2n + 1 = 5+ 1 = 51). These chromosome data are discussed in light of ploidy-level variation and implications for breeding systems within and among species.  相似文献   

12.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

13.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

14.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

15.
Nitrogen fertilizers promote denitrification   总被引:8,自引:0,他引:8  
A laboratory study was conducted to compare the effects of different N fertilizers on emission of N2 and N2O during denitrification of NO3 in waterlogged soil. Field-moist samples of Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) were incubated under aerobic conditions for 0, 2, 4, 7, 14, 21, or 42 days with or without addition of unlabelled (NH4)2SO4, urea, NH4H2PO4, (NH4)2HPO4, NH4NO3 (200 or 1000 mg N kg–1 soil), or liquid anhydrous NH3 (1000 mg N kg–1 soil). The incubated soil samples were then treated with 15N-labelled KNO3 (250 mg N kg–1 soil, 73.7 atom% 15N), and incubation was carried out under waterlogged conditions for 5 days, followed by collection of atmospheric samples for 15N analyses to determine labelled N2 and N2O. Compared to samples incubated without addition of unlabelled N, all of the fertilizers promoted denitrification of 15NO3 . Emission of labelled N2 and N2O decreased in the order: Anhydrous NH3>urea<$>\gg<$> (NH4)2HPO4>(NH4)2SO4≃NH4NO3≃NH4H2PO4. The highest emissions observed with anhydrous NH3 or urea coincided with the presence of NO2 , and 15N analyses indicated that these emissions originated from NO2 rather than NO3 . Emissions of labelled N2 and N2O were significantly correlated with fertilizer effects on soil pH and water-soluble organic C. Received: 17 January 1996  相似文献   

16.
Emissions of N2O were measured following addition of 15N-labelled (2.6-4.7 atom% excess 15N) agroforestry residues (Sesbania sesban, mixed Sesbania/Macroptilium atropurpureum, Crotalaria grahamiana and Calliandra calothyrsus) to a Kenyan oxisol at a rate of 100 mg N kg soil−1 under controlled environment conditions. Emissions were increased following addition of residues, with 22.6 mg N m−2 (124.4 mg N m−2 kg biomass−1; 1.1 mg 15N m−2; 1.03% of 15N applied) emitted as N2O over 29 d after addition of both Sesbania and Macroptilium residues in the mixed treatment. Fluxes of N2O were positively correlated with CO2 fluxes, and N2O emissions and available soil N were negatively correlated with residue lignin content (r=−0.49;P<0.05), polyphenol content (r=−0.94;P<0.05), protein binding capacity (r=−0.92;P<0.05) and with (lignin+polyphenol)-to-N ratio (r=−0.55;P<0.05). Lower emission (13.6 mg N m−2 over 29 d; 94.5 mg N m−2 kg biomass−1; 0.6 mg 15N m−2; 0.29% of 15N applied) after addition of Calliandra residue was attributed to the high polyphenol content (7.4%) and high polyphenol protein binding capacity (383 μg BSA mg plant−1) of this residue binding to plant protein and reducing its availability for microbial attack, despite the residue having a N content of 2.9%. Our results indicate that residue chemical composition, or quality, needs to be considered when proposing mitigation strategies to reduce N2O emissions from systems relying on incorporation of plant biomass, e.g. improved-fallow agroforestry systems, and that this consideration should extend beyond the C-to-N ratio of the residue to include polyphenol content and their protein binding capacity.  相似文献   

17.
To increase wetland acreage and biodiversity, Delaware agencies constructed >220 depressional wetlands. During construction, agencies included amendments thought to increase biodiversity. Because the efficacy of amendments is unknown, we investigated their effects on macroinvertebrate and vegetative communities. We selected 20 standardized wetlands (five contained coarse woody debris (CWD) and microtopography amendments (land surface ridges and furrows), five had neither, five had CWD only, and five had microtopography only). Additionally, 12 wetlands had received organic matter amendments (i.e., straw). Insect richness (P = 0.010; r2 = 0.16), insect biomass (P = 0.023; r2 = 0.13), intolerant insect biomass (P = 0.033, r2 = 0.03), Ephemeroptera biomass (P = 0.027; r2 = 0.12), and Odonata biomass (P = 0.046; r2 = 0.10) increased with CWD volume. Obligate plant percent cover increased with microtopographic variation (P = 0.029; r2 = 0.120). Although organic matter amendments did not increase percent soil organic matter (t13.7 = −1.16, P = 0.264), total (P = 0.027; r2 = 0.12), native (P = 0.036; r2 = 0.11), and facultative (P = 0.001; r2 = 0.24) plant richness increased with percent soil organic matter. To enhance biodiversity, constructed wetlands should contain CWD, but additional research is needed to understand the benefits of microtopography and organic matter amendments.  相似文献   

18.
Enchytraeids are involved both directly and indirectly in decomposition processes and nitrogen mineralization in soil. Their influence is especially important in nitrogen poor ecosystems such as heathland where the enchytraeid species, Cognettia sphagnetorum, is often abundant and playing a significant role in the N-cycling. The objective of this study was to quantify NH4+-N excretion of C. sphagnetorum at different temperatures. The results were combined with investigations of population dynamics during one year to estimate annual NH4+-N excretion of the population of C. sphagnetorum in a dry Danish heath soil. C. sphagnetorum significantly increased its NH4+-N excretion rate with increasing temperature. At 5 °C about 0.5 μg NH4+-N mg dry weight−1 day−1 was excreted increasing to about 3.3 μg NH4+-N mg dry weight−1 day−1 at 20 °C. Average enchytraeid biomass in the field was 2.5-3.5 g dry weight m−2 during cool and wet periods. Dry and warm conditions in May and June, 2008, had a drastic and long-term negative impact on the enchytraeid community. The excretion of NH4+-N by enchytraeids was therefore highest during the cool and moist months despite low temperatures (October 2007-May 2008) and amounted to about 2 mg NH4+-N m−2 day−1 during this period. The estimated annual NH4+-N excretion of the enchytraeid community was approximately 0.3 g N m−2 year−1. The results of the present study and the method described for estimation of N-excretion can increase our understanding of enchytraeids’ role in nitrogen mineralization.  相似文献   

19.
Hybrid geostatistical prediction methods incorporate (i) spatially-explicit soil observations and exhaustive grids of ancillary environmental variables (e.g. derived from remote sensing), (ii) spatial autocorrelation, (iii) spatial covariation, and/or (iv) combinations of the above. In numerous studies of terrestrial soils it has been shown that hybrid geostatistical methods outperform univariate spatial and regression (aspatial) methods. However, hybrid methods have rarely been employed to predict soil properties in wetlands. In this study we used spectral data and derived indices from two remote sensors (Landsat ETM+ and ASTER), with different spatial resolutions, from different seasons, but with similar spectral range, ancillary environmental data, as well as floc and soil total phosphorus (TP) observations from 111 sites. The specific objective of our study was to evaluate the performance of aspatial methods (multivariate regressions — REG), univariate spatial (Ordinary Kriging — OK) and hybrid/multivariate geostatistical methods (Regression Kriging — RK and Co-kriging — CK) in predicting the spatial variability and distribution of floc and soil TP in a subtropical wetland, WCA-2A, in the Florida Everglades. Measured floc TP ranged from 194 to 1865 mg kg− 1 with a median of 751 mg kg− 1 and standard deviation (SD) of 381 mg kg− 1. According to cross-validation, predictions for floc TP based on the root mean square prediction error (RMSE) were best in the following order: RKquadratic (134.9) > RKmultivariate (201.1) > OK (206.1) > CK (212.1) > REGmultivariate (218.3) > REGquadratic (220.3) > REGlinear (264.4); and based on the mean prediction error (ME) followed the order RKmultivariate (0.9)  RKquadratic (1.1) > CK (− 6.7) > REGmultivariate (18.2) > REGlinear (25.1) > OK (− 27.3) > REGquadratic (27.3). The Normalized Difference Vegetation Index (NDVI)-green derived from Landsat ETM+ showed the largest predictive power for floc TP. Measured soil TP ranged from 155 to 1702 mg kg− 1 with a median of 433 mg kg− 1 and standard deviation of 316 mg kg− 1. Predictions for soil TP based on RMSE were best in the following order: RKASTER (200.1) > CKASTER (238.2)  CKETM (239.0) > OK (258.0) > RKETM (279.2) > REGASTER (281.8) > REGETM (356.1); and based on ME followed the order: CKASTER (0.1)  CKETM (0.2) > RKASTER (− 5.2) > RKETM (− 31.5) > OK (− 41.8) > REGASTER (94.4) > REGETM (133.7). The NDVI showed the largest predictive power for soil TP. This comparative study in a subtropical wetland demonstrated the benefits of incorporating remote sensing data into floc and soil TP prediction models. Overall, hybrid geostatistical methods (CK and RK) performed better than regressions and spatial univariate models (OK) in the prediction of floc and soil TP. Depending on the strength of the spatial covariance between primary and secondary variables (CK) and the ability of the regression model in RK to explain the variability of a target variable (e.g., floc or soil TP), either CK or RK performed best. Our findings in this wetland confirmed results from earlier studies on terrestrial soils indicating the superior performance of hybrid geostatistical methods in predicting soil properties.  相似文献   

20.
Quantifying the loss of soil carbon through respiration has proved difficult, due to the challenge of measuring the losses associated with the turnover of soil organic matter (SOM) as distinct from autotrophic components. In forest ecosystems the δ13C value of respiration from turnover of SOM (δ13CRSOM) is typically 2-4‰ enriched compared with that from roots and associated microbes (δ13CRROOTS), with that from the litter (δ13CRLITTER) lying between the two. We measured soil respiration at 50 locations in a forest soil and then used differences in isotopic signatures to quantify the proportion of soil respiration arising from the turnover of SOM (fRSOM) at a subset of 30 locations, chosen randomly. The soil surface CO2 efflux was collected using an open chamber system supplied with CO2-free air and the δ13C signature (δ13CRS) measured, giving a mean (±SD) value across the site of −26.1 ± 0.58‰. The values of δ13CRROOTS, δ13CRLITTER and δ13CRSOM were measured at each location by incubation of roots, litter and root-free soil and collection of the CO2 for isotopic analysis. δ13CRSOM became progressively depleted with length of incubation (1.5‰ after 8 h), so CO2 was collected after 20 min. The mean value of δ13CRLITTER was −27.2 ± 0.68 ‰, which was indistinguishable from δ13CRROOTS of −27.6 ± 0.51‰, while δ13CRSOM was −25.1 ± 0.88‰. δ13CRROOTS and δ13CRSOM measured at each location were used as the end points of a two component mixing model to calculate fRSOM, giving a mean value for fRSOM of 0.61 ± 0.28. It was not possible to estimate fRSOM using the total C contents of the roots and soil which were significantly depleted in 13C in comparison to their respired CO2. However, at seven locations the δ13CRS was slightly enriched compared with δ13CRSOM (mean 0.3‰), which was not considered significantly different so fRSOM was constrained to 1.0. If these seven rings were excluded mean fRSOM was 0.49 ± 0.20. We have shown the possibility of using natural abundance 13C discrimination to quantify fRSOM in a forest soil with an input of carbon only from C3 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号