首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
The antioxidant hesperidin, a major flavonoid in sweet orange and lemon, was evaluated using chemical and biological systems. The chemical assay evaluates the hesperidin capacity to sequester 1,1-diphenyl-2-picrylhydrazyl (DPPH*). Biological studies were done using the eukaryotic cells of superoxide-dismutase proficient and deficient strains of Saccharomyces cerevisiae treated with hesperidin and the stressing agents hydrogen peroxide or paraquat (methylviologen; 1,1'-dimethyl-4,4'-bipyridinium dichloride). Hesperidin was able to reduce significantly the level of the free radical DPPH* with similar efficacy of trolox (positive control). When the yeast cells were exposed to the flavonoid hesperidin before the stressing agents, there was a significant increase in the survival of all strains. Paraquat induced higher catalase and superoxide dismutase than did hydrogen peroxide, which only increased catalase activity. Previous addition of hesperidin to these treatments was able to reduce significantly both enzymatic levels. These observations clearly demonstrate that hesperidin provides strong cellular antioxidant protection against the damaging effects induced by paraquat and peroxide hydrogen.  相似文献   

2.
Naringin/neohesperidin ratios can be used to differentiate orange juice which may contain added grapefruit juice from orange juice which may include juices from other naringin-containing cultivars. The naringin/neohesperidin ratios in juice vary from 14 to 83 in grapefruit (C. grandis) and from 1.3 to 2.5 in sour orange (C. aurantium) cultivars; the ratio is always less than 1 for the K-Early tangelo. Concentrations of both naringin and neohesperidin can be determined in orange juice by using a single liquid chromatographic isocratic reverse-phase system with a C-18 column. The detection limit for both compounds is 1 ppm with a linear working range to 500 ppm. Concentration relative standard deviations range from 0.47 to 1.06% for naringin and from 0.4 to 1.27% for neohesperidin. Naringin and neohesperidin recoveries ranged from 93 to 102% at concentrations of 5 and 50 ppm. Naringin values from blind duplicate samples of orange/grapefruit juice blends could be duplicated to +/- 3%.  相似文献   

3.
Apple peels as a value-added food ingredient   总被引:6,自引:0,他引:6  
There is some evidence that chronic diseases, such as cancer and cardiovascular disease, may occur as a result of oxidative stress. Apple peels have high concentrations of phenolic compounds and may assist in the prevention of chronic diseases. Millions of pounds of waste apple peels are generated in the production of applesauce and canned apples in New York State each year. We proposed that a valuable food ingredient could be made using the peels of these apples if they could be dried and ground to a powder without large losses of phytochemicals. Rome Beauty apple peels were treated with citric acid dips, ascorbic acid dips, and blanches before being oven-dried at 60 degrees C. Only blanching treatments greatly preserved the phenolic compounds, and peels blanched for 10 s had the highest total phenolic content. Rome Beauty apple peels were then blanched for 10 s and dried under various conditions (oven-dried at 40, 60, or 80 degrees C, air-dried, or freeze-dried). The air-dried and freeze-dried apple peels had the highest total phenolic, flavonoid, and anthocyanin contents. On a fresh weight basis, the total phenolic and flavonoid contents of these samples were similar to those of the fresh apple peels. Freeze-dried peels had a lower water activity than air-dried peels on a fresh weight basis. The optimal processing conditions for the ingredient were blanching for 10s and freeze-drying. The process was scaled up, and the apple peel powder ingredient was characterized. The total phenolic content was 3342 +/- 12 mg gallic acid equivalents/100 g dried peels, the flavonoid content was 2299 +/- 52 mg catechin equivalents/100 g dried peels, and the anthocyanin content was 169.7 +/- 1.6 mg cyanidin 3-glucoside equivalents/100 g dried peels. These phytochemical contents were a significantly higher than those of the fresh apple peels if calculated on a fresh weight basis (p < 0.05). The apple peel powder had a total antioxidant activity of 1251 +/- 56 micromol vitamin C equivalents/g, similar to fresh Rome Beauty peels on a fresh weight basis (p > 0.05). One gram of powder had an antioxidant activity equivalent to 220 mg of vitamin C. The freeze-dried apple peels also had a strong antiproliferative effect on HepG(2) liver cancer cells with a median effective dose (EC(50)) of 1.88 +/- 0.01 mg/mL. This was lower than the EC(50) exhibited by the fresh apple peels (p < 0.05). Apple peel powder may be used in a various food products to add phytochemicals and promote good health.  相似文献   

4.
The major flavanone-7-O-glycoside constituents in citrus fruit juices (naringin, hesperidin, neohesperidin, narirutin, and eriocitrin) were separated as diastereomers by multidimensional liquid chromatography. The method consisted of coupling two HPLC columns: a reversed-phase (RP(18)) column was used for the separation of flavanone glycosides, which were, then, individually switched into a carboxymethylated beta-cyclodextrin (beta-CD)-based column and resolved as the corresponding stereoisomers. The method was used for the full analysis of flavanone glycosides in fresh hand-squeezed and commercial fruit juices by combining the quantitative estimation with the diastereomeric analysis. Quantitative data were in general consistent with previously reported data in this field. CC-LC isomer analysis was carried out by coupling the beta-CD column with a mass spectrometer operated with negative ion electrospray ionization (ESI-MS). The results showed that hesperidin was present in orange juices almost exclusively as the 2S isomer, whereas narirutin had mainly the 2R configuration. In grapefruit juices (2S)-naringin prevailed with the respect to the 2R isomer, whereas the opposite was true for narirutin. Lemon juices contained eriocitrin stereoisomers in equal amount (50% each), but hesperidin was almost exclusively found as the 2S isomer. Significant differences of the diastereomeric ratios were observed between freshly squeezed juices and juices from commercial sources.  相似文献   

5.
6.
The citrus flavanones hesperidin, hesperetin, and neohesperidin are known to exhibit antioxidant activities and could traverse the blood-brain barrier. H2O2 formation induces cellular oxidative stress associated with neurodegenerative diseases. In this study, protective effects of pretreatments (6 h) with hesperidin, hesperetin, and neohesperidin (0.8, 4, 20, and 50 microM) on H2O2-induced (400 microM, 16 h) neurotoxicity in PC12 cells were evaluated. The results showed that hesperetin, hesperidin, and neohesperidin, at all test concentrations, significantly ( p < 0.05) inhibited the decrease of cell viability (MTT reduction), prevented membrane damage (LDH release), scavenged ROS formation, increased catalase activity, and attenuated the elevation of intracellular free Ca2+, the decrease of mitochondrial membrane potential (except those of 0.8 microM neohesperidin-treated cells) and the increase of caspase-3 activity in H2O2-induced PC12 cells. Meanwhile, hesperidin and hesperetin attenuated decreases of glutathione peroxidase and glutathione reductase activities and decreased DNA damage in H2O2-induced PC12 cells. These results first demonstrate that the citrus flavanones hesperidin, hesperetin, and neohesperidin, even at physiological concentrations, have neuroprotective effects against H2O2-induced cytotoxicity in PC12 cells. These dietary antioxidants are potential candidates for use in the intervention for neurodegenerative diseases.  相似文献   

7.
为改善目前宽皮柑橘加工业中以手工去皮为主的现状,提高柑橘剥皮效率,该文根据宽皮柑橘果皮包着宽松,易与果肉分离等特点,设计了一种可以实现快速去皮的宽皮柑橘对辊式剥皮机。柑橘进入设备后,在刮板的带动下翻转向前运动,运动过程中不同形式且相向转动的剥皮辊夹持并撕扯翻起的果皮,从而将果皮从柑橘上整体剥离。该样机主要由机架、传动装置、对辊装置、拨动装置和下料装置等部件组成,具有结构紧凑,果皮分离能力强等特点。试验结果表明:样机可以很好地完成剥皮功能,宽皮柑橘果皮去净率高于97.5%,果肉损伤率低于2.68%,生产率达到202.5 kg/h,基本满足生产需求。该研究可为中国柑橘加工业中自动去皮设备研制和发展提供参考。  相似文献   

8.
Bergamot peel is an underutilized byproduct of the essential oil and juice-processing industry. As with other Citrus peels, it still contains exploitable components, such as pectins and flavonoids. Commercial glycoside hydrolases, specifically a combination of pectolytic and cellulolytic enzymes, solubilized a high percentage of the material (81.94%). The flavonoid profile of the peel consisted of characteristic Citrus species flavanone rutinosides and neohesperosides derived from naringenin, eriodictyol, and hesperetin. In addition, a number of minor flavanone and flavone glycosides, not found in orange and lemon peels, were identified. The majority of flavonoids were extracted in the two 70% v/v EtOH extractions. Processing this material clearly has economic potential leading to low environmental impact.  相似文献   

9.
The chemical composition of 30 samples of juices obtained from bergamot (Citrus bergamia Risso and Poit.) fruits is reported and compared to the genuineness parameters adopted by Association of the Industry of Juice and Nectars (AIJN) for lemon juice. It was found that the compositional differences between the two juices are distinguishable, although with difficulty. However, these differences are not strong enough to detect the fraudulent addition of bergamot juice to lemon juice. Instead, we found the high-performance liquid chromatography (HPLC) analysis of the flavanones naringin, neohesperidin, and neoeriocitrin, which are present in bergamot juice and practically absent in the lemon juice, is a convenient way to detect and quantify the fraudulent addition of bergamot juice. The method has been validated by calculating the detection and quantification limits according to Eurachem procedures. Employing neoeriocitrin (detection limit = 0.7 mg/L) and naringin (detection limit = 1 mg/L) as markers, it is possible to detect the addition of bergamot juice to lemon juice at the 1% level. When using neohesperidin as a marker (detection limit = 1 mg/L), the minimal percentage of detectable addition of bergamot juice was about 2%. Finally, it is reported that the pattern of flavonoid content of the bergamot juice is similar to those of chinotto (Citrus myrtifolia Raf) and bitter orange (Citrus aurantium L.) juices and that it is possible to distinguish the three kinds of juices by HPLC analysis.  相似文献   

10.
Ferulic acid (FA) is a phenolic antioxidant present in plants, which is widely used in the food and cosmetic industry. In the present study, various agricultural wastes such as maize bran, rice bran, wheat bran, wheat straw, sugar cane baggasse, pineapple peels, orange peels, and pomegranate peels were screened for the presence of esterified FA (EFA). Among the sources screened, maize bran was found to contain the highest amount of EFA. Pineapple peels, orange peels, and pomegranate peels were also found to contain traces of EFA. Alkaline extraction of EFA from maize bran was carried out using 2 M NaOH. Response surface methodology (RSM) was used for optimization of EFA extraction, which resulted in a 1.3-fold increase as compared to the unoptimized conventional extraction technique. FA was analyzed by means of high-performance liquid chromatography (HPLC). Purification was carried out by adsorption chromatography using Amberlite XAD-16 followed by preparative high-performance thin-layer chromatography (HPTLC). The recovery of Amberlite XAD-16 purified FA was up to 57.97% with HPLC purity 50.89%. The fold purity achieved was 1.35. After preparative HPTLC, the maximum HPLC purity obtained was 95.35% along with an increase in fold purity up to 2.53.  相似文献   

11.
The grafting of the rootstock with the lemon tree is an agronomical technique used to improve production and/or quality of the fruit. The interstock has been used with different fruit trees to modulate the tree size, fruit production and quality, and the aging of the tree. The lemon trees grafted with interstocks increase their longevity, lemon production and quality; interstocks are also used to decrease the thickness of the trunk at the grafting point. This enlarging of the trunk provokes a decrease of the sap flow. In our study, "Verna" lemon trees were grafted with interstock between the rootstock and the lemon tree to follow the flavonoid content of the lemon juice. The lemon juice was obtained from the lemons collected of the grafted lemon trees. Two types of rootstocks were used: Citrus aurantium L. and Citrus macrophylla L. Seven interstocks from five cultivars of orange tree, one cultivar of lime tree, and one cultivar of tangerine tree were used. "Verna" lemon trees were also grafted directly to the rootstock. The rootstock was more important agronomic factor than the interstock on the total flavonoid content of lemon juice. The interstock grafting had only a small influence on the flavonoid content of the lemon juice, and it modulated the individual flavonoid content. Citrus aurantium L. rootstock and "Berna" and "Washington Navel" interstocks were the most appropriate to graft in the lemon tree. This interstock grafting technique does not increase the flavonoid content of the lemon juice. Regarding the individual flavonoids, the 6,8-di-C-glucosyl diosmetin was the most affected flavonoid by the type of rootstock used. The interstock used is able to alter the individual quantitative flavonoid order of eriocitrin, diosmin, and hesperidin. In addition, the HPLC-ESI/MS(n) analyses provided the identification of two new flavonoids in the lemon juice: Quercetin 3-O-rutinoside-7-O-glucoside and chrysoeriol 6,8-di-C-glucoside (stellarin-2). The occurrence of apigenin 6,8-di-C-glucoside (vicenin-2), eriodictyol 7-O-rutinoside, 6,8-di-C-glucosyl diosmetin, hesperetin 7-O-rutinoside, homoeriodictyol 7-O-rutinoside and diosmetin 7-O-rutinoside was also confirmed in lemon juice by this technique.  相似文献   

12.
Citrus peels are important sources of various pleasant aroma compounds and valuable bioactive substances. To investigate differences in the composition and content of Shiikuwasha (Citrus depressa Hayata) peels from different cultivation lines, the composition of volatile aroma components, flavanones, and polymethoxylated flavones (PMFs) in four Shiikuwasha cultivation lines was examined. The composition of volatile aroma components in cold-pressed extracts of Shiikuwasha peels was analyzed using gas chromatography-flame ionization detection and gas chromatography-mass spectrophotometry. The extracts contained mainly monoterpene hydrocarbons (93.40-97.25%), including limonene (46.52-68.26%) and γ-terpinene (21.48-30.52%). Differences in the composition of volatile aroma compounds in the Shiikuwasha cultivation lines were revealed using principal component analysis. Additionally, the composition of flavanones and PMFs was determined using high-performance liquid chromatography methods. Neohesperidin (96.58%) was the predominant flavanone in 'Izumi kugani' peel, while the other peels had high hesperidin contents (89.26-98.66%). Moreover, the PMFs of Shiikuwasha peels were composed of nobiletin (56.74-64.77%) and tangeretin (23.17-34.70%).  相似文献   

13.
Several experiments of maceration of a sherry wine vinegar with different fruits (orange, lemon, strawberry, grapefruit, and lime) have been carried out. After optimization (only peel, no heating and seven days as maximum time of maceration), parameters such as polyphenolic content, superoxide anion scavenging ability (related to antioxidant activity) and ascorbic acid content were determined in sherry wine vinegars macerated with two amounts of peel and for two maceration times (3 and 7 days). The analysis of variance pointed to a clear relationship (p<0.01) between type of fruit and amount of peel and polyphenolic content. The factor "time" was practically not significant for any polyphenol. Sherry wine vinegars macerated with different fruits exhibited higher superoxide anion scavenger ability, with the maximum values found for the vinegar macerated with lemon peel. The correlation analysis showed that the superoxide anion scavenger ability of the vinegars macerated, and thus their antioxidant activity, was highly correlated (p<0.01) with several polyphenols, especially with naringin, hesperidin, neohesperidin and gentisic acid and not with the ascorbic acid content.  相似文献   

14.
In addition to the main flavanone glycosides (i.e., hesperidin and naringin) in citrus peel, polymethoxylated flavones and numerous hydroxycinnamates also occur and are major phenolic constituents of the molasses byproduct generated from fruit processing. Although a small number of the hydroxycinnamates in citrus occur as amides, most occur as esters and are susceptible to alkaline hydrolysis. This susceptibility to alkaline hydrolysis was used in measuring the concentrations of hydroxycinnamates in citrus peel molasses. The highest concentrations of hydroxycinnamates occurred in molasses of orange [C. sinensis (L.) Osbeck] and tangerine (C. reticulata Blanco.) compared to grapefruit (C. paradisi Macf.) and lemon [C. limon (L.) Burm.]. Concentrations of two phenolic glucosides, phlorin (phloroglucinol-beta-O-glucoside) and coniferin (coniferyl alcohol-4-beta-O-glucoside), were also measured. Measurements of the polymethoxylated flavones in molasses from several tangerine and orange varieties showed that these compounds occurred in the highest amounts in Dancy tangerine, whereas samples from two other tangerine molasses contained significantly lower levels, similar to those in the molasses samples from late- and early/mid-season oranges.  相似文献   

15.
This paper describes a procedure for recovering hesperidin from the waste water of orange juice processing, namely, yellow water, by concentration of diluted extracts on styrene-divinylbenzene resin. Turbid raw material flowing out from centrifuges of essential oil separation contains considerable amount of hesperidin ( approximately 1 g/L) mainly associated with solid particles. Yellow water was treated with calcium hydroxide until pH 12 to solubilize hesperidin, filtered, neutralized at pH 6, and loaded on resin up to saturation. Desorption with 10% ethanol aqueous solutions at different NaOH concentrations (0.23-0.92 M) assured high concentration of hesperidin in selected fractions (10-78 g/L), from which it precipitated in high yield and purity immediately after acidification at pH 5. Best results were obtained using 0.46 M NaOH as eluent: 71.5% of the adsorbed hesperidin was desorbed in 300 mL, with an overall 64% yield of isolated product at 95.4% purity (HPLC). These experiments can constitute a useful starting point for an industrial application.  相似文献   

16.
This paper describes a new procedure for obtaining hesperidin from the waste orange peel of the citrus industry. It is based on the adsorption of dilute extracts of hesperidin on a styrene-divinylbenzene (SDVB) resin and the desorption in much more reduced volumes by means of alkaline eluents. Hesperidin immediately precipitates with good yield and high purity after acidification of the concentrated solutions, thus overcoming disadvantages due to the high dilution. Different experiments were carried out to examine operating conditions in each phase of the process. Hesperidin was extracted from peel with an aqueous saturated Ca(OH)(2) solution, allowing precipitation of calcium pectates from colloidal pectins that can interfere in the subsequent phases of adsorption and separation of hesperidin. The clear extracts were neutralized to optimize adsorption on resin. The most effective eluent was 0.5 N NaOH solution containing 10% ethanol. Recycling of the crystallization liquor improved the yield and purity of the product and reduced the acid amount required for neutralizing fresh alkaline extracts. Resin must be washed after each adsorption-desorption cycle and regenerated after five cycles. Results can constitute a useful starting point for an industrial application. A flow scheme of the process is also reported.  相似文献   

17.
In vitro availability of flavonoids and other phenolics in orange juice   总被引:4,自引:0,他引:4  
Hand-squeezed navel orange juice contains 839 mg/L phenolics, including flavanones, flavones, and hydroxycinnamic acid derivatives. The flavanones are the main phenolics in the soluble fraction (648.6 mg/L) and are also present in the cloud fraction (104.8 mg/L). During refrigerated storage of fresh juice (4 degrees C), 50% of the soluble flavanones precipitate and integrate into the cloud fraction. Commercial orange juices contain only 81-200 mg/L soluble flavanones (15-33%) and the content in the cloud is higher (206-644 mg/L) (62-85%), showing that during industrial processing and storage the soluble flavanones precipitate and are included in the cloud. An in vitro simulation of orange juice digestion shows that a serving of fresh orange juice (240 mL) provides 9.7 mg of soluble hesperidin (4'-methoxy-3',5,7-trihydroxyflavanone-7-rutinoside) and 4.7 mg of the C-glycosylflavone vicenin 2 (apigenin, 6,8-di-C-glucoside) for freshly squeezed orange juice, whereas pasteurized commercial juices provide 3.7 mg of soluble hesperidin and a higher amount of vicenin 2 (6.3 mg). This means that although orange juice is a very rich source of flavanones, only a limited quantity is soluble, and this might affect availability for absorption (11-36% of the soluble flavanones, depending on the juice). The flavanones precipitated in the cloud are not available for absorption and are partly transformed to the corresponding chalcones during the pancreatin-bile digestion.  相似文献   

18.
Maltogenic amylase and alpha-glucanotransferase (alpha-GTase) were employed in an effort to develop an efficient process for the production of isomaltooligosaccharides (IMOs). Bacillus stearothermophilus maltogenic amylase (BSMA) and alpha-GTase from Thermotoga maritima were overexpressed in Escherichia coli using overexpression vectors. An IMO mixture containing 58% of various IMOs was produced from liquefied corn syrup by the hydrolyzing and transglycosylation activities of BSMA alone. When BSMA and alpha-GTase were reacted simultaneously, the IMO content increased to 68% and contained relatively larger IMOs compared with the products obtained by the reaction without alpha-GTase. Time course analysis of the IMO production suggested that BSMA hydrolyzed maltopentaose and maltohexaose most favorably into maltose and maltotriose and transferred the resulting molecules simultaneously to acceptor molecules to form IMOs. alpha-GTase transferred donor sugar molecules to the hydrolysis products such as maltose and maltotriose to form maltopentaose, which was then rehydrolyzed by BSMA as a favorable substrate.  相似文献   

19.
To specify the genotypic variation of Mediterranean Citrus juices, the contents of carotenoids, flavonoids, and vitamin C were determined by high-performance liquid chromatography. A selection of orange varieties and Mandarin species from the Mediterranean area (Citrus sinensis, Citrus deliciosa Ten, and Citrus clementina Hort. ex Tan) was evaluated using carotenoid profiles and flavanones contents. Among the eight varieties of orange (Salustiana, Hamlin, Shamouti, Pera, Valencia, Maltaise, Sanguinelli, and Cara-cara) and two Mandarin species, only three cultivars (Pera, Sanguinelli, and Shamouti) and the two Mandarin species displayed a high content of vitamin A (374, 381, and 272 ER L(-1) for the three orange cultivars and 1156 and 960 retinol equivalent (RE) L(-1) for the Mandarins) due to a high content of beta-cryptoxanthin. These same Citrus were also rich in hesperidin (502, 537, 552, 767, and 754 mg L(-1), respectively). Principal component analysis allowed the Mediterranean orange varieties and Mandarin species to be differentiated on the basis of nutritional criteria. Strong correlations were observed between beta-cryptoxanthin and hesperidin (r = 0.92) and between beta-cryptoxanthin and beta-carotene (r = 0.98). In contrast, vitamin C content was not correlated with carotenoids and flavanone glycosides. The Mandarin and orange group was quite distinct. The orange varieties could be divided in two groups. In addition, a diversity tree allowed a genetic approach to differentiating Citrus cultivars on the basis of Euclidian distances. This representation showed that the hybrid Clementine was nearer to its parent Mandarin than to its parent orange, suggesting that beta-cryptoxanthin was a dominant genetic factor. With regard to vitamin A, Mandarin and its hybrid Clementine appeared to be the best Citrus species.  相似文献   

20.
Hesperidin is an abundant flavanone glycoside in citrus fruits and has been reported to possess a wide range of biological activities. However, hesperidin has poor bioavailability. Here, we tested the hypothesis that hesperetin found in chenpi will have a better bioavailability than hesperidin and that treatment of hesperidin with the glucosidase-like yeast Bg1A protein will increase its bioavailability. The results indicate that hesperidin in pure or extract form is hydrolyzed by BglA protein extracted from Sporobolomyces singularis or expressed in Escherichia coli BL21 (DE3). This biotransformation affected the plasma pharmacokinetics of total hesperetin in rats, in that the plasma T max was significantly shorter after administration of BglA protein-treated hesperidin than after administration of hesperidin extract. In addition, the area under the curve values for total hesperetin after administration of Bg1A-treated hesperidin were approximately 4-fold higher by oral administration and 3-fold higher by intravenous administration, respectively. In contrast, the plasma clearance value and volume of distribution after administration of Bg1A-treated hesperidin extract or pure hesperetin were significantly smaller than after administration of untreated hesperidin extract or pure hesperidin. This is the first study that systemically determines the absolute bioavailability of hesperidin and hesperetin simultaneously, shows clearly that hesperetin is more bioavailable than hesperidin regardless of the route of administration, and shows that prior transformation of hesperidin to hesperetin via fermentation should significantly increase its bioavailability because of the action of the yeast glycosidase-like protein BglA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号