首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
硼对烤烟干物质积累和养分吸收的动态模拟   总被引:7,自引:0,他引:7  
采用溶液培养方法,研究了不同硼浓度下烤烟干物质积累动态和养分吸收动态变化特点。结果表明,不同硼浓度下烤烟干物质积累动态和养分吸收动态可用Logistic方程描述。烤烟地上部分和根部干物质积累最大速率和养分吸收最大速率出现日期不同。BO33-浓度为0~200.mg/L的各处理烤烟植株地上部氮、磷、钾养分吸收最大速率出现在干物质积累最大速率之前;而根部则出现在干物质积累最大速率之后。BO33-浓度为0.25~2.00.mg/L的各处理烤烟干物质积累和养分吸收最大速率明显高于其他3个处理,并且最大积累速率出现时间均相对较晚。  相似文献   

2.
供镁水平对烤烟生长及养分吸收的影响   总被引:6,自引:0,他引:6  
采用盆栽土培试验研究了不同供镁水平对烤烟生长和养分吸收的影响。结果表明,施MgSO4量为0.06~1.08 g/kg时,各处理烤烟的生长状况和干物质积累量明显优于对照和施MgSO4 1.88 g/kg。烤烟各器官对钾的吸收最多,氮次之,磷最少,各处理表现一致。施MgSO4量为0.18~0.72 g/kg的3个处理烤烟各器官对氮磷钾的吸收量明显高于其他处理,且在施MgSO4量为0.36 g/kg时达到峰值。当施MgSO4量较低(≤0.06 g/kg)或较高(MgSO4≥1.08 g/kg)时都会抑制烤烟的生长发育、干物质和养分的积累。而烤烟各器官对镁的吸收量则均表现出随施镁量增加而增加的趋势,且各器官镁吸收量表现为:叶>茎>根;镁肥的施用能够在一定程度上促进烤烟对镁素的吸收。  相似文献   

3.
水磷耦合烤烟养分吸收分配规律研究   总被引:2,自引:1,他引:1  
为探究烤烟适宜的水磷耦合模式及其对氮、磷、钾养分吸收积累的影响。采用田间小区试验,试验设置3种灌水水平和施磷水平,分别为低水(W_1:0.50 L/株)、中水(W_2:1.00 L/株)、高水(W_3:2.00 L/株)和低磷(P_1:32 kg/hm^2)、中磷(P_2:64 kg/hm^2)、高磷(P_3:96 kg/hm^2),研究了不同施磷量和灌水量条件下烤烟对氮磷钾养分吸收积累的影响。结果表明:施磷量相同时,灌水处理能够明显增加烟株对氮、磷、钾养分的吸收积累量,表现为:W_3P_i>W_2P_i>W_1P_i>CK_i(其中i=1或2或3);当灌水量相同时,增加施磷量也有利于烟株对氮磷钾养分的吸收积累,且在施磷水平为96 kg/hm^2时表现较好,表现为:W_iP_3>W_iP_2>W_iP_1;高磷水平下,灌水量为1.00,2.00 L/株时,W_3P_3和W_2P_3处理烟株对氮磷钾养分的吸收积累量差异不显著;烟株和根、茎、叶各器官对钾的吸收量高于氮和磷,氮、磷、钾在根、茎、叶器官中的分配顺序呈现叶>茎>根的变化规律;在烟株的不同生育期,对养分的吸收积累量和积累强度存在差异。烟株对养分的吸收积累主要在旺长期,烟叶是养分的主要吸收积累器官;施磷量为96 kg/hm^2,灌水量为1.00~2.00 L/株的水磷耦合处理在促进烟株对氮磷钾养分的吸收积累方面效果较好。烤烟施肥中要注意调整氮磷钾的施用比例和水磷耦合配比。  相似文献   

4.
合理的氮磷钾用量配比能明显改善花生生长发育、提高产量和增加经济效益。为了明确潮土区高产夏花生施肥中氮磷钾最佳配比用量,通过大田试验,设置氮磷钾肥各4个梯度,研究不同肥料配比对夏花生产量、干物质累积量、氮磷钾养分吸收量以及经济效益的影响。结果表明:在氮磷钾肥4种梯度下,用量分别为N 120kg/hm~2、P_2O_5 90 kg/hm~2和K_2O 120 kg/hm~2时产量与经济效益最高,在试验基础上通过方程拟合得到最佳氮、磷、钾肥用量分别为126.2、95.8和137.6 kg/hm~2。花生干物质累积量在膨果期前增长加快,差异达到最大,膨果期后增长速率放缓。幼苗期至开花下针期为养分累积量的关键时期,此时对氮磷钾的需求量为氮钾磷。由养分累积量与干物质之间的关系得出花生对N、P_2O_5和K_2O 3种养分吸收比例为5.5∶1∶2.7;不同的氮磷钾肥配比下,花生的百千克籽粒养分吸收量是有差异的,合理的氮磷钾搭配下花生每形成100 kg荚果需要吸收氮、磷、钾养分量为4.82、0.79和2.57 kg。综上,潮土区高产夏播花生氮、磷、钾肥配比为126.2、95.8和137.6 kg/hm~2能够显著提高产量、养分吸收利用效率及经济效益。  相似文献   

5.
为明确旱作藜麦的养分吸收特征,开展田间试验研究藜麦对氮、磷、钾养分需求规律及其养分限制因子,以期为旱作藜麦大面积推广和高效生产提供合理的施肥方案。本试验以‘陇藜1号’为材料开展大田肥料缺素试验,分析在全施肥区不同生育期藜麦的干物质量、养分含量及积累量。结果表明:孕穗期和灌浆期是藜麦整个生育期内干物质累积量最大和日累积量增长最快的两个阶段,其中孕穗期干物质累积量占干物质总量的48.14%,且单株干物质日累积量为6.42 g,灌浆期干物质累积量占干物质总量的27.93%,且单株干物质日累积量为1.58 g;藜麦对氮素的吸收量和吸收速率在花期-孕穗期这一阶段达到最大值,吸收量占吸收总量的29.97%,吸收速率达到7.15 kg·hm~(-2)·d~(-1);藜麦对磷素吸收量最大的生育期是孕穗-灌浆期,为17.49 kg·hm~(-2),占总量的32.70%,但吸收速率却在花期-孕穗期最高,为0.96 kg·hm~(-2)·d~(-1);孕穗期-灌浆期是藜麦对钾吸收量最高的时期,为103.24 kg·hm~(-2),占总量的31.09%,吸收速率在花期-孕穗期最快,为6.30 kg·hm~(-2)·d~(-1)。单位面积氮、磷、钾吸收累积量分别为353.88、53.63、333.62 kg·hm~(-2),其比例为6.60∶1∶6.22。氮磷钾全施显著提高藜麦的产量,缺氮、缺磷、缺钾、全施处理与没有施肥处理相比较,增产幅度为18.2%~118%,所有施氮的处理比不施氮的处理增产84.2%,所有施磷的处理比不施磷的处理增产37.4%,所有施钾的处理比不施钾的处理增产5.7%,限制藜麦生长及产量的养分因子大小顺序为氮磷钾。  相似文献   

6.
不同水、氮供应条件下夏玉米养分累积动态研究   总被引:21,自引:11,他引:21  
在遮雨棚内进行了微区试验,采用不同水、氮素供应研究了玉米N、P、K吸收累积动态。结果表明,植株生物量和N、P、K吸收量,随生育期延长而持续增加;而植株的N、P、K含量,则呈下降趋势。植株生物量和N、P、K吸收量随时间的变化,可用S曲线方程描述。玉米生长期间干物质与养分吸收并非同一速率,前期上升快,至最高峰后缓慢下降。在N、P、K三要素中,N、K吸收速率高,上升快,下降也快;P吸收速率低,上升慢,下降亦慢。养分最大吸收速率出现的时间以K最早,N次之,P最晚。但三者均早于干物质最大累积速率出现的时间。水分和氮素供应增加养分最大吸收速率及养分吸收量,也可增加生育前期的养分含量,但不改变养分累积变化趋势和养分吸收速率的变化趋势。水分和氮素供应促进了营养体养分向子粒的运转,提高了养分在子粒中的分配比例,从而提高了子粒产量。  相似文献   

7.
水稻根长增长和养分吸收动态及其模拟模型   总被引:2,自引:0,他引:2  
采用溶液培养和田间试验研究水稻根长增长和氮磷钾吸收动态。在改进蔬菜根长和养分吸收动态模型基础上,建立了适用于一个生长周期的水稻根长增长模型、单位根表面积氮磷钾吸收速率模型及其累积吸收动态模型。6个根长增长模型和18个根表氮磷钾吸收速率模型以及36个氮磷钾吸收动态模型的模拟效果达统计显著水平。结果表明,随着种植时间的推移,水稻根长增长和氮磷钾累积吸收量在整个生育期呈现S型特征;根表养分吸收速率在生长前期随种植时间迅速提高并达到最大值,过后则按指数规律下降。溶液培养试验看出,生育期120 d水稻最大根长增长速率和最大根长分别为播种后(68.85.4)d和(108.43.9)d,品种间差异很小;最大根长增长速率和根长则为(4531.51529.4)cm/( pot?d)和 (2.8931 0.6237)105 cm/pot,品种间差异较大。田间试验看出,不同施肥处理的氮磷钾吸收速率基本同步,早晚稻插秧后约50~60 d根系养分吸收能力达到峰值,临近成熟时养分吸收量达到高峰。研究结果为水稻中后期养分管理提供了科学依据。  相似文献   

8.
采用砂培法研究不同硼浓度处理对烤烟碳氮代谢的影响.结果表明,低浓度硼(5 μmol/LH3BO3)处理下,烟株各器官中的硼、氮、钾、干物质积累以及NO3-的吸收及同化受阻,叶片中的NH4 积累增加,而氨基酸和蛋白质含量降低;缺硼还降低烟株叶片的光合速率,并使叶片中的水溶性葡萄糖、果糖、蔗糖、淀粉大量积累.增加硼的供给(20/μmol/L和40 μmol/L),使烟株叶片碳氮代谢增强.植株各器官的氮、钾、硼含量增加,干物质积累增强.  相似文献   

9.
水稻根系氮磷钾吸收特性及其模拟模型研究   总被引:3,自引:0,他引:3  
为定量研究水稻一个生长周期的氮磷钾吸收特性,开展水培和土培盆栽试验。结果表明,7个水稻品种的30个模拟模型中,有29个模型达到统计显著水平,说明提出的模拟模型能很好地拟合水稻不同生育期的养分吸收动态。由模拟模型分析可得到水稻根系养分吸收常数、最大养分吸收速率和最大养分吸收量及其出现的时间等养分吸收特征参数。根系养分吸收常数平均值是K>N>P;不同品种间根系钾吸收常数有较大差异,氮和磷的差异则较小。养分最大吸收速率和最大吸收量及其出现时间的计算结果表明,水稻氮钾吸收过程基本同步,磷则稍晚。土培试验表明,平衡施肥明显提高水稻根系养分吸收常数、氮磷钾的最大吸收速率和最大吸收量,显著提高根系对氮磷钾的吸收能力。  相似文献   

10.
水培条件下硼对青蒜苗光合特性及品质的影响   总被引:4,自引:0,他引:4  
在水培条件下,设置4个硼水平(B 0、0.5、1.0、1.5 mg/L),研究硼对青蒜苗硼含量、生长、光合特性及品质的影响。结果表明,青蒜苗硼含量随着硼浓度的提高而增加,在1.5mg/L硼浓度处理下含量最高;在硼水平0~1.0mg/L范围内,青蒜苗生长量、色素含量、净光合速率(Pn)、蒸腾速率 (Tr) 和气孔导度(Gs)随硼浓度的升高而增加,至硼浓度1.0mg/L时达最大,此时青蒜苗叶身和假茎中维生素C(Vc)、可溶性蛋白、大蒜素含量也达最大,分别比不施硼处理提高33.5%和14.5%、40.5%和35.9%、41.0%和57.2%,当硼浓度升至1.5mg/L时,上述各指标呈下降趋势;同时硼浓度为1.0 mg/L时,可显著降低叶身中可溶性糖和游离氨基酸含量,提高其在假茎中的含量,其中叶身较不施硼处理分别降低了34.3%和22.8%,假茎则增加了160.5%和43.6%。  相似文献   

11.
Appropriate compost standards are being considered in Canada. Five aspects of compost safety and quality are being evaluated; probably the most controversial aspect is the standards for metals in compost. In order to assist in the development of appropriate standards, the authors began an extensive research project in October, 1993 to determine the bioavailability of metals from compost and compost-metal mixtures. Swiss chard was grown in compost-amended soils or compost in a growth room using five treatments of increasing percentages of compost in the media (0, 25 percent, 50 percent, 75 percent, 100 percent compost (v/v)). A Truro loamy sand and a race-track manure-biosolids compost (RTM-biosolids) supplemented with a high metal biosolids were used in a completely randomized design with five replicates. Dry matter yield, metal content in plant tissue, and total metal uptake were evaluated as well as the total and DTPA-extractable metal content in the compost-soil mixes. The results of this and five other experiments conducted by the authors will help determine whether the suggested limits for As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se and Zn in composts are appropriate.  相似文献   

12.
Abstract

The phytotoxicity of five nonessential elements (Co, V, Ti, Ag, Cr) to higher plants was studied in solution culture experiments with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen). All, but in varying degrees, tended to concentrate in roots with a decreasing gradient to stems and leaves. Cobalt was one of the more mobile of the five trace metals. Its toxicity was expressed as severe chlorosis; 43 (with 10‐5 M) and 142 (with 10‐4 M) μg Co/g dry weight in leaves resulted in severe chlorosis. Vanadium as 10‐4 M vanadate resulted in smaller plants but not in chlorosis. Leaf, stem, and root V, respectively, were 13, 8, and 881 μg/g dry weight. Titanium was somewhat mobile with considerable yield decrease at 10‐4 M; leaf, stem, and root Ti concentrations, respectively, were 202, 48, and 2420 μg/g. Symptoms were chlorosis, necrotic spots on leaves, and stunting. Silver was very lethal at 10‐4 M AgNO3; at 10‐5 M yields were greatly decreased, but plants were grown without symptoms. Leaf, stem, and root concentrations of Ag for this treatment, respectively, were 5.8, 5.1, and 1760 μg/g dry weight. Plants grown with 10‐5 N Cr2O7 were decreased in yield by about 25% with or without EDTA (ethylenediamine tetraacetic acid) while the same level of Cr2(SO4)3 was essentially without effect. For the two salts, the leaf, stem, root concentrations for Cr, respectively were 2.2 and 1.3, 0.7 and 0. 7, and 140 and 104 μg/g. Most of the trace metals studied here had interactions in the uptake and/or distribution of other elements.  相似文献   

13.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

14.
A general method is described for determining 16 mycotoxins in mixed feeds and other food products used in the manufacture of these feedstuffs. The mycotoxins are extracted and cleaned up by extracting with solvents of different pH. Thin layer chromatography is used to separate the toxins; toxins are then quantitated by the limit detection method. The minimum detectable concentration of mycotoxins in various products is: aflatoxin B1 or G1, 4--5 micrograms/kg; ochratoxin A or ethyl ester A 140--145 micrograms/kg; citrinin 600--750 micrograms/kg; zearalenone, 410--500 micrograms/kg; sterigmatocystin, 140--145 micrograms/kg; diacetoxyscirpenol, 2400--2600 micrograms/kg; T-2 toxin, 800--950 micrograms/kg; patulin, 750--800 micrograms/kg; penitrem A 14,000--14,500 micrograms/kg; penicillic acid 3400--3650 micrograms/kg.  相似文献   

15.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

16.
The importance of dietary sulforaphane in helping maintain good health continues to gain support within the health-care community and awareness among U.S. consumers. In addition to the traditional avenue for obtaining sulforaphane, namely, the consumption of appropriate cruciferous vegetables, other consumer products containing added glucoraphanin, the natural precursor to sulforaphane, are now appearing in the United States. Crucifer seeds are a likely source for obtaining glucoraphanin, owing to a higher concentration of glucoraphanin and the relative ease of processing seeds as compared to vegetative parts. Seeds of several commonly consumed crucifers were analyzed not only for glucoraphanin but also for components that might have negative health implications, such as certain indole-containing glucosinolates and erucic acid-containing lipids. Glucoraphanin, 4-hydroxyglucobrassicin, other glucosinolates, and lipid erucic acid were quantified in seeds of 33 commercially available cultivars of broccoli, 4 cultivars each of kohlrabi, radish, cauliflower, Brussels sprouts, kale, and cabbage, and 2 cultivars of raab.  相似文献   

17.
A new HPLC procedure based on hydrophilic interaction chromatography (HILIC) has been developed for the simultaneous determination of carnosine, anserine, balenine, creatine, and creatinine in meat. This is the first time that HILIC has been directly applied to the study of meat components, having the advantage of not requiring complex cleanup and/or sample derivatization procedures. The chromatographic separation has been developed using a silica column (4.6 x 150 mm, 3 microm), and the proposed methodology is simple, reliable, and fast (<13 min per sample). The method has been validated in terms of linearity, repeatability, reproducibility, and recovery and represents an interesting alternative to methods currently in use for determining the mentioned compounds and other polar substances. The detection limits are 5.64, 8.23, 3.66, 3.99, and 0.06 microg/mL for carnosine, anserine, balenine, creatine, and creatinine, respectively.  相似文献   

18.
The volatile and soil loss profiles of six agricultural pesticides were measured for 20 days following treatment to freshly tilled soil at the Beltsville Agricultural Research Center. The volatile fluxes were determined using the Theoretical Profile Shape (TPS) method. Polyurethane foam plugs were used to collect the gas-phase levels of the pesticides at the TPS-defined critical height above a treated field. Surface-soil (0-8 cm) samples were collected on each day of air sampling. The order of the volatile flux losses was trifluralin > alpha-endosulfan > chlorpyrifos > metolachlor > atrazine > beta-endosulfan. The magnitude of the losses ranged from 14.1% of nominal applied amounts of trifluralin to 2.5% of beta-endosulfan. The daily loss profiles were typical of those observed by others for volatile flux of pesticides from moist soil. Even though heavy rains occurred from the first to third day after treatment, the majority of the losses took place within 4 days of treatment, that is, 59% of the total applied atrazine and metolachlor and >78% of the other pesticides. Soil losses generally followed pseudo-first-order kinetics; however, leaching due to heavy rainfall caused significant errors in these results. The portion of soil losses that were accounted for by the volatile fluxes was ordered as follows: alpha-endosulfan, 34.5%; trifluralin, 26.5%; chlorpyrifos, 23.3%; beta-endosulfan, 14.5%; metolachlor, 12.4%; and atrazine, 7.5%.  相似文献   

19.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

20.
This study evaluates the toxic, genotoxic/mutagenic, and antimutagenic effects of propolis extract from Amaicha del Valle, Tucumán, Argentina. The cytotoxicity assays carried out with the lethality test of Artemia salina revealed that the LD50 was around 100 microg/mL. Propolis extracts showed no toxicity to Salmonella typhimurium TA98 and TA100 strains and Allium cepa at concentrations that have antibiotic and antioxidant activities. Otherwise, for the testing doses, neither genotoxicity nor mutagenicity was found in any sample. The propolis extracts were able to inhibit the mutagenesis of isoquinoline (IQ) and 4-nitro o-phenylenediamine (NPD) with ID50 values of 40 and 20 microg/plate, respectively. From this result, the studied propolis may be inferred to contain some chemical compounds capable of inhibiting the mutagenicity of direct-acting and indirect-acting mutagens. A compound isolated from Amaicha del Valle propolis, 2',4'-dihydroxychalcone, showed cytotoxic activity (LC50 values of 0.5 microg/mL) but was not genotoxic or mutagenic. Furthermore, this compound was able to inhibit the mutagenicity of IQ (ID50 values of 1 microg/plate) but was unable to inhibit the mutagenicity of NPD. Our results suggest a potential anticarcinogenic activity of Amaicha del Valle propolis and the chalcone isolated from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号