首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.  相似文献   

2.
Phospholipid fatty acid (PLFA) patterns were used to describe the composition of the soil microbial communities under 12 natural forest stands including oak and beech, spruce-fir-beech, floodplain and pine forests. In addition to the quantification of total PLFAs, soil microbial biomass was measured by substrate-induced respiration and chloroform fumigation-extraction. The forest stands possess natural vegetation, representing an expression of the natural site factors, and we hypothesised that each forest type would support a specific soil microbial community. Principal component analysis (PCA) of PLFA patterns revealed that the microbial communities were compositionally distinct in the floodplain and pine forests, comprising azonal forest types, and were more similar in the oak, beech and spruce-fir-beech forests, which represent the zonal vegetation types of the region. In the nutrient-rich floodplain forests, the fatty acids 16:1ω5, 17:0cy, a15:0 and a17:0 were the most prevalent and soil pH seemed to be responsible for the discrimination of the soil microbial communities against those of the zonal forest types. The pine forest soils were set apart from the other forest soils by a higher abundance of PLFA 18:2ω6,9, which is typical of fungi and may also indicate ectomycorrhizal fungi associated with pine trees, and high amounts of PLFA 10Me18:0, which is common in actinomycetes. These findings suggest that the occurrence of azonal forest types at sites with specific soil conditions is accompanied by the development of specific soil microbial communities. The study provides information on the microbial communities in undisturbed forest soils which may facilitate interpretation of data derived from managed or even damaged or degraded forests.  相似文献   

3.
铜污染土壤线虫多样性的PCR-DGGE分析   总被引:11,自引:1,他引:10  
A wheat pot experiment was conducted under greenhouse conditions to assess the effect of copper contamination on soil nematode diversity by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method and morphological analysis. The soil was treated with CuSO4.5H2O at the following concentrations: 0, 50, 100, 200, 400, and 800 mg kg^-1 dry soil, and the soil samples were collected at wheat jointing and ripening stages. Nematode diversity index (H′) from morphological analysis showed no difference between the control and the treated samples in either of the sampling dates. At the wheat ripening stage, nematode diversity obtained by the PCR-DGGE method decreased noticeably in the Cu800 treatment in comparison with the control. With optimization of the method of nematode DNA extraction, PCR-DGGE could give more information on nematode genera, and the intensity of the bands could reflect the abundance of nematode genera in the assemblage. The PCR-DGGE method proved promising in distinguishing nematode diversity in heavy metal coritaminated soil.  相似文献   

4.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   

5.
Restoration of forests poses a major challenge globally,particularly in the tropics,as the forests in these regions are more vulnerable to land-use change.We studied land-use change from natural forest (NF) to degraded forest (DF),and subsequently to either Jatropha curcas plantation (JP) or agroecosystem (AG),in the dry tropics of Uttar Pradesh,India,with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid (PLFA) biomarkers and soil organic carbon (SOC) content.The trend of bacterial PLFAs across all land-use types was in the order:NF > JP > DF> AG.In NF,there was dominance of gram-negative bacterial (G-) PLFAs over the corresponding gram-positive bacterial (G+) PLFAs.The levels of G-PLFAs in AG and JP differed significantly from those in DF,whereas those of G+ PLFAs were relatively similar in these three land-use types.Fungal PLFAs,however,followed a different trend:NF > JP > DF =AG.Total PLFAs,fungal/bacterial (F/B) PLFA ratio,and SOC content followed trends similar to that of bacterial PLFAs.Across all land-use types,there were strong positive relationships between SOC content and G-,bacterial,fungal,and total microbial PLFAs and F/B PLFA ratio.Compared with bacterial PLFAs,fungal PLFAs appeared to be more responsive to land-use change.The F/B PLFA ratio,fungal PLFAs,and bacterial PLFAs explained 91%,94%,and 73% of the variability in SOC content,respectively.The higher F/B PLFA ratio in JP favored more soil C storage,leading to faster ecosystem recovery compared to either AG or DF.The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance,particularly in relation to land-use change.  相似文献   

6.
Several biochemical and molecular methods are used to investigate the microbial diversity and changes in microbial community structure in rhizospheres and bulk soils resulting from changes in management. We have compared the effects of plants on the microbial community, using several methods, in three different types of soils. Pots containing soil from three contrasting sites were planted with Lolium perenne (rye grass). Physiological (Biolog), biochemical (PLFA) and molecular (DGGE and TRFLP) fingerprinting methods were employed to study the change in soil microbial communities caused by the growth of rye grass. Different methods of DNA extraction and nested PCR on TRFLP profiles were examined to investigate whether they gave different views of community structure. Molecular methods were used for both fungal and bacterial diversity. Principal component analysis of Biolog data suggested a significant effect of the plants on the microbial community structure. We found significant effects of both soil type and plants on microbial communities in PLFA data. Data from TRFLP of soil bacterial communities showed large effects of soil type and smaller but significant effects of plants. Effects of plant growth on soil fungal communities were measured by TRFLP and DGGE. Multiple Procrustes analysis suggested that both methods gave similar results, with only soil types having a significant effect on fungal communities. However, TRFLP was more discriminatory as it generated more ribotype fragments for each sample than the number of bands detected by DGGE. Neither methods of DNA extraction nor the nested PCR had any effect on the evaluation of soil microbial community structure. In conclusion, the different methods of microbial fingerprinting gave qualitatively similar results when samples were processed consistently and compatible statistical methods used. However, the molecular methods were more discriminatory than the physiological and biochemical approaches. We believe results obtained from this experiment will have a major impact on soil microbial ecology in general and rhizosphere–microbial interaction studies in particular, as we showed that the different fingerprinting methods for microbial communities gave qualitatively similar results.  相似文献   

7.
The influence of individual trees in monocrop forests on soil microbial communities is poorly understood. We measured basal respiration, substrate-induced respiration and phospholipid fatty acids (PLFA), bacterial growth rate with the 3H-thymidine incorporation technique and fungal growth rate as 14C-acetate incorporation into ergosterol to investigate whether slow- and fast-growing 12-year-old Norway spruce (Picea abies) clones have affected differently on their associated soil microbial communities. Understorey vegetation, soil chemical properties and elemental concentrations of needles were also determined. The slow- and fast-growing spruce clones differed in PLFA profiles, understorey vegetation and elemental concentrations in needles suggesting that spruce clones have directly or indirectly affected soil microbes.  相似文献   

8.
In Eastern Spain, almond trees have been cultivated in terraced orchards for centuries, forming an integral part of the Mediterranean forest scene. In the last decades, orchards have been abandoned due to changes in society. This study investigates effects of changes in land use from forest to agricultural land and the posterior land abandonment on soil microbial community, and the influence of soil physico-chemical properties on the microbial community composition (assessed as abundances of phospholipids fatty acids, PLFA). For this purpose, three land uses (forest, agricultural and abandoned agricultural) at four locations in SE Spain were selected. Multivariate analysis showed a substantial level of differentiation in microbial community structure according to land use. The microbial communities of forest soils were highly associated with soil organic matter content. However, we have not found any physical or chemical soil property capable of explaining the differences between agricultural and abandoned agricultural soils. Thus, it was suggested that the cessation of the perturbation caused by agriculture and shifts in vegetation may have led to changes in the microbial community structure. PLFAs indicative of fungi and ratio of fungal to bacterial PLFAs were higher in abandoned agricultural soils, whereas the relative abundance of bacteria was higher in agricultural soils. Actinomycetes were generally lower in abandoned agricultural soils, while the proportions of vesicular–arbuscular mycorrhyzal fungi were, as a general trend, higher in agricultural and abandoned agricultural soils than in forests. Total microbial biomass and richness increased as agricultural < abandoned agricultural < forest soils.  相似文献   

9.
土壤微生物是反映土壤环境质量的重要指标,为明确赤水河流域典型植被类型土壤微生物群落特征及优势菌属,为生态系统的恢复与管理提供理论依据,采用高通量测序技术研究了赤水河流域的5种典型植被类型(灌丛、针阔混交林、常绿阔叶林、杉木林和竹林)土壤的微生物群落结构及多样性,并探讨了其主要影响因子。结果表明:(1)不同植被类型的细菌和真菌丰富度Chao1指数差异均不显著,说明二者所观测到的物种总数没有差异。Shannon指数显示各植被类型微生物多样性存在一定差异,细菌多样性以竹林最低,显著性低于灌丛和针阔混交林(p<0.05); 真菌多样性以灌丛和杉木林显著性高于其他3种植被类型(p<0.05)。(2)5种植被类型土壤细菌优势门(相对丰度>10%)主要有变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和酸杆菌门(Acidobacteriota)。其中变形菌门(Proteobacteria)在灌丛、针阔混交林和常绿阔叶林中占绝对优势(相对丰度为29.70%~33.62%),而放线菌门(Actinobacteriota)则在杉木林和竹林中最为丰富,相对丰度占比分别为32.88%,29.88%。各植被类型土壤真菌门以子囊菌门(Ascomycota)为绝对优势菌群(相对丰度>49%)。(3)5种植被类型土壤细菌和真菌中优势菌属差异较大。在细菌属水平上,针阔混交林和竹林分别以未定名的Vicinamibacterales和芽孢杆菌属(Bacillus)为优势,而其他3种植被类型则以节杆菌属(Arthrobacter)最丰富。在真菌属水平上,灌丛和常绿阔叶林中优势关键属为子囊菌门(Ascomycota)未分类真菌属(unclassified_p_Ascomycota),杉木林以被孢霉属(Mortierella)最丰富,而针阔混交林和竹林中均以沙蜥属(Saitozyma)相对丰度最高。(4)NMDS分析表明,土壤细菌与真菌群落空间分布差异显著。(5)冗余分析表明,土壤含水量、pH值和TN(总氮)对土壤细菌群落结构具有显著性的影响,而pH值、容重、TOC(总有机碳)、TN和TP(总磷)对真菌群落结构影响显著。综合分析可知,针阔混交林土壤细菌群落较丰富,杉木林土壤真菌生长较旺盛,而灌丛土壤细菌和真菌多样性均较高,应采取有效措施提高主要林分土壤养分,从而激发微生物的生长,改善土壤环境。  相似文献   

10.
《Applied soil ecology》2006,31(1-2):73-82
A study was undertaken to determine if cattle grazing on managed grasslands had an impact on the microbial community composition of soils. Microbial community molecular profiles of bacteria, actinomycetes, pseudomonads and fungi were generated by polymerase chain reaction (PCR) amplification of rDNA sequences from community DNA isolated from soils. PCR products were profiled using denaturing gradient gel electrophoresis (DGGE) and analysed by principal co-ordinate analysis. PCR–DGGE profiles indicated that cattle grazing had an impact on the pseudomonad community structure only, and that the addition of inorganic nitrogen (N) fertiliser impacted on bacterial, actinomycete and pseudomonad community structure. There was no difference in the community profiles of fungi from grazed and N fertilised grassland plots. Analysis of phospholipid fatty acid (PLFA) profiles revealed that both cattle grazing and N fertiliser impacted on microbial community structure. The abundance of individual PLFAs differed between treatments, with bacterial (15:0), actinomycete (10Me18:0) and fungal (18:2ω6) PLFAs not affected directly by grazing cattle and N fertiliser, however, there were significant grazing–fertiliser interactions. Bacterial plate counts were highest in the N fertilised plots and fungal plate counts were highest in the cattle grazed plots. Analysis of molecular microbial community profiles with PLFA and background soil data revealed several significant correlations. Notably, soil pH was positively correlated with PCO1 of the pseudomonad community profiles and negatively correlated with the fungal PLFA 18:2ω6. Fungal DGGE profiles were negatively correlated with the fungal PLFA 18:2ω6, and bacterial and fungal plate counts positively correlated with each other. Correlation analysis using PC1 from PLFA profile data showed no significant relationship with soil organic matter, pH, total C and total N. The results indicate that cattle grazing and N fertiliser addition to grasslands impact on the community composition of specific groups of micro-organisms. The consequences of such changes in population structure may have implications regarding the dynamics of nutrient turnover in soils.  相似文献   

11.
We studied the distribution of the indigenous bacterial and fungal communities in a forest soil profile. The composition of bacterial and fungal communities was assessed by denaturing gradient gel electrophoresis (DGGE) of total and extracellular DNA extracted from all the soil horizons. Microbial biomass C and basal respiration were also measured to assess changes in both microbial biomass and activity throughout the soil profile. The 16S rDNA-DGGE revealed composite banding patterns reflecting the high bacterial diversity as expected for a forest soil, whereas 18S rDNA-DGGE analysis showed a certain stability and a lower diversity in the fungal communities. The banding patterns of the different horizons reflected changes in the microbial community structure with increasing depth. In particular, the DGGE analysis evidenced complex banding patterns for the upper A1 and A2 horizons, and a less diverse microflora in the deeper horizons. The low diversity and the presence of specific microbial communities in the B horizons, and in particular in the deeper ones, can be attributed to the selective environment represented by this portion of the soil profile. The eubacterial profiles obtained from the extracellular DNA revealed the presence of some bands not present in the total DNA patterns. This could be interpreted as the remainders of bacteria not any more present in the soil because of changes of edaphic conditions and consequent shifting in the microbial composition. These characteristic bands, present in all the horizons with the exception of the A1, should support the concept that the extracellular DNA is able to persist within the soil. Furthermore, the comparison between the total and extracellular 16S rDNA-DGGE profiles suggested a downwards movement of the extracellular DNA.  相似文献   

12.
The response of soil microbial communities following changes in land-use is governed by multiple factors. The objectives of this study were to investigate (i) whether soil microbial communities track the changes in aboveground vegetation during succession; and (ii) whether microbial communities return to their native state over time. Two successional gradients with different vegetation were studied at the W. K. Kellogg Biological Station, Michigan. The first gradient comprised a conventionally tilled cropland (CT), mid-succession forest (SF) abandoned from cultivation prior to 1951, and native deciduous forest (DF). The second gradient comprised the CT cropland, early-succession grassland (ES) restored in 1989, and long-term mowed grassland (MG). With succession, the total microbial PLFAs and soil microbial biomass C consistently increased in both gradients. While bacterial rRNA gene diversity remained unchanged, the abundance and composition of many bacterial phyla changed significantly. Moreover, microbial communities in the relatively pristine DF and MG soils were very similar despite major differences in soil properties and vegetation. After >50 years of succession, and despite different vegetation, microbial communities in SF were more similar to those in mature DF than in CT. In contrast, even after 17 years of succession, microbial communities in ES were more similar to CT than endpoint MG despite very different vegetation between CT and ES. This result suggested a lasting impact of cultivation history on the soil microbial community. With conversion of deciduous to conifer forest (CF), there was a significant change in multiple soil properties that correlated with changes in microbial biomass, rRNA gene diversity and community composition. In conclusion, history of land-use was a stronger determinant of the composition of microbial communities than vegetation and soil properties. Further, microbial communities in disturbed soils apparently return to their native state with time.  相似文献   

13.
This study investigates microbial communities in soil from sites under different land use in Kenya. We sampled natural forest, forest plantations, agricultural fields of agroforestry farms, agricultural fields with traditional farming and eroded soil on the slopes of Mount Elgon, Kenya. We hypothesised that microbial decomposition capacity, biomass and diversity (1) decreases with intensified cultivation; and (2) can be restored by soil and land management in agroforestry. Functional capacity of soil microbial communities was estimated by degradation of 31 substrates on Biolog EcoPlates™. Microbial community composition and biomass were characterised by phospholipid fatty acid (PLFA) and microbial C and N analyses. All 31 substrates were metabolised in all studied soil types, i.e. functional diversity did not differ. However, both the substrate utilisation rates and the microbial biomass decreased with intensification of land use, and the biomass was positively correlated with organic matter content. Multivariate analysis of PLFA and Biolog EcoPlate™ data showed clear differences between land uses, also indicated by different relative abundance of PLFA markers for certain microorganism groups. In conclusion, our results show that vegetation and land use control the substrate utilisation capacity and microbial community composition and that functional capacity of depleted soils can be restored by active soil management, e.g. forest plantation. However, although 20–30 years of agroforestry farming practises did result in improved soil microbiological and chemical conditions of agricultural soil as compared to traditional agricultural fields, the change was not statistically significant.  相似文献   

14.
Total and active soil fungal communities in a native eucalypt forest and first rotation Pinus elliotti plantation were investigated by direct extraction of DNA and RNA from soil. Terminal restriction fragment length polymorphism (T-RFLP) analysis of internal transcribed spacer (ITS) and 18S rRNA profiles indicated that total and active fungal communities differed significantly in both forest types. This was supported by DGGE profile analysis on an individual plot basis for both forest types and when groups in the canonical analysis were redefined to allow comparison between forest types. Analyses of both ITS and 18S T-RFLP profiles indicated that conversion from native eucalypt forest to P. elliottii plantation may significantly alter total and active soil fungal communities. ITS DGGE (DNA) and 18S (RNA) profiles also suggested differences in fungal communities in the two forest types. No significant separation of the fungal communities in the two forest types was observed, however, when ITS DGGE (RNA) profiles were compared. Overall, the data suggest that conversion from native eucalypt forest to P. elliottii plantation at the Beerburrum State Forest in subtropical Australia has significantly altered soil fungal communities.  相似文献   

15.
The 1980 eruption of Mount St. Helens created a unique opportunity to study microbial communities in a developing soil ecosystem containing little total carbon (C) or total nitrogen (N). We collected surface samples (0-5 cm) from areas near Mount St. Helens National Volcanic Monument 17 years after the eruption. The samples were from bare soil with no plant development, soil under living prairie lupine (Lupinus lepidus) and dead prairie lupine in the pyroclastic plain near Spirit Lake, Washington. We also collected soil from a nearby forested area. Phospholipid fatty acids (PLFAs) from pyroclastic materials were analyzed to determine changes in soil microbial composition. Total bacterial DNA was also extracted from the soils and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes and DNA sequence analysis of cloned 16S rRNA gene libraries were used to determine the influence of plants on microbial development. Both principal components analysis (PCA) of PLFA fingerprints and non-metric multidimensional scaling (NMS) of DGGE fingerprints distinguished the four soils. Lupine plants influenced the PLFA and DGGE fingerprints depending on the distance of the samples from the plant. DGGE and PLFA profiles from the forest soil were significantly different (P=0.001, based on Monte Carlo permutation test) from those of the bare soil and soil with live lupine. Bacterial clone libraries were constructed, and 800 clones were analyzed by amplified ribosomal DNA restriction analysis (ARDRA) and grouped into operational taxonomic units (OTUs). A total of 51, 77, 58, and 42 different OTUs were obtained from forest soil, soil with live and dead lupine, and bare soil, respectively. Phylogenetic analysis revealed that 62% of the 228 OTUs were classified as Proteobacteria, Actinobacteria, Acidobacterium, Verrucomicrobia, Bacteroides, Cyanobacteria, Planctomycetes, and candidate divisions TM7 and OP10. Members of Proteobacteria represented 29% of the OTUs. Thirty-eight percent of the OTUs could not be classified into known bacterial divisions. This study emphasized the role of prairie lupine in the establishment of pioneering microbial communities and the subsequent roles the biotic components played in improving the quality of pyroclastic soil.  相似文献   

16.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

17.
长期施肥对黑土农田土壤微生物群落的影响   总被引:21,自引:1,他引:20  
魏巍  许艳丽  朱琳  韩晓增  Li S 《土壤学报》2013,50(2):372-380
基于中国科学院海伦农业生态试验站长期定位试验区,应用实时荧光定量PCR(Real-time PCR)和变性梯度凝胶电泳(DGGE)技术研究了无施肥(NF)、单施N、P化肥(NP)以及化肥配施有机猪粪肥(NPM)等3种长期施肥措施对黑土区玉米田土壤微生物群落密度和结构的影响.Real-time PCR方法定量NF、NP及NPM措施土壤细菌群落基因组DNA质量分别为381、1 351和1 773 ng g-1干土,真菌群落基因组DNA质量分别113.3、127.3和20.6 ng g-1干土,真菌与细菌的比率分别为0.31、0.09和0.01,NPM措施显著低于另两种施肥方式(p<0.05).DGGE方法研究表明,NP和NPM措施不能改善土壤细菌和真菌群落的多样性、均匀性及优势菌优势程度;但主成分分析结果显示NP和NPM措施均可改变土壤细菌和真菌群落的构成,且真菌群落的变化更为显著;聚类分析结果显示NP和NPM措施下细菌群落结构较相近,其相似系数为0.89,真菌群落中NP措施与NF措施相近,相似系数为0.63,高于NP与NPM措施的相似系数0.51.上述结果表明有机猪粪肥的长期施用可以显著降低黑土农田土壤真菌与细菌的比率,且明显地改变土壤细菌和真菌群落的结构.  相似文献   

18.
As a key component of desert ecosystems, biological soil crusts (BSCs) play an important role in dune fixation and maintaining soil biota. Soil microbial properties associated with the colonization and development of BSCs may indicate soil quality changes, particularly following dune stabilization. However, very little is known about the influence of BSCs on soil microbes in sand dunes. We examined the influence of BSCs on soil microbial biomass and community composition in revegetated areas of the Tengger Desert. BSCs increased soil microbial biomass (biomass C and N), microbial phospholipid fatty acid (PLFA) concentrations and the ratio of fungal to bacterial PLFAs. The effects varied with crust type and crust age. Moss crusts had higher microbial biomass and microbial PLFA concentrations than cyanobacteria-lichen crusts. Crust age was positively correlated with microbial biomass C and N, microbial PLFA concentrations, bacterial PLFA concentrations, fungal PLFA concentrations and the ratio of fungal to bacterial PLFAs. BSCs significantly affected microbial biomass C and N in the 0–20 cm soil layers, showing a significant negative correlation with soil depth. The study demonstrated that the colonization and development of BSCs was beneficial for soil microbial properties and soil quality in the revegetated areas. This can be attributed to BSCs increasing topsoil thickness after dunes have been stabilized, creating suitable habitats and providing an essential food source for soil microbes.  相似文献   

19.
Soil organic matter is the most important reservoir of terrestrial organic C and minor changes in the balance may have a significant impact on the climate. However, the response of microbial decomposers of soil C to global changes is not fully apprehended. This is particularly the case with regard to the interactive effects of the various climatic changes. Here, we present data from the Giessen Free Air CO2 Experiment (Gi-FACE, University of Giessen, Germany) in which the CO2 concentration at a grassland site was increased by 20% relative to atmospheric levels during a period of 10 years. The site included a slope that resulted in differences in average soil moisture. The effects of CO2 and soil moisture on soil microbial community structure, measured by Denaturing Gradient Gel Electrophoresis (DGGE), PhosphoLipid Fatty Acids (PLFA) and enzyme activity profiles were determined. Total carbon, nitrogen and phosphorous contents were also determined. Soil moisture explained a large part of the variance in the microbial community structure data, by affecting fungi and bacteria. Furthermore, the CO2 treatment had no significant effect on either overall PLFA or DGGE profiles, despite the fact that the fungal:bacterial PLFA ratio was altered. Overall enzyme activity profiles were also only affected by soil moisture levels, although the CO2 treatment induced a significant increase of the acid phosphatase activity. Finally, neither soil moisture nor elevated CO2 induced changes in the soil C stock.  相似文献   

20.
Knowledge about the elevational patterns of soil microbial biomass and communities can facilitate accurate prediction of the responses of soil biogeochemical processes to climate change. However, previous studies that have considered intra- and inter-annual variations have reported inconsistent results on the one hand, and they have paid little attention to the effect of soil layer on the other hand. We, therefore, conducted a 4-year in situ soil core incubation experiment along a 2431-m elevational gradient across the dry valley shrubland, valley-montane ecotone forest, subalpine coniferous forest, alpine coniferous forest, and alpine meadow in an ecologically fragile alpine-gorge region on the eastern edge of the Qinghai-Tibetan Plateau. Soil microbial biomass and community composition in the organic and mineral layers were measured using the phospholipid fatty acids (PLFA) method at five critical periods each year. Our results indicated that soil microbial biomass in the organic layer was the highest in the subalpine coniferous forest, followed by the alpine meadow, alpine coniferous forest, and valley-montane ecotone forest. In contrast, soil microbial biomass in the mineral layer was significantly higher in the alpine meadow than in the other sites. Soil microbial biomass exhibited differential seasonal fluctuations at different elevations, resulting in their elevational patterns being strongly intra-annual and inter-annual dependent. Our results revealed that elevation and seasonality significantly affected soil microbial communities. Seasonality had a more substantial effect than elevation on soil microbial communities during the first 3 years of incubation, whereas the relative importance of seasonal and elevational effects on microbial communities was reversed in the organic layer with incubation time. These results are mainly attributed to the magnitude and direction of effect of environmental variables on soil microbial biomass and communities vary with elevation, soil layer, and sampling time. Briefly, the elevational patterns and dominant factors of soil microbial biomass and communities have intense soil layer and temporal specificity, implying that differential responses of soil biochemical processes to climate change might be observed at different elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号