首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT

Phytoremediation is a promising technique to clean up toxic heavy metals including lead (Pb). A greenhouse trial was conducted to evaluate the effectiveness of citric, succinic, malonic and oxalic acids on micronutrient uptake and phytoremediation of Pb contaminated soil by maize under different Pb levels. Mean root and shoot dry weights of maize decreased with increasing Pb levels. At the lowest Pb level, application of citric and oxalic acids caused increase effects on root and shoot dry weight, respectively, as compared to the absence of organic acid. As Pb levels increased, micronutrient uptake in maize shoot decreased. Among the studied organic acids, only the application of oxalic acid increased uptake of all micronutrients in maize shoot as compared to control at the lowest Pb level. Mean root and shoot Pb concentration and uptake and also uptake index noticeably increased at the highest Pb level. All tested acids increased Pb concentration and uptake in maize root. At the highest Pb level, organic acids, except for citric acid, significantly increased shoot Pb uptake and uptake index as compared to the absence of organic acid. Translocation factors less than 1, demonstrated that most of Pb taken up by maize accumulated in root as compared to shoot. According to results reported herein, application of malonic, succinic and oxalic acids is a good strategy to enhance phytostabilization potential of Pb by maize in pb-polluted soils.  相似文献   

2.
A greenhouse experiment to study the effect of humic acid (HA) on the growth and nutrient uptake of Teak (Tectona grandis L.f.), a tropical hardwood, was conducted in Ibadan, Nigeria. The plants were grown for four months in top soils (0–30 cm) collected from an Alfisol (high organic matter) and an Oxisol (low organic matter) in Southern Nigeria. Three levels of HA, viz:, 50, 500, and 1000 mg/kg were added to the two soils. The results indicated that HA was beneficial to the growth and nutrient uptake of teak seedlings. Plant monthly growth rates, and height and total dry matter yield increased significantly (p = 0.05) over the controls in the two soils at the three HA application levels. Effects of adding 500 mg/kg and more of HA to the Alfisol were less beneficial while plant parameters and nutrient uptake tended to increase with increasing amounts of HA in the Oxisol. A significant positive correlation was established between rate of HA application and plant height (r = 0.57), stem diameter (r = 0.77) and total dry matter yield (r = 0.67) in the Oxisol, whereas the HA application rate was significantly correlated only with height (r = 0.57) and root/shoot ratio (r = 0.56) in the Alfisol. The addition of HA to the two soils increased the uptake by seedlings of N, P, K, Mg, Ca, Zn, Fe, and Cu, while Mn was decreased.  相似文献   

3.
Effect of K uptake rate, root growth and root hairs on potassium uptake efficiency of several plant species Pot experiments with maize, rape, tomato, rye-grass and onion plants were carried out to evaluate the influence of – rate of K uptake per cm of root, – cm root per mg shoot dry weight and – mean root age (as a measure of the time roots absorb potassium) on potassium uptake efficiency of these plants. Percent K in shoot dry matter was used to indicate K uptake efficiency. No close correlation was observed between one of these factors to K concentration in shoot dry matter. The product of K uptake rate and root-shoot ratio was closely related to the K concentration of shoots. However, regression lines for maize, rape and onion were different. One single regression line was found when K concentration in shoot was related to the product of K uptake rate, root-shoot ratio and mean root age. It is therefore concluded that K uptake of plants depends on all three of these factors. In different species the proportion of these factors were markedly different. The plant factors in turn were affected by the K nutritional status of the plants. K uptake rate increased whereas root-shoot ratio and mean root age decreased with increasing K supply of the soil. K uptake rate per cm root was strongly affected by root hairs. The radial distance of the K (Rb) depletion zone of the soil adjacent to the root surface also increased with the length of the root hairs. It is therefore concluded that root hairs substantially affect the spatial access of potassium in soil by the plant.  相似文献   

4.
Our objective was to determine the combined effect of some plant growth regulators and nitrogen (N) on corn growth, yield and nitrogen use efficiency. A potted experiment was conducted with two levels of growth regulators [i.e. with or without treatment with Seed king (Kinetine), Root king (Indole-butyric acid) and More king (Chitosan)], two maize cultivars (Calabar White and Obatanpa-98 and three nitrogen rates (0, 90 and 180 kg/ha in the form of urea). The measured parameters were growth attributes, nitrogen uptake, dry matter yield, harvest-index, shoot to root ratio, yield attributes and agronomic and physiological nitrogen use efficiency. Calabar White had taller plants (154.53 cm) more leaves (12.00) and larger leaf area (466.98 cm2) than obatanpa-98 at 6 weeks after sowing. The dry matter yield of both leaf and stem increased significantly (P ≤ 0.05) with increasing N rates but the growth regulators significantly (P ≤ 0.05) increased only the leaf dry matter. The interaction between growth regulators and nitrogen significantly affected the leaf dry matter but not the stem dry matter. There was a considerable (P ≤ 0.05) increase in harvest-index (HI) at the 90 kg/ha N rate with growth regulators and Obatanpa-98 had better HI (30.81%) than Calabar White (27.41%). Obatanpa 98 also had much (P ≤ 0.05) higher grain yield (87.42 g/plant) than Calabar White (65.40 g/plant) but for both cultivars, the grain yield increased progressively with increasing N rate. The uptake of N differed significantly (P ≤ 0.05) among the different partitions of maize (leaves, stems and grains) at various growth stages. Calabar White had the highest N uptake in the leaves and stem whether at silking or at harvest. Obatanpa-98 partitioned more N to the grains than Calabar White. Agronomic nitrogen use efficiency (ANUE) was highest (21.31 gg?1) at the 90 kg/ha N rate with Obatanpa-98 having a superior (20.26 gg?1) ANUE to Calabar White (15.94 gg?1). The physiological nitrogen use efficiency (PNUE) was also highest (8.14 g/kg) at the 90 kg/ha N rate with Obatanpa-98 being more efficient (8.08 gkg) than Calabar White (6.26 g/kg). Thus, both cultivars treated with 90 kgN/ha with or without growth regulators would best optimize nitrogen fertilizer use. However, the growth regulators increased the yield of Calabar White significantly only when no N was applied. In contrast, they increased the yield of the hybrid Obatanpa-98 at all N rates especially at the 180 kgN/ha rate. Thus, under the low input cropping common with Calabar White, treatment with the growth regulators would boost yield. A combined treatment of 180 kg N/ha with the growth regulators would ensure the best yield of Obatanpa-98.  相似文献   

5.
Abstract

Although crude oil contamination is a constraint for crop production, some plants can develop under crude oil contaminated conditions by utilizing crude oil as nutrients after decomposition. A greenhouse trial was conducted to investigate growth, nutritional composition and enzymatic response of vetiver grass in confronting with crude-oil contamination as affected by gibberellic acid (GA) and Tween 80. Application of GA or co-application of GA with Tween 80 significantly increased mean shoot dry weight. Application of Twee 80 alone or in combination with GA significantly increased mean root dry weight as compared to control which was attributed to the effectiveness of Tween 80 alone or in combination with GA on the removal of total petroleum hydrocarbons from polluted soil. Application of crude oil diminished shoot phosphorus, iron, zinc and manganese uptakes. Application of GA and Tween 80, however, compensated the decrease in nutrient uptakes in vetiver grass resulted from crude-oil contamination. Application of crude oil at both 2 and 4% (W/W) levels increased catalase (CAT) activity and proline (PRO) content. Superoxide dismutase (SOD) activity increased only following the application of 2% crude oil level, while addition of all amendments decreased CAT activity. Addition of GA decreased activity of SOD. None of the studied amendments had a significant effect on PRO content. Application of a combination of GA and Tween 80 under crude oil contamination are recommendable since such treatments not only inhibited adverse effect of crude oil on nutrients uptake but also caused that vetiver grass tolerated high level of crude oil contamination.  相似文献   

6.
采用盆栽试验方法,研究了污泥改良锰矿尾渣对紫茉莉(Mirabills jdapa)、青葙(Celosia argentea)、一串红(Salviasplendens)和鸡冠花(Celosia cristata)4种花卉植物生长及其富集铅、镉、锌和锰的影响。结果表明,添加污泥增加基质的EC值、总氮、总磷、总钾和有机质含量,而降低铅、镉、锌和锰含量。紫茉莉与青葙生物量、株高和根长大于一串红和鸡冠花。紫茉莉根部铅、镉和锰含量分别为3110.93~4189.16、300.28~399.16和31100.93~36809.77mg·kg-1,都远高于其地上部分含量。青葙根部铅含量超过1000mg·kg-1,而其地上部分含量少;其地上部分镉和锰含量分别为322.13~441.88和21888.54~26511.31mg·kg-1,都大于其根部含量,青葙具有镉和锰超富集植物的特性。污泥改良锰矿尾渣促进这4种花卉植物生物量、株高和根长增加。除紫茉莉锌含量外,添加污泥改良锰矿尾渣增加这4种花卉植物的铅、镉、锌和锰含量。在锰矿尾渣污染区进行植物修复时,采用紫茉莉、青葙和添加污泥强化植物修复效率可行。  相似文献   

7.
水分和磷对苗期玉米根系形态和磷吸收的耦合效应   总被引:6,自引:0,他引:6  
水分亏缺和土壤缺磷已经成为玉米(Zea mays L.)生产的主要限制性因素,但水分和磷如何调节玉米根系形态和磷吸收尚不完全清楚。本研究采用盆栽土培试验,设置4个水分梯度[田间持水量的35%(W1)、55%(W2)、75%(W3)和100%(W4)]和2个磷处理[高磷:205 mg(P)·kg~(-1);低磷:11 mg(P)·kg~(-1)],探究水分和磷对苗期玉米根系生长和磷吸收的耦合效应。结果表明:(1)不管土壤磷供应如何,玉米苗干重、根干重、总根长和根表面积随水分供应强度的增加呈现先增加后降低的趋势,土壤有效磷含量也表现出相似的变化趋势,根质量比和平均根直径随水分供应强度的增加呈现下降的趋势,植株磷含量和磷累积量随水分供应强度的增加呈现稳定增加的趋势;(2)水分亏缺(W1)和过量供应(W4)均不利于玉米根系生长和干物质累积,水分亏缺(W1)抑制玉米对土壤磷素的获取,水分过量供应(W4)引起土壤磷素的奢侈吸收(W4),轻度的水分胁迫(W2)能够促进玉米根系的生长和干物质累积,减少对土壤磷的奢侈吸收,充足的水分供应(W3)能够促进玉米根系的生长、干物质累积和土壤磷素的吸收;(3)磷供应显著增加了玉米苗干重、根干重(W4除外)、总根长、根表面积、植株磷含量(W4除外)和磷累积量,但降低了玉米的根质量比。(4)两因素方差分析结果表明,水分对苗干重、根干重、根质量比、总根长、根表面积、平均根直径、植株磷含量、植株磷累积量和土壤有效磷含量的相对贡献分别为45.94%、36.71%、67.95%、59.63%、58.34%、81.86%、24.75%、35.66%和3.00%,磷对这些参数的相对贡献分别为34.78%、21.19%、14.84%、9.22%、9.21%、1.56%、35.54%、49.75%和94.40%,可见水分是控制玉米根系形态和干物质累积的关键因子,磷是控制玉米地上磷吸收和土壤有效磷含量的关键因子。总体来说,低磷条件下玉米根系对土壤磷的获取偏向于以根形态为主导的适应策略,高磷条件下玉米根系对土壤磷的获取偏向于以根生理吸收为主导的适应策略。水分和磷之间较好的耦合能够促进玉米根系生长、干物质累积,减少对土壤磷素的奢侈吸收。  相似文献   

8.
低铁胁迫对玉米苗期根系生长和铁素吸收利用的影响   总被引:3,自引:0,他引:3  
为了揭示不同耐低铁玉米品种苗期根系生长和铁素吸收利用的差异,为玉米耐低铁能力的遗传改良提供依据,以耐低铁玉米品种‘正红2号’和不耐低铁玉米品种‘川单418’为材料,采用重度[10μmol(Fe~(3+))·L~(-1)]、中度[30μmol(Fe~(3+))·L~(-1)]和轻度[50μmol(Fe~(3+))·L~(-1)]3种低铁胁迫及对照[100μmol(Fe~(3+))·L~(-1)]的铁营养液处理3叶1心玉米幼苗,分析低铁胁迫对不同耐低铁玉米品种苗期根系生长和铁素吸收利用的影响。结果表明,随着营养液铁浓度降低,两个玉米品种幼苗的根长、根体积、根系活力、干物质、铁含量、铁积累量、相对吸铁能力均显著降低,但根系麦根酸分泌量增多,铁素向地上部转移分配能力增强,铁素的生理效率提高,这是玉米适应低铁胁迫的重要生理机制之一。玉米幼苗的铁素积累量与根长、根体积、根干重、根系活力等根系性状均呈极显著或显著正相关。耐低铁玉米品种在中度和重度低铁胁迫下根长、根体积、根干重、根系活力均较不耐低铁玉米品种高,是其铁素吸收积累量高的重要原因。根系麦根酸分泌量与铁素茎叶分配率呈正相关,铁素茎叶分配率与铁素生理效率呈极显著正相关,增加根系麦根酸的分泌量可在一定程度上提高玉米铁素的茎叶分配率,从而提高铁素生理效率;耐低铁玉米品种在中度和重度低铁胁迫下麦根酸分泌量增幅高于不耐低铁玉米品种,是其铁素生理效率高的主要原因。  相似文献   

9.
Sewage sludge (SS), a highly heterogeneous semisolid fraction of sewage water (about 1% of the sewage water), contains various amounts of nitrogen (N) and phosphorus (P) as well as trace elements such as cadmium (Cd), lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) with extremely variable physical and chemical compositions. Application of SS improves soil properties, increases yield and simultaneously increases trace metal content in soil and plants. The difficulty in handling, transporting and applying SS and its adverse effect, especially trace metal content in soil and plant, can be overcome by SS–coir pith pelletization (SSCP) or mixing with sewage sledge–coir pith mixture (SSCM). A study was undertaken to evaluate the prepared SSCM and SSCP (1:1 ratio of SS and coir pith) along with SS on dry matter yield, trace metal content in soil and plant parts. The results showed that increased rates of application of SS or SSCM or SSCP increased the green and dry fodder yield of forage maize. Application of SS as either SSCM or SSCP at 1.2 and 2.4 g pot?1 significantly reduced the trace metal content diethylene triamine pentaacetic acid (DTPA extractable) in soil and plant parts (leaves steam and root) compared to SS application. Therefore, in order to reduce the bioavailability of trace metal in soil and its uptake by plant, application of SSCM or SSCP at 1.2 or 2.4 g pot?1 proved to be a better option than SS application.  相似文献   

10.
为探索环境材料对种植于Pb、Cd污染土壤中的玉米生长、品质的影响, 以及对Pb、Cd重金属污染土壤的改良效应, 本文采用温室盆栽方法, 研究了不同环境材料[腐殖质类材料(HA)、高分子材料(SAP)、煤基复合材料(FM)及粉质矿物材料(FS)]及其复合处理对Pb-Cd复合污染土壤中玉米(Zea mays L.)生长、品质及根系土壤环境的影响。结果表明, 添加环境材料组合F22(FM+SAP)、F23(FS+SAP)及F32(HA+SAP+FS)能促进苗期玉米生长, 长势好于对照; 所有环境材料处理中玉米地上部粗灰分含量都低于对照, 添加单一环境材料对玉米地上部粗淀粉含量的提高效果高于对照、优于组合; 处理FM、F33(SAP+FM+FS)及F4(HA+SAP+FM+FS)对土壤中Pb固定效果显著, 抑制土壤中Pb向玉米体内迁移; 单一处理FM、FS及组合F33(SAP+FM+FS)对土壤重金属Cd固化效果明显, 抑制土壤中Cd向玉米体内迁移。环境材料的添加在一定程度上有助于土壤基本理化性质的改善, 促进土壤改良, 同时环境材料对阻止土壤重金属向植物体迁移有一定作用。  相似文献   

11.
为了揭示Pb胁迫对间作和单作的超累积植物和作物根系分泌低分子有机酸的影响,研究设置400 mg·L?1Pb胁迫,采用水培曝气法试验,以玉米和小花南芥单作为对照处理,研究Pb胁迫下玉米和小花南芥间作对植物根系形态、根系分泌有机酸及Pb吸收的影响。结果表明:与单作相比,间作小花南芥情况下,玉米根系分泌物检测到乳酸;玉米分根条数、根表面积和根密度与单作相比分别增加60%、15%和42%,地下部和地上部干重生物量分别增加108%和75%,玉米地下部Pb含量下降44%;与单作相比,间作玉米条件下,小花南芥根系分泌物检测到乙酸和乳酸,小花南芥根系分泌物量与单作相比增加103%~1 700%,小花南芥地下部和地上部Pb累积量分别比单作增加49%和75%,转运系数增加22%。相关分析结果表明,单作小花南芥只有地上部Pb累积量与草酸显著相关,而间作小花南芥地下部和地上部Pb累积量与草酸、柠檬酸和苹果酸显著相关。研究表明超富集植物小花南芥与玉米间作体系,根系分泌的有机酸改变了Pb在小花南芥和玉米体内的累积特征,促进超累积植物小花南芥累积Pb,减少农作物玉米植株体内Pb含量。Pb胁迫下超累积植物小花南芥与玉米间作是一种可行的修复模式。  相似文献   

12.
【目的】利用根系分隔技术, 研究不同需氮特性的旋花科、 豆科作物与玉米套作后,玉米的生长特性与养分吸收差异及其增产机理。【方法】采用石英砂培盆栽试验,二因素完全随机试验设计。以玉米-大豆、 玉米-甘薯两种套作模式为研究对象,设计不分隔、 部分分隔、 完全分隔三种隔根方式。分析不同套作模式下不同隔根方式对玉米地下根系活力、 根系生物量及地上植株叶片光合特性、 籽粒产量和吸氮量的影响。【结果】1)不同种植模式对玉米生长有显著影响,不分隔处理时,与大豆套作的玉米根系活力、 籽粒重及地上植株总吸氮显著高于与甘薯套作的玉米,分别高6.25%、 8.69%和18.89%; 部分分隔或完全分隔时,两套作处理间差异不显著(P0.05)。 2)隔根方式影响玉米的物质积累及籽粒产量,表现为不分隔部分分隔完全分隔。3)不分隔有助于促进共生玉米生长,但不同套作模式的影响效果不一致;玉米-大豆套作处理下,不分隔处理的玉米根系活力、 净光合速率、 籽粒产量和总吸氮量均高于隔根处理,比完全分隔处理的分别高25.65%、 27.31%、 64.69%和71.65%;玉米-甘薯套作下增加幅度为17.59%、 19.83%、 52.38%和46.21%,分别比玉米-大豆套作处理低31.44%、 27.39%、 19.03%和35.51%。 4)相关分析表明,两种套作处理玉米地下根系干重与地上植株干物质重、 叶片光合速率及籽粒重显著正相关,相关系数分别为0.984、 0.927和0.986(P0.01);且地下根系活力与地上植株叶片净光合速率显著正相关,相关系数达0.929(P0.01)。【结论】种植模式和隔根方式显著影响了玉米的物质积累及氮素吸收。根系不分隔时,玉米-大豆套作处理下玉米的根系活力、 净光合速率、 生物量、 籽粒产量及总吸氮量显著高于玉米-甘薯套作;隔根处理导致的生物量和吸氮量下降主要是由根系活力降低引起的。与玉米-甘薯套作相比,大豆促进了玉米根系活力的提高,有效调节了玉米地上部植株光合作用及干物质积累,实现产量和氮素吸收的增加。  相似文献   

13.
黑麦草分泌有机酸的生物特性对铅污染修复的影响   总被引:5,自引:0,他引:5  
为了揭示根系分泌有机酸对植物修复效果的影响,该文采用液培试验研究根系分泌有机酸对黑麦草生理特性及重金属pb2+吸收转移的影响.结果表明,黑麦草根系分泌有机酸为草酸、酒石酸、苹果酸、冰乙酸和柠檬酸.0.1~1 mmol/L的内二酸和2~3 mmol/L冰乙酸有利于黑麦草地上和根系干质量的增加.0.1 mmol/L的洒石酸、0.5~l mmol/L的丙二酸、2~3 mmol/L的冰乙酸促进耐性指数的增加.1~3 mmol/L的丙二酸,酒石酸对地上部分Pb2+质量浓度起促进作用,1~3mmol/L的冰乙酸有利于黑麦草 生物量的增加,同时也有利于根系重金属pb2+质量浓度的增加.该研究可为重金属污染的植物修复技术提供参考.  相似文献   

14.
The effects of five salinity levels and four Cu levels on growth and chemical composition of Badami pistachio seedlings were studied under greenhouse conditions in a completely randomized design with three replications. Growth parameters were determined on the 24th week after planting. Total elemental uptake amounts in shoot and root of plant were measured. Results showed that salinity decreased leaf area, stem height, and shoot and root dry weights. Application of 2.5 and 5 mg copper (Cu) kg?1 soil significantly increased root dry weight, whereas it had no significant effects on shoot dry weight and leaf area. Application of 7.5 mg Cu kg?1 soil had a negative effect on stem height. Salinity declined shoot and root total Cu and phosphorus (P) uptake amounts but increased shoot and root total sodium (Na) and chlorine (Cl) uptake amounts. Copper increased shoot and root total Cu uptake amounts, root total P uptake, and shoot total Na uptake but decreased shoot total Cl uptake.  相似文献   

15.
Application of plant growth-promoting rhizobacteria (PGPR) has been shown to increase legume growth and development under field and controlled environmental conditions. The present study was conducted to isolate plant growth-promoting rhizobacteria (PGPR) from the root nodules of lentil (Lens culinaris Medik.) grown in arid/semi-arid region of Punjab, Pakistan and examined their plant growth-promoting abilities. Five bacterial isolates were isolated, screened in vitro for plant growth-promoting (PGP) characteristics and their effects on the growth of lentil were assessed under in vitro, hydroponic and greenhouse (pot experiment) conditions. All the isolates were Gram negative, rod-shaped and circular in form and exhibited the plant growth-promoting attributes of phosphate solubilization and auxin (indole acetic acid, IAA) production. The IAA production capacity ranged in 0.5-11.0 μg mL-1 and P solubilization ranged in 3-16 mg L-1 . When tested for their effects on plant growth, the isolated strains had a stimulatory effect on growth, nodulation and nitrogen (N) and phosphorus (P) uptake in plants on nutrient-deficient soil. In the greenhouse pot experiment, application of PGPR significantly increased shoot length, fresh weight and dry weight by 65%, 43% and 63% and the increases in root length, fresh weight and dry weight were 74%, 54% and 92%, respectively, as compared with the uninoculated control. The relative increases in growth characteristics under in vitro and hydroponic conditions were even higher. PGPR also increased the number of pods per plant, 1 000-grain weight, dry matter yield and grain yield by 50%, 13%, 28% and 29%, respectively, over the control. The number of nodules and nodule dry mass increased by 170% and 136%, respectively. After inoculation with effective bacterial strains, the shoot, root and seed N and P contents increased, thereby increasing both N and P uptake in plants. The root elongation showed a positive correlation (R2 = 0.67) with the IAA production and seed yield exhibited a positive correlation (R2 = 0.82) with root nodulation. These indicated that the isolated PGPR rhizobial strains can be best utilized as potential agents or biofertilizers for stimulating the growth and nutrient accumulation of lentil.  相似文献   

16.
Use of ornamental plants for phytoremediation of metal-contaminated soil is a new option. A pot experiment was carried out to assess the effect of application of amendments, i.e., swine manure, salicylic acid (SA) and potassium chloride (KCl), on the growth, uptake and translocation of cadmium (Cd) and zinc (Zn) of ornamental sunflower (Helianthus annuus L.) grown on a contaminated soil. The three amendments increased sunflower height, flower diameter, and biomass. Manure significantly decreased Cd and Zn concentrations in sunflower, and thus decreased the bioaccumulation coeffcient (BCF) of Cd and Zn. However, using of KCl markedly increased Cd concentrations in sunflower and the BCF of Cd. Additionally, both swine manure and KCl application increased Cd and Zn translocation from root to aboveground part. Swine manure and salicylic acid reduced the Cd/Zn ratios in flower of sunflower, while KCl significantly increased the Cd/Zn ratios. Correlation analysis demonstrated that the Cd/Zn ratio in the root of sunflower was affected by K/Na ratio in root and soil available potassium (K) concentration. Ornamental sunflower could be grown as an alternative plant in the Cd- and Zn-contaminated soil with KCl application to get the balance between environmental and economic interests.  相似文献   

17.
Chelating agents are commonly used to enhance the phytoremediative ability of plants. The type of chelating agent applied and the selection of plant species are important factors to consider for successful phytoremediation. This study investigates the effects of four different rates (0, 2, 4, 8 mmol kg?1) of ethylenediaminetetraacetic acid (EDTA) on lead (Pb) dissolution, plant growth, and the ability of two spring wheat varieties (Auqab-2000 and Inqalab-91) to accumulate Pb from contaminated soils in a pot study. The results indicated that the addition of EDTA to the soil significantly increased the aqueous solubility of Pb and that wheat variety Inqalab-91 was more tolerant to Pb than Auqab-2000. Application of EDTA at 8 mmol kg?1 resulted in biomass yield, photosynthetic rate, and transpiration rate significantly lower in Auqab-2000 than in Inqalab-91. Although EDTA enhanced the uptake of Pb by both wheat varieties, Auqab-2000 accumulated significantly more Pb in the shoots than Inqalab-91. The results of the present study suggest that under the conditions used in this experiment, EDTA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat. High concentrations of Pb were found in leachates collected from the bottom of columns treated with EDTA. Application of EDTA in the column leaching experiment increased the concentration of Pb in leachate with increasing EDTA dosage (0–8 mmol kg?1). These results suggest that EDTA addition for enhancing soil cleanup must be designed properly to minimize the uncontrolled release of metals from soils into groundwater.  相似文献   

18.
玉米根系对土壤氮、磷空间异质性分布的响应   总被引:2,自引:2,他引:0  
氮、磷资源富集区(patches)通常独立存在,揭示植物根系对异质性氮、磷分布的响应,对于通过根系调控充分挖掘根系高效获取氮、磷资源的生物学潜力,提高氮、磷资源利用效率具有重要的理论与实践意义。通过盆栽试验研究了3种氮、磷供应方式(氮磷均匀供应,氮磷混合局部供应,氮磷分开局部供应)对玉米根系生长和分布以及氮、磷吸收的影响。结果表明,氮磷混合和分开局部供应均显著增加了玉米根系干重。与均匀供应处理相比,氮磷混合局部供应使玉米总根长、根干重、根质量比分别增加了28%,66%和31%,磷吸收量减少了35%,但对地上部干重和氮吸收量没有显著的影响。相比之下,氮磷分开局部供应使根和地上部干重均增加55%,氮、磷吸收量分别提高58% 和81%,但对总根长和根冠干物质分配比例无显著影响;与局部供氮相比,局部供磷显著刺激了根系的生长,表明更多的干物质优先分配到局部供磷的区域。由此可见,与氮磷混合局部供应相比,在氮、磷资源分开供应条件下,玉米通过改变根系形态和分布来协调和整合对氮、磷资源的响应,从而强化根系对不同土壤氮、磷资源的摄取能力,这为优化氮、磷资源的管理和空间配置提供了重要依据。  相似文献   

19.
This study was conducted to investigate the effect of salinity and foliar application of salicylic acid (SA) on sorghum biomass and nutrient contents. Treatments were comprised of salinity levels (0 and 100?mM NaCl) and SA concentrations (0.3, 0.7, 1.1 and 1.5?mM). Salinity increased sodium (Na), chlorine (Cl) and copper (Cu) but decreased nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn) and manganese (Mn) contents and the root and shoot dry matter. Fe and Zn were the most affected nutrients by salinity. However, SA reduced Na and Cl but increased plant dry matter and nutrient content. SA had greater positive effects on root than on shoot dry matter. Maximum increases through SA were achieved in N, K, Fe, Mn, Cu, and shoot weight under salt stress but in Zn and root weight under non-saline condition. In most cases 1.1?mM was the most effective SA concentration in reducing the negative effects of salinity.  相似文献   

20.
为探讨根系分泌有机酸对植株吸收富集Pb2+的影响,土壤Pb2+含量为500mg/kg的条件下,设计外源有机酸类型为草酸、冰乙酸、丙二酸、酒石酸和苹果酸,其浓度均为1,3,5,6,7mmol/kg。在模拟日光温室中采用盆栽根袋法对黑麦草生长发育指标,根际与非根际土壤理化性质及黑麦草吸收富集效果进行分析。研究得出,外源有机酸能够在一定程度上促进黑麦草地上部分和根系干物质量的增加,黑麦草根系对Pb2+的吸收富集效果大于地上部分,有机酸的加入活化了土壤中的Pb2+,促进了植株对Pb2+的吸收富集。黑麦草根际土壤pH、Eh值和Pb2+残留量均小于非根际。酒石酸、苹果酸和丙二酸既不影响黑麦草植株生长,又可有效增加其对Pb2+的吸收富集,主要是增加地上部分对Pb2+的吸收富集;冰乙酸可显著活化土壤中的Pb2+。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号