首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
蒸散发(ET)包括植物蒸腾(T)和土壤蒸发(E),在维持全球能量平衡和气候调节中起关键作用。量化蒸散发及其组分在准确预报气候对生态系统碳水通量和能量的响应中至关重要。基于兰州大学半干旱区农业生态系统试验站2014年玉米生长季涡度相关仪的观测结果,利用修订后的Shuttleworth-Wallace模型(S-W模型)对覆膜玉米田的蒸散发进行模拟,利用实测值对模拟结果进行验证,对蒸散发及其组分的影响因素和敏感性进行分析。结果表明:S-W模型对覆膜玉米农田蒸散发的模拟结果在日蒸散量大于2 mm·d~(-1)的晴天和时晴时云天气较好,阴雨天气模拟结果较差,且模型模拟结果较涡度相关的实测值偏高。E/ET在一天内的变化为单峰曲线,在生长季尺度上,在玉米快速生长期呈下降趋势,在之后的时间基本保持不变。覆膜玉米农田的E/ET在日时间尺度的变化主要受气孔导度影响,在生长季尺度主要受叶面积指数和土壤含水量的共同影响。敏感性分析表明,蒸散发及其组分对作物冠层高度与参考高度间的空气动力阻力(raa)和冠层内边界层阻力(rac)均较敏感,对作物冠层阻力(rsc)敏感性适中,对地面与冠层间的空气动力阻力(ras)和下垫面裸土表面阻力(rss)不敏感,在应用S-W模型模拟覆膜玉米农田蒸散量时,要特别注意阻力参数raa、rac和rsc的合理确定。  相似文献   

2.
基于双作物系数的旱作玉米田蒸散估算与验证   总被引:2,自引:0,他引:2  
农田蒸散(ET)准确估算与区分对理解土壤-植物-大气连续系统水分传输动力学过程和调控机制具有重要意义。本研究基于FAO-56 Penman-Monteith(PM)模型计算参考作物蒸散量(ET0),运用双作物系数法计算黄土高原东部地区旱作玉米田2011-2012年蒸散(ETFAO),以同期涡度相关系统实测值(ETEC)作为标准值对双作物系数法计算结果进行评价,并将玉米田ET区分为土壤蒸发和作物蒸腾。结果表明:2011年春玉米生长季ET0、ETEC和ETFAO分别为628、400.3和492.7mm,双作物系数法RMSE、AAE和R~2分别为0.864mm·d~(-1)、0.678mm·d~(-1)和0.755,且R~2达极显著水平(P0.01);2012年三者分别为553、372.6和441.4mm,RMSE、AAE和R~2分别为0.676mm·d~(-1)、0.693mm·d~(-1)和0.781,R~2亦达极显著水平(P0.01),说明双作物系数法在该地区模拟旱作春玉米ET有较高的精度。基于双作物系数法对ET进行区分表明,2011年全生育期土壤蒸发和作物蒸腾分别占ET的36.4%和63.6%;2012年分别占ET的31.7%和68.3%,说明旱作春玉米田ET主要来自春玉米蒸腾。  相似文献   

3.
东北地区参考作物蒸散量对主要气象要素的敏感性分析   总被引:13,自引:1,他引:12  
利用国家气象局提供的地面气候资料日值数据集,通过FAO推荐的Penman-Monteith公式计算了东北地区1961-2008年生长季(5-9月)逐日的参考作物蒸散量(ET0),分析了ET0及主要气象要素的变化趋势,并通过响应曲线、敏感矩阵、敏感系数等方法分析了ET0对气温、日照时数、平均风速、平均相对湿度的敏感性。结果表明:(1)近50a来,东北地区的气温呈极显著上升趋势(P0.01),日照时数、平均风速、平均相对湿度呈极显著下降趋势(P0.01);东北地区生长季平均日ET0在以3.60mm.d-1为平均值、±0.3mm.d-1的范围内波动,总体上比较稳定,最大值出现在2001年(3.87mm.d-1),最小值出现在1990年(3.28mm.d-1);(2)当气温、日照时数、平均风速的变化量从-20%变化到20%时,ET0表现为逐渐增加的趋势,当平均相对湿度的变化量从-20%增加到20%时,ET0则逐渐减小;(3)气温、日照时数、平均风速、平均相对湿度的生长季平均日敏感系数均具有较强的空间分异特性,其中气温变化对ET0的影响最为明显,其次是平均相对湿度,日照时数、平均风速对ET0的影响较小。  相似文献   

4.
通量方差相似法(FVS)可基于单层涡度相关法观测数据,直接拆分生态系统蒸散组分。该方法需计算关键参数Ci/Ca(胞间二氧化碳浓度与大气二氧化碳浓度之比),因此,研究构建Ci/Ca模型对FVS拆分蒸散的应用研究具有重要支撑作用。本研究以杨树人工林生态系统为研究对象,采用双层涡度相关法(CEC)计算蒸腾,评价现有Const_Ci模型、Const_k模型、Linear模型和Katul模型共4种Ci/Ca模型,并优化Ci/Ca模型中的关键参数。结果表明:基于CEC拆分的生态系统林木蒸腾和土壤蒸发日变化均表现为明显的单峰曲线,且蒸发峰值出现在蒸腾峰值之前。连续83d拆分结果表现出明显的日内变化特征,日平均TR/ET(蒸腾/蒸散)、日蒸腾和日蒸发分别为0.78、2.46和0.63mm;基于Const_Ci模型、Const_k模型、Linear模型和Katul模型的FVS方法估算的TR模拟值与双层涡度相关法实测值的偏差率分别为59%、-16%、-70%、-31%,MAE分别为0.18、0.069、0.21和0.085mm·h-1,RMSE分别为0.25、0.089、0.27和0...  相似文献   

5.
地膜残留量对新疆棉田蒸散及棵间蒸发的影响   总被引:11,自引:5,他引:6  
为探讨残膜对干旱区农田蒸散耗水特征的影响,在新疆阿克苏典型覆膜滴灌棉田开展2 a小区试验研究,设计0、225、450 kg/hm2共3种不同的地膜残留量,采用水量平衡法,微型棵间蒸发仪法,于主要生育时期测定并计算土壤含水量、蒸散量、棵间蒸发量、作物蒸腾量、棵间蒸发占蒸散的比例。结果表明:随着地膜残留量增加棵间蒸发量、棵间蒸发占蒸散的比例呈增大趋势,而蒸散量及作物蒸腾量则逐渐减小。与无残膜处理相比,225和450 kg/hm2处理全生育期田间无效耗水的棵间蒸发量分别增加了9.27和22.20 mm,棵间蒸发占蒸散的比例增幅分别为2.6%和6.1%,作物蒸腾量降低34.89和55.94 mm。在棉花生育期内,棵间蒸发占蒸散的比例(E/ET)与叶面积指数(leaf area index,LAI)呈幂函数关系,各处理间棵间蒸发占蒸散的比例对叶面积指数的响应差异不同,450 kg/hm2处理蒸发占蒸散的比例随着LAI的增加,曲线下降趋势较明显;无残膜处理棵间蒸发占蒸散的比例与LAI的决定系数最高,均在0.9以上。土壤水分利用率也随残膜量的增加依次降低,当残膜量由0增加到450 kg/hm2时,土壤水分利用率从28.25%降至24.91%,可见,残膜增大了农田的无效耗水,不利于土壤水分的有效利用。研究可为制定缓解或克服残膜危害的应变调控技术提供依据。  相似文献   

6.
滴灌夏玉米土壤水分与蒸散量SIMDualKc模型估算   总被引:2,自引:1,他引:1  
为研究西北半干旱地区作物蒸腾和土壤蒸发规律,以及土壤蒸发量占蒸散量的比例(简称蒸发占比),开展2 a夏玉米滴灌控水试验,设置正常灌水(W1)、适度水分亏缺(W2)和中度水分亏缺(W3)3个灌水水平.采用W2实测土壤水分数据对SIMDualKc模型进行参数率定,并采用W1和W3实测土壤水分数据对模型进行验证;进一步基于SIMDualKc模型对不同水分供应的土壤水分胁迫系数、土壤蒸发量、植株蒸腾和蒸散量进行定量模拟分析.结果表明,SIMDualKc模型可以较好地模拟西北半干旱区滴灌夏玉米不同水分供应条件下的土壤水分动态变化过程,实测值与模型预测值有较好的一致性(R2>0.88,RMSE<5%);夏玉米生长期,模型能较好地估算不同水分供应的土壤水分胁迫系数、土壤蒸发量和植株蒸腾.土壤蒸发主要集中在生育前期,而生育中期较低,后期略微升高.植物蒸腾主要集中在快速生长期和生长中期,整个生育期呈先增大后减小的趋势.蒸散量随着土壤蒸发和植物蒸腾的变化而变化,前期主要受土壤蒸发的影响,快速生长期、生长中期和后期主要受植物蒸腾的影响.Wl~W3处理土壤蒸发量为78.1~100.2 mm,植株蒸腾为221.8~293.3 mm,蒸散量为299.3~383.0 mm,蒸发占比为24.1%~28.7%.研究可为西北半干旱地区制定合理的夏玉米滴灌制度和灌溉决策提供理论依据.  相似文献   

7.
华北平原冬小麦田问蒸散与棵问蒸发的变化规律研究   总被引:18,自引:2,他引:18  
试验研究冬小麦田间蒸散和棵间蒸发变化规律及其影响因子结果表明 ,播种~返青期冬小麦棵间蒸发占蒸散比例 (E ET)最大 ,抽穗~灌浆期最小。整个生长期间棵间蒸发占蒸散量 31 .4 % ,棵间蒸发占蒸散比例 (E ET)与冬小麦叶面积指数 (LAI)有一定关系 ,E ET =0 .36 93× (LAI) - 0 .74 93(R2 =0 .82 36 )。  相似文献   

8.
麻黄是毛乌苏沙地重要的药用植物,对麻黄蒸散量以及水分供求关系的研究将有助于了解其蒸散耗水以及水分生理生态的特征。本研究于2004年生长季(4月20日-9月20日),利用由涡度相关技术测算得到的麻黄蒸散通量数据,并结合自动气象观测系统同步观测得到的麻黄冠层微气象参数,分析了毛乌素沙地麻黄蒸散耗水特征及水分供求关系。结果表明:(1)在生长季,麻黄蒸散(ET)具有明显的时间变化特征。在晴和多云天气,ET变化为单峰曲线,在阴天呈多峰曲线变化趋势;在日际变化方面,日ET值的变化过程表现为,4月下旬逐渐升高、6-7月达到高峰、8月逐渐降低、9月中旬降至最低。生长季的ET日均值为0.60mm.d-1,总ET量为93.6mm。(2)主要生长期内,蒸散速率(ET)与冠层太阳总辐射(Ra)、空气温度(Ta)、相对湿度(RH)、风速(V)等气象要素有极显著相关关系(R2=0.731,P0.01),其中影响ET的主要微气象因子是太阳总辐射(Ra)。(3)就整个生长季而言,降水总量与麻黄蒸散耗水总量的比值为2.9,说明试验区降水可以满足麻黄生长的水分需求。但在麻黄返青初期的降水量较低,麻黄生长受到降水量与土壤含水量的制约。  相似文献   

9.
基于叶面积指数改进双作物系数法估算旱作玉米蒸散   总被引:7,自引:3,他引:4  
为准确估算和区分黄土高原旱作春玉米蒸散(evapotranspiration,ET),该文基于实测叶面积指数(leaf area index,LAI)动态估算基础作物系数,利用LAI修正土壤蒸发系数,并基于修正后的双作物系数法估算和区分黄土高原地区旱作春玉米ET,并以2012、2013年寿阳站基于涡度相关系统和微型蒸渗仪实测的春玉米ET和土壤蒸发(soil evaporation)对修正后的双作物系数法的适用性进行评估。结果表明:修正后的双作物系数法能够较为准确的估算春玉米ET,2012年春玉米全生育期ET估算值、实测值分别为365.3、372.6 mm,2013年分别为385.6、369.4 mm;2012年全生育期改进双作物系数法决定系数、均方根误差、模型效率系数和平均绝对误差分别为0.824、0.561 mm/d、0.817和0.449 mm/d,2013分别为0.870、0.381 mm/d、0.871和0.332 mm/d;同时,修正后的双作物系数法可对春玉米各生育期ET进行准确区分,土壤蒸发估算值与实测值有较好的一致性,2012年全生育期估算和实测土壤蒸发分别为0.98和0.99 mm/d,分别占ET的38.12%和37.08%;2013年估算和实测土壤蒸发分别为0.86和0.89 mm/d,分别占ET的33.59%和35.90%。因此,修正后的双作物系数法能够较为准确地估算和区分黄土高原地区旱作春玉米ET。该研究可为黄土高原区农田水分精准管理提供科学指导。  相似文献   

10.
太行山低山区不同植被群落蒸发蒸腾研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大型非称重式蒸渗仪对太行山低山区典型植被群落黄背草、荆条及其复合群落蒸发蒸腾进行了研究.结果表明,在整个生长季3种植被群落蒸散、植物蒸腾均呈以8月为峰值的单峰曲线,且黄背草5~6月蒸散量、蒸腾量最大,其他月份复合群落最大.整个生长季中土壤蒸发表现为5~6月份高,9~10月份低.黄背草、荆条和复合群落3种植被的生长季总蒸腾量分别是591.8 mm、611.9 mm、647.0 mm,总蒸发量分别是138.6 mm、130.8 mm、134.9 mm, 蒸散量分别是730.4 mm、742.0 mm、790.5 mm.3种植被群落之间比较结果表明,复合群落的总蒸散量和蒸腾量略大于黄背草和荆条群落,而黄背草和荆条群落差别不明显.  相似文献   

11.
不同时间尺度农田蒸散影响因子的通径分析   总被引:5,自引:0,他引:5  
基于2011-2015年冬小麦农田实测大型称重式蒸渗仪数据及农业气象观测数据,分析不同时间尺度农田蒸散量的分布特征,并利用通径分析方法对各时间尺度农田蒸散的影响因子进行辨识。结果表明:(1)冬小麦开花-乳熟期典型晴天小时尺度蒸散呈单峰变化,最大值为0.9~1.1mm·h~(-1),日累计蒸散量7.0~9.1mm·d~(-1);冬小麦全生育期多年平均蒸散总量为385.4mm,日平均蒸散量为2.6mm·d~(-1),最大日蒸散量11.0mm·d~(-1),变化趋势为前期较低、后期较高;在生育期尺度,播种-返青期的蒸散速率较小,多年平均值为1.1mm·d~(-1),返青后,农田蒸散速率加快,多年平均值为4.2mm·d~(-1)。(2)不同时间尺度蒸散变化的影响因子主要包括净辐射(Rn)、饱和水汽压差(VPD)、0cm地温(T_(g0))、20cm土壤水分(SW20)。在小时尺度,VPD对典型晴天蒸散变化的直接作用最大,其次为Rn,T_(g0)通过Rn路径对EThourly变化产生间接影响,对蒸散的综合决定能力排序依次为VPDT_(g0)Rn;在日尺度,Rn作为最关键的影响因子,对蒸散的直接影响最大,VPD对蒸散的间接影响最大,VPD、T_(g0)主要通过Rn路径间接影响蒸散,SW20再通过T_(g0)路径间接影响蒸散且为负效应,各因子决策系数排序依次为RnVPDT_(g0)SW20;在生育期尺度,T_(g0)和Rn是驱动蒸散变化的最主要因子并起直接影响作用,决策系数表明T_(g0)对蒸散变化的促进作用比Rn明显。  相似文献   

12.
冬小麦拔节抽穗期作物系数的研究   总被引:4,自引:1,他引:4  
在2000~2004年4个冬小麦生长季节研究了冬小麦拔节抽穗期农田蒸散量和参考作物腾发量(FAO56 PM方法计算)的关系,以及作物系数和叶面积指数及作物株高的关系。研究发现在冬小麦拔节抽穗前期,参考作物腾发量要大于或者接近于农田蒸散量,而在后期则要明显小于农田蒸散量。作物系数随着叶面积指数的增加和株高的增加而增加。用2003和2004年的数据回归建立了叶面积指数和株高与作物系数的数学表达式,并计算了2001和2002年的农田蒸散量。结果显示用叶面积和株高两种方法都能够很好的估算农田蒸散量。但是当农田蒸散量小于3 mm/d时,计算值要小于观测值。用叶面积指数和株高两种方法计算的农田蒸散量没有明显差别,说明用株高计算农田蒸散量是可行的。  相似文献   

13.
Abstract

Based on field experiments, changing patterns and affecting factors of soil evaporation and energy balance under crop canopy were studied. Soil evaporation under crop canopy was measured directly using the microlysimetry technique. The main factors affecting soil evaporation under crop canopy including surface net radiation, leaf area index, soil water content, and crop growth period were analyzed to give scientific proof for the soil evaporation control. The results showed that no soil evaporation occurred under the crop canopy when net radiation was reduced to a threshold of 230.57 w/m2. Under crop cover conditions, evaporation/evapotranspiration (E/ET) reduced with increases of crop leaf area index, followed by an exponential function to a leaf area index (LAI) threshold of 4. The cumulative evapotranspiration, transpiration, and evaporation under crop canopy conditions during the winter wheat growing season were 443.9 mm, 272.2 mm, and 171.7 mm, respectively, with E/ET having a relatively high value of 38.7%.  相似文献   

14.
非水分胁迫条件下作物腾发的模拟研究   总被引:5,自引:3,他引:2  
建立了一个充分供水条件下的作物腾发量计算模型NWSE(Non-Water Stress Evapo-transpiration)并用田间实验资料进行了验证。模型将作物冠层蒸腾和土壤蒸发作为一个耦联的整体来考虑,可以同时计算棵间蒸发和作物蒸腾。田间实验资料对NWSE模型验证结果表明地表温度模拟值与观测值吻合良好。利用NWSE模型和Penman-Monteith公式以及常规气象资料分别计算了作物的最大腾发量。计算结果比较表明,在叶面积指数较小时,NWSE模型计算结果与Penman-Monteith计算结果存在差别。在叶面积指数较大时,二者的一致性较好。  相似文献   

15.
蒸散量是农田水循环的重要组成部分,其准确估算对精准灌溉及农业节水具有重要意义。PenmanMonteith(P-M)模型是常用的估算方法之一,但冠层阻力/表面阻力的准确表达一直是应用中的难点。选取常用的7种冠层阻力模型,根据北京市顺义区2a(2020年和2021年)的波文比实测结果,对不同模型模拟的小麦冠层阻力及P-M估算的小麦蒸散量进行比较,并进一步分析影响小麦冠层阻力的主要因子。结果表明,7种模型均低估了小麦冠层阻力,同时高估了蒸散量。总体而言,Todorovic模型(TD)模拟效果最好,其模拟的冠层阻力和蒸散量的R2均大于0.605,平均偏差(MBE)分别为-82.8s·m-1和10.4W·m-2,相应的均方根误差(RMSE)分别为254.4s·m-1和33.5W·m-2;其余6种模型表现均较差,所模拟的冠层阻力R2仅0.113~0.241,MBE和RMSE在-236.4~-61.3s·m-1、277.2~373.8s·m-1;基于6种模型模拟阻力得到的小麦蒸散量与实测值的R2在0.046~0.184,MBE和RMSE分别在44.5~97.4W·m-2、81.4~147.9W·m...  相似文献   

16.
越来越多的证据表明伴随植树造林/再造林等工程实施,我国北方地区叶面积指数(LAI)近年来变化明显。但有关植树造林等引起的LAI变化对水循环的影响仍存在争议。本研究利用卫星遥感LAI数据和生态过程模型(BEPS)评价了2000—2014年北方地区LAI变化对蒸散和产水量的影响。首先评价了北方地区LAI的变化趋势;在此基础上采用"去趋势"法去除LAI变化趋势而仅保留其年际变化;而后分别基于原始和去趋势后LAI序列驱动BEPS模拟北方地区蒸散;最后基于两种情景比较分析LAI变化对蒸散和产水量的影响。结果表明,北方地区LAI发生显著变化的地区占北方地区面积的20.2%,其中LAI显著升高和显著降低地区面积分别占18.8%和5.5%。在像元尺度上,LAI升高会促进蒸散并降低产水量,LAI降低则相反。在区域尺度上,LAI升高分别对蒸散和产水量产生了显著的正负效应;LAI变化对水循环影响取决于研究区覆盖范围和研究区内LAI升高和降低的比例。考虑到LAI升高对产水量可能产生的负效应和北方地区的缺水危机,未来植树造林活动或许应该考虑更多集中于南方地区。  相似文献   

17.
基于时间序列LAI和ET同化的冬小麦遥感估产方法比较   总被引:5,自引:8,他引:5  
为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和SWAP模拟LAI、ET趋势变化信息构建代价函数,以SCE-UA作为优化算法最小化代价函数,重新初始化SWAP模型中的出苗日期和灌溉量2个参数。重点比较了基于向量夹角和一阶差分2种代价函数的冬小麦单产估测精度。结果表明,同化MODIS LAI和ET后,冬小麦产量的估测精度比未同化精度(r=0.57,RMSE=1 192 kg/hm2)有显著提高,并且基于向量夹角代价函数法同化策略的单产估测精度(r=0.75,RMSE=494 kg/hm2)高于一阶差分代价函数法(r=0.73,RMSE=667 kg/hm2)的估测精度。该方法为其他区域的水分胁迫模式下遥感与作物模型双变量数据同化提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号