首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
为了准确评估区域气候干湿状况以及保护半干旱区生态环境,基于科尔沁地区草甸地、半流动沙丘、半固定沙丘、水稻地及玉米地5个典型景观类型2015—2018年日气象资料,通过FAO56 Penman-Monteith公式计算参考作物蒸散发(ET_0),了解不同时间尺度上ET_0变化特征,并利用通径分析与指标敏感性分析相结合剖析了ET_0的驱动因素。结果表明:(1) 4年的年平均ET_0为1 051 mm,不同样地ET_0年值在922~1 257 mm波动,最大值出现在2017年;(2) ET_0季节变化表现为夏季春季秋季冬季;(3) ET_0月际变化呈抛物线型,3—10月贡献最大,占全年ET_0的80%以上;(4)通径分析中,气象因子对ET_0的通径系数表现为VPDRnu_2T_(max),直接作用系数最大为0.614,即VPD是影响ET_0最重要的因子;T_(max)对ET_0的间接作用最大,间接作用系数为0.936,且主要通过VPD路径对ET_0产生作用,间接作用系数为0.554;指标敏感性分析中,去除VPD后E由0.993减小为0.877,进一步说明ET_0对VPD的变化最为敏感。总体而言,VPD为科尔沁沙地参考作物蒸散发变化的主导因子。  相似文献   

2.
冬小麦返青后腾发量时空尺度效应的通径分析   总被引:10,自引:6,他引:4  
作物腾发量(ET)的时空尺度效应是作物高效用水调控与节水灌溉管理中需面对的基础科学问题。该文对返青后冬小麦生育期内试验小区实际腾发量(ETa)和区域水分通量(LE)以及作物生长环境因子进行实测,利用通径分析方法,对冬小麦ET时空尺度效应及其主要影响因子进行分析。结果表明,不同时间尺度和空间尺度下,作物蒸腾蒸发的影响因子不同,显示了其不同的时空尺度效应。对试验小区实际腾发量ETa来说,以全日24 h的数据来分析,其主要影响因子是叶面积指数LAI和净辐射Rn,而白日时段(7:00-18:00)分析显示主要影响因子是空气饱和水汽压差VPD_7-18和叶面积指数LAI。对田间尺度的区域水分通量LE来说,全日24h数据的主要影响因子是净辐射Rn和作物高度H,白日时段(7:00-18:00)数据的主要影响因子是饱和水汽压差VPD_7-18和作物高度H。冬小麦返青后的时间尺度效应表现是全日24h作物腾发量的主要影响因子是净辐射,而白天时段影响腾发量的主要因子是空气饱和水汽压差;空间尺度效应表现是小面积的作物腾发量大小对作物的叶面积指数变化敏感,区域水分通量的大小与下垫面植被高度的变化有关。  相似文献   

3.
华北平原冬小麦田问蒸散与棵问蒸发的变化规律研究   总被引:18,自引:2,他引:18  
试验研究冬小麦田间蒸散和棵间蒸发变化规律及其影响因子结果表明 ,播种~返青期冬小麦棵间蒸发占蒸散比例 (E ET)最大 ,抽穗~灌浆期最小。整个生长期间棵间蒸发占蒸散量 31 .4 % ,棵间蒸发占蒸散比例 (E ET)与冬小麦叶面积指数 (LAI)有一定关系 ,E ET =0 .36 93× (LAI) - 0 .74 93(R2 =0 .82 36 )。  相似文献   

4.
参考作物蒸散量(ET_0)的准确估算是作物需水量及区域农业水分供需计算的关键,尽管已提出大量方法,但缺乏基于实测值的严格检验。本文利用北京小汤山2012年称重式蒸渗仪实测日值,检验16个ET_0模型,包括5个综合法、6个辐射法、5个温度法模型。依据均方根误差RMSE值,各模型估算效果的排序为FAO79 Penman=1963 Peman1996 Kimberly PenmanFAO24 PenmanFAO56 Penman-Monteith(PM)TurcFAO24 Blaney-Criddle(BC)DeBruin-KeijmanJensen-HaisePriestley-Taylor(PT)FAO24RadiationHargreavesMakkinkHamonMcloudBlaney-Criddle(BC)。总体而言,综合法表现最好,其RMSE在1.33~1.47mm·d~(-1),以FAO79 Penman和1963 Penman为最好;辐射法次之,其RMSE在1.48~1.77mm·d~(-1),以Turc最好;温度法检验效果最差,其RMSE在1.50~2.68mm·d~(-1),以FAO24 BC为最好。FAO79Penman和1963 Penman比最好的辐射法和温度法模型的精度分别高10%和13%。综合法、辐射法模型普适性好于温度法的原因在于其均含有影响ET_0的关键因子——辐射或饱和水汽压差VPD。所有模型均具有低蒸发条件下高估、高蒸发条件下低估的阈值特点,综合法及辐射法平均低估0.14mm·d~(-1)和0.33mm·d~(-1),而温度法平均高估0.52mm·d~(-1)。前两类方法 ET_0阈值相对较低,更适于低蒸发力条件,而温度法较适于高蒸发力条件。所有综合法、辐射法模型及温度法的Hargreaves和FAO24 BC法估算值与实测值变化趋势一致,说明模型结构合理,可通过参数校正提高精度;但对于与实测值趋势不吻合的温度法,模型结构尚需优化。VPD和最大湿度RHx是影响综合法、辐射法估算偏差的两大主要因子,其中VPD对低估类模型偏差影响最大,且偏差随着VPD增加而增大;而RHx对高估类综合法模型(1963 Penman、FAO79 Penman)偏差影响最大,且偏差随RHx增加而减小。校正后的PT(1.38)、Makkink(0.83)、Turc(0.014)及Hamon(1.248)系数大于原系数,而Hargreaves(0.0019)和BC(0.192)校正系数低于原系数。此外,PT与Hamon的系数利用最小相对湿度、Turc和Makkink系数利用VPD、Hargreaves和BC系数利用辐射或日照时数能得到最佳估算。FAO56 PM表现不佳(RMSE=1.47mm·d~(-1))的原因与站点气候干燥程度、较低的空气动力项权重有关。后人对原始Penman式的诸多修正并没有显著改善精度,因此建议在类似气候条件地区继续使用老版本Penman式。同时,对FAO56 PM的进一步检验将有助于回答"FAO56 PM是否真正比其它综合法具有优势,在何种气候下表现好,在高蒸发条件下低估是否为普遍现象"等科学问题。  相似文献   

5.
农田蒸散(ET)及其组分的模拟是精准灌溉及准确估算生产力的基础。基于2013-2015年的涡度相关通量观测及辅助观测资料,利用Shuttleworth-Wallace模型(S-W模型)对盘锦水稻的蒸散及其组分进行模拟,并利用结构方程模型分析土壤蒸发占蒸散比例(ES/ET)的控制机制。结果表明:(1)S-W模型模拟蒸散值在生长季前期偏低,在生长旺季总体偏高;而在生长季后期与观测蒸散基本吻合。(2)就季节变化过程而言,水稻蒸散模拟值呈现明显的日间波动(0.5~10.4mm·d-1),但季节总体变化趋势不明显;蒸腾(TR)则先增大后降低,变化范围为0.1~8.4mm·d-1;土壤蒸发(ES)呈U型曲线,变化范围为0.1~4.7mm·d-1。(3)模拟水稻蒸散3a均值为892mm。在年尺度上,TR与ES各占ET的50%;但在生长季,TR是ET的主要消耗方式:在移栽分蘖期,水稻的植物蒸腾与土壤蒸发较接近,而在其它各生育期及全生育期,水稻的植物蒸腾均达土壤蒸发的2倍以上。(4)结构方程模型分析结果表明,气温是ES/ET最重要的影响因子,ES/ET随气温上升而下降(总影响系数为-0.82)。气温不仅对ES/ET有显著的直接影响(直接影响系数为-0.50),还通过叶面积指数(LAI)对ES/ET产生显著的间接影响(间接影响系数为-0.32)。除气温外,LAI和风速也是ES/ET的重要影响因子,ES/ET随LAI增大而下降(总影响系数为-0.39),随风速增大而增大(总影响系数为0.38)。  相似文献   

6.
冬小麦相对蒸散(农田蒸散量ET与自由水面蒸发量ET_0之比)表征冬小麦受土壤水分和作物生长状况制约下的耗水规律。冬小麦生长季利用大型蒸渗仪测定农田蒸散,用E601型水面蒸发器测定水面蒸发,并用平行观测方法测定叶面积指数,分析冬小麦相对蒸散与叶面积指数和表层土壤含水量的关系,并建立了冬小麦返青~收获期相对蒸散与叶面积指数和0~60cm表层土壤含水量的经验公式为。在田间条件下由RE和ET_0推算出小麦耗水量ET,并可用于冬小麦适时、适量灌溉管理。  相似文献   

7.
基于双作物系数的旱作玉米田蒸散估算与验证   总被引:2,自引:0,他引:2  
农田蒸散(ET)准确估算与区分对理解土壤-植物-大气连续系统水分传输动力学过程和调控机制具有重要意义。本研究基于FAO-56 Penman-Monteith(PM)模型计算参考作物蒸散量(ET0),运用双作物系数法计算黄土高原东部地区旱作玉米田2011-2012年蒸散(ETFAO),以同期涡度相关系统实测值(ETEC)作为标准值对双作物系数法计算结果进行评价,并将玉米田ET区分为土壤蒸发和作物蒸腾。结果表明:2011年春玉米生长季ET0、ETEC和ETFAO分别为628、400.3和492.7mm,双作物系数法RMSE、AAE和R~2分别为0.864mm·d~(-1)、0.678mm·d~(-1)和0.755,且R~2达极显著水平(P0.01);2012年三者分别为553、372.6和441.4mm,RMSE、AAE和R~2分别为0.676mm·d~(-1)、0.693mm·d~(-1)和0.781,R~2亦达极显著水平(P0.01),说明双作物系数法在该地区模拟旱作春玉米ET有较高的精度。基于双作物系数法对ET进行区分表明,2011年全生育期土壤蒸发和作物蒸腾分别占ET的36.4%和63.6%;2012年分别占ET的31.7%和68.3%,说明旱作春玉米田ET主要来自春玉米蒸腾。  相似文献   

8.
用分时段修正双源模型估算南京地区冬小麦生育期蒸散量   总被引:4,自引:2,他引:2  
冬小麦是南京地区重要的粮食作物,模拟冬小麦蒸散量(evapotranspiration,ET)并研究其对气象因素的响应可为冬小麦田间水分管理提供参考。该文基于大型称重式蒸渗仪实际测定值分析了冬小麦ET变化规律,分别采用单源模型(Penman-Monteith,PM)和双源模型(Shuttleworth-Wallace,SW)模拟不同时期冬小麦ET,并探讨分时段修正SW模型的模拟方法,在此基础上,分析了ET对气象因素的响应。结果表明,生育初期,冬小麦的ET逐步增加,进入越冬期则逐步降低并保持在较低水平。返青期和拔节期ET迅速增加,开花和成熟期又保持稳定。2011-2012和2013-2014年分时段采用SW模型估算整个生育期冬小麦的蒸散量比整个生育期采用单一估算模型能够减小模拟平均绝对误差0.01~0.04 mm/h。小麦乳熟成熟期采用最小气孔阻力150 s/m计算的修正SW模型可以比整个生育期用单一最小气孔阻力的SW模型降低冬小麦蒸发蒸腾量的估算平均绝对误差0.03~0.13 mm/h。冬小麦蒸发蒸腾量与气象因素密切相关,与净辐射、空气温度和饱和水汽压差等环境因素决定系数顺序为净辐射饱和水汽压差空气温度风速。这表明南京地区冬小麦蒸发蒸腾量主要决定因素为净辐射。该研究能够为冬小麦蒸散量的模拟方法以及田间水分管理提供参考。  相似文献   

9.
黄土塬区农田蒸散的变化特征及主控因素   总被引:2,自引:1,他引:1  
张静  王力  韩雪  张林森 《土壤学报》2016,53(6):1421-1432
蒸散是水量平衡和能量平衡的重要组成部分,也是农田生态系统水分消耗的主要途径。为探究黄土塬区农田蒸散的日动态变化规律,运用涡度相关法、土壤水分及常规微气象观测系统等,于2013年作物生长季(4—10月)对试验区农田作物(冬小麦、春玉米)蒸散特征及影响因素进行分析。结果表明,降水对蒸散的影响较为显著,降水过后的日蒸散量较降水前会有所增加;农田0~100 cm土壤含水量变异系数较大,土壤水分变化剧烈,作物根系的集中分布范围在0~80 cm之间,因此0~100 cm土壤水分主要参与蒸散过程;晴天蒸散的累积量大于阴天,晴天和阴天的日均蒸散量分别为4.5、3.8 mm d-1,相差0.7 mm d-1。阴天蒸散开始的时间较晴天晚,阴天条件下的蒸散更易受到气象因子的扰动;不同天气条件下净辐射均为蒸散的主要影响因子,蒸散速率与净辐射变化趋势一致,但在时间上滞后于净辐射;在不同的土壤水分环境条件下,蒸散的过程和强度差异较大,水分胁迫条件下,全天蒸散量水平较低,"蒸散高地"的持续时间较长;而水分相对充足时,全天蒸散水平较高,"蒸散高地"持续时间较短,维持较高的蒸散速率的时间较长。  相似文献   

10.
灌溉条件下秸秆覆盖麦田耗水特性研究   总被引:6,自引:3,他引:6  
试验于2 0 0 2 2 0 0 3年在中科院禹城综合试验站完成,研究了秸秆覆盖和灌溉对冬小麦农田耗水特性的影响,结果表明:秸秆覆盖能够增强灌溉水的入渗能力。随着灌溉量的增加,秸秆覆盖减少深层底墒水(SMBS)的消耗。灌溉显著增加冬小麦的耗水强度,返青后,覆盖处理冬小麦的耗水强度大于不覆盖处理。在播种到返青期间,覆盖比不覆盖处理平均少蒸散5 2 2 5mm。返青后,覆盖处理的阶段耗水量大于不覆盖处理,但覆盖与不覆盖处理间的总耗水量差异不大  相似文献   

11.
为了探究北京山区常绿树的耗水规律,利用大型称重式蒸渗仪于2010年对北京西山地区油松蒸腾进行连续高精度的观测,分析油松蒸腾的动态变化,同时结合气象因子的观测数据,分析蒸腾强度与气象因子的相关性,从而定量得到各因子对蒸腾的影响程度。结果表明:油松晴天蒸腾日变化呈单峰曲线趋势,在中午时刻出现最大值,与太阳辐射和气温变化趋势保持一致;阴雨天表现为多峰曲线趋势。在各气象因子中,蒸腾强度(Ti)与大气温度(Ta)、大气相对湿度(RH)、冠层净辐射(Rn)和饱和水汽压差(VPD)的相关性较好,其相关方程为Ti=2.228-0.07Ta-0.032RH-0.002Rn+1.108VPD。  相似文献   

12.
为了探明东北冷寒区设施环境下,葡萄液流特征及其与温室内环境因子之间的响应特征,对葡萄液流速率以及环境因子进行连续监测和系统分析,结果表明:葡萄日内液流和全生育期逐日蒸腾均呈现单峰变化趋势,日内液流峰值出现在10:30-13:00之间,在液流最为旺盛的8月,其峰值达406.32g/h。葡萄全生育期日蒸腾量在8月变化相对最为剧烈,日均蒸腾量超过4 mm/d。液流速率与光合有效辐射(photosynthetically active radiation,PAR),气温、水汽压亏缺(vapor pressuredeficit,VPD)及实际水汽压均表现为显著正相关(P0.01),与相对湿度表现为显著负相关(P0.01)。瞬时液流速率与日蒸腾最主要的影响因子是PAR与VPD,月尺度液流最主要影响因子在PAR与蒸腾整合变量(variableof transpiration,VT)之间变化。全生育期液流最主要的影响因子是PAR与VT,但其决定系数随研究时间尺度的增加而降低。不同气象因子与液流之间存在明显的时滞效应,PAR的启动时间及停止时间均提前于液流,到达高峰时间滞后于液流,时滞时间最长为1.5 h。VPD整体滞后于液流。  相似文献   

13.
为提高中国三大灌区(都江堰灌区、河套灌区和淠史杭灌区)参考作物蒸散量(reference crop evapotranspiration,ET 0 )温度法的计算精度,选取 8 个代表性站点 1961-2014 年逐日气象资料,采用 Irmark-Allen(IA)、Hargreaves and Samani(HS)、Turc(Tur)、McCloud(MC)、Schendel(Sch)、Trajkovic (Tra)、Droogres and Allen?1(DA-1)和 Droogres and Allen?2(DA-2)共 8 种温度法计算 ET 0 ,以 FAO-56 Penman-Monteith(PM)法计算结果为标准,基于各方法计算的 ET 0 日值线性回归方程(y=kx+b),分别 在都江堰灌区选取 IA 法和 Tra 法,河套灌区选取 HS 法、DA-1 法和 DA-2 法,淠史杭灌区选取 IA 法、 HS 法、DA-1 法和 DA-2 法,引入调差参数对模型进行修订,利用均方根误差(RMSE)、平均相对误差 (MRE)和 Nash-Sutcliffe 系数(NS)对其适应性进行评价。结果表明:都江堰灌区和淠史杭灌区所选 模型修订后计算精度均有明显提高,河套灌区提高不明显;都江堰灌区 IA 修订模型(IA-Du 法)在该灌 区计算精度最高,其日值、旬值的 RMSE、MRE 和 NS 分别为 0.318mm·d-1 、0.120 和 0.923,0.201mm·d-1 、 0.093 和 0.959,且在不同月份均有较高计算精度;河套灌区计算精度最高模型为 HS 法,其日值、旬值 的 RMSE、MRE 和 NS 分别为 0.898mm·d-1 、0.326 和 0.785,0.547mm·d-1 、0.223 和 0.904,且在 1-5 月 和 10-12 月具有较高计算精度;淠史杭灌区 IA 修订模型(IA -Pi 法)在该灌区计算精度最高,其日值、旬 值的 RMSE、MRE 和 NS 分别为 0.534mm·d -1 、0.195 和 0.861,0.390mm·d -1 、0.167 和 0.896,且在不同 月份均具有较高计算精度。因此,推荐 IA -Du 法、HS 法和 IA -Pi 法分别作为都江堰灌区、河套灌区和淠史 杭灌区计算参考作物蒸散量的方法。  相似文献   

14.
不同生物质炭输入水平下旱作农田温室气体排放研究   总被引:4,自引:0,他引:4  
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭输入水平下春小麦农田土壤温室气体(CO_2、N_2O和CH_4)的排放通量进行全生育期连续观测,并分析其影响因子。结果表明:6个生物质炭输入水平处理下[0 t·hm~(-2)(CK)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2)],旱作农田土壤在春小麦全生育期内均表现为CH_4弱源、N_2O源和CO_2源。全生育期各处理CH_4平均排放通量依次为:0.005 7 mg·m~(-2)·h~(-1)、0.0047 mg·m~(-2)·h~(-1)、0.003 6 mg·m~(-2)·h~(-1)、0.003 3 mg·m~(-2)·h~(-1)、0.002 7 mg·m~(-2)·h~(-1)和0.000 4 mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:0.230 5 mg·m~(-2)·h~(-1)、0.144 1 mg·m~(-2)·h~(-1)、0.135 3 mg·m~(-2)·h~(-1)、0.098 9 mg·m~(-2)·h~(-1)、0.125 0 mg·m~(-2)·h~(-1)和0.151 3mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:0.449 2μmol·m~(-2)·s~(-1)、0.447 0μmol·m~(-2)·s~(-1)、0.430 3μmol·m~(-2)·s~(-1)、0.391 4μmol·m~(-2)·s~(-1)、0.408 0μmol·m~(-2)·s~(-1)和0.416 4μmol·m~(-2)·s~(-1)。土壤CH_4排放通量随生物质炭输入量的增加而减小;当生物质炭输入量小于30 t·hm~(-2)时,土壤N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,N_2O、CO_2排放通量则呈显著增大趋势。各处理在5~15 cm土层平均土壤温度差异显著(P0.05),在5~10 cm土层平均土壤含水量差异显著(P0.05),土壤温度及含水量受生物质炭影响明显;且CK处理不同土层的土壤温度及含水量波动最大,生物质炭输入可在一定程度上降低不同土层土壤的水热变化幅度;N_2O、CO_2排放通量与10~15 cm土层土壤温度呈显著性负相关,与20~25 cm土壤温度呈显著性正相关;CH_4平均排放通量与5~10 cm土层土壤温度呈显著性负相关,与其含水量呈显著性正相关;N_2O平均排放通量与15~20 cm土层土壤温度呈显著性正相关;CH_4、N_2O、CO_2平均排放通量与0~5 cm土层土壤水分呈显著性负相关。生物质炭的输入能够减小温室气体的排放,且会因其输入量的不同而异,因此适量应用生物质炭有利于旱作农田生育期内增汇减排。  相似文献   

15.
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭水平(0 t·hm~(-2)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2))下农田土壤温室气体(CO_2、N_2O和CH_4)的日排放通量及其影响因子进行连续观测,并确定1 d中不同生物质炭处理水平下的最佳观测时间。结果表明:6个生物质炭输入水平处理下,春小麦地土壤CH_4、N_2O和CO_2通量变化趋势与气温日变化轨迹大体一致,均表现为白天排放量大于夜间,并在4:00—5:00时,出现对CH_4通量的吸收峰,以及N_2O与CO_2的排放低谷;全天内各处理CH_4平均排放通量依次为:10.14mg·m~(-2)·h~(-1)、7.82mg·m~(-2)·h~(-1)、6.57mg·m~(-2)·h~(-1)、-0.10mg·m~(-2)·h~(-1)、1.05mg·m~(-2)·h~(-1)和2.89mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:288.79mg·m~(-2)·h~(-1)、201.78mg·m~(-2)·h~(-1)、157.14mg·m~(-2)·h~(-1)、112.06mg·m~(-2)·h~(-1)、154.60mg·m~(-2)·h~(-1)和164.02mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:85.44 mg·m~(-2)·h~(-1)、80.91 mg·m~(-2)·h~(-1)、76.49 mg·m~(-2)·h~(-1)、65.29 mg·m~(-2)·h~(-1)、67.19 mg·m~(-2)·h~(-1)和69.10 mg·m~(-2)·h~(-1);当生物质炭输入量小于30 t·hm~(-2)时,土壤CH_4、N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,3种温室气体排放通量则呈显著增大趋势;当生物质炭输入水平为30 t·hm~(-2)时,春小麦土壤全天表现为CH_4的吸收汇,其余各水平处理下的土壤表现为CH_4的弱排放源;6种处理水平下,全天春小麦地土壤表现为N_2O、CO_2的排放源。0~5 cm的土壤温度及水分(y)与生物质炭输入量(x)回归方程分别为y=-0.017 6x+16.585(R~2=0.302 6,r=-0.55,P0.05)和y=0.056 5x+13.626(R~2=0.815 1,r=0.903,P0.05),生物质炭输入量与0~5 cm的土壤水分呈显著正相关关系;无生物质炭输入处理下3种温室气体的吸收或排放通量与地表温度及5 cm地温均呈显著正相关关系,其他各处理也表现出不同程度的正相关关系。因此,当生物质炭输入水平为30 t·hm~(-2)时,更有利于CH_4、N_2O和CO_2 3种温室气体的增汇减排;生物质炭输入水平差异引起的土壤温度及水分差异可能是不同生物质炭处理CH_4、N_2O和CO_2日排放通量产生差异的主要原因;由矫正系数及最佳时段温室气体排放量与累积排放量回归分析可得,3种温室气体的最佳同期观测时间为8:00—9:00。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号