首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A pot experiment was conducted to study the contribution of reactive phosphate rocks (RPRs) on the accumulation of Cd and Zn in 10 acid upland soils in Indonesia and shoots of Zea mays plants grown on these soils. Two types of RPR were used at a rate of 0.5 g (kg soil)–1: RPRL containing 4 mg Cd kg–1 and 224 mg Zn kg–1, and RPRH containing 69 mg Cd kg–1 and 745 mg Zn kg–1. Zea mays was harvested at 6 weeks after planting. The application of RPRH significantly increased the concentrations of Cd in the shoots. The application of this RPR also increased the amount of Cd which could be extracted by 0.5 M NH4‐acetate + 0.02 M EDTA pH 4.65 from the soils. More than 90% of the added Cd remained in the soil. As Zn is an essential element and the studied acid upland soils are Zn‐deficient, increased plant growth upon RPR application might be partly attributed to Zn present in the phosphate rock. However, more experiments are needed to confirm this hypothesis. The Cd and Zn concentrations and CEC of the soils were important soil factors influencing the concentrations of Cd and Zn in the shoots of maize plants grown on these soils.  相似文献   

2.
The distribution in soil and plant uptake of zinc (Zn) and lead (Pb) as influenced by pine bark-goat manure (PBG) compost additions were investigated from the soils artificially contaminated with Zn or Pb ions using maize (Zea mays L.) as a test crop. Soils were amended with four rates of pine bark-goat manure compost (0, 50, 100, and 200 tons ha?1) and four rates (0, 300, 600 and 1200 mg kg?1) of Zn or Pb. Maize was planted and grown for 42 days. At harvest, plants samples were analyzed for Zn and Pb concentration. Soils samples were analyzed for pH, extractable and diethylene triamine pentaacetic acid (DTPA) extractable Zn and Pb. Extractable Zn and Pb was lower in PBG compost amended soils than in unamended soils and steadily declined with increasing amount of compost applied. The extractable fraction for Zn dropped by 62.2, 65.0 and 44.6% for 300, 600 and 1200 mg Zn kg?1, respectively when 200 t ha?1 of PBG compost was applied. Metal uptake by maize plants were directly related to the rate of applied heavy metal ions with greater concentrations of metals ions found where metal ions were added to non-amended soils.  相似文献   

3.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

4.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

5.
The use of phosphorus (P) to reduce lead (Pb)bioavailability is being proposed as an alternative to excavationand disposal as a remedial technology for Pb-contaminated soilsin residential areas. The objective of this study was todetermine the influence of P sources and rates andCaCO3additions on the bioavailabilities of Pb, cadmium (Cd), and zinc(Zn) in a contaminated soil material using plants, a sequentialextraction procedure, and ion activities in equilibrium solutionas indicators. A contaminated soil containing 370 mg kg-1 Cd, 2800 mg kg-1 Pb and 29100 mg kg-1 Zn was amended ina factorial arrangement of CaCO3 (0 or 2000 mg kg-1) and P as rock phosphate or KH2PO4 at 0:1, 2:1 or 4:1P:Pb mole ratios. A pot study was conducted using sorghum-sudangrass (Sorghum bicolor L. Moench). The addition of P did not influence Pb concentrations in plant tissue and had little effect on Cd concentrations. An interaction between P source and level of P addition was found for Zn concentrations in plant tissue; concentrations increased with increasing amounts of P from KH2PO4 anddecreased with increasing amounts of P from rock phosphate. Sequential extraction results suggested a much greater reduction in Pb bioavailability from treatment withKH2PO4 than with rock phosphate and that P influencedthe fractionations of Cd and Zn. Activities of Cd2+,Pb2+, and Zn2+ in equilibrium solutions generally weredecreased by rock phosphate and increased by KH2PO4. Saturation indices suggested the addition ofKH2PO4shifted the soil equilibrium from octavite to hydroxypyromorphite, whereas solid-phase control of Cd2+ andZn2+ was not influenced by soil amendments. A soluble Psource was more effective in reducing Pb bioavailability thanrock phosphate but had variable effects on Cd and Znbioavailabilities.  相似文献   

6.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

7.
Earthworms can influence incorporation of animal manures and composts into the soil. As this activity can decrease the potential for phosphorus (P) loss in runoff and increase plant nutrient availability, we evaluated the effect of manure application on earthworm activity. Earthworm activity (as indicated by surface casts of Lumbricus terrestris) and soil P distribution were determined as a function of superphosphate, manure, and compost (dairy and poultry) applied at rates of 0, 50, 100, and 200 kg P ha–1 yr–1. Surface earthworm cast production was greatest in the wet and warm months of May to July. For instance, average annual cast production was 24,520 and 13,760 kg ha–1 with respective applications of dairy manure and compost (100 kg P ha–1) compared with 9,090 kg ha–1 when superphosphate was added. This increased activity was accompanied by lower Mehlich 3 P (130 mg kg–1) at the surface (0–5 cm) of soils treated with 100 kg P ha–1 yr–1 dairy manure than those treated with superphosphate (210 mg kg–1) but greater concentrations at 5 to 10 cm deep (95 and 50 mg kg–1, respectively). While there may have been greater downward movement of organic P added in manure and compost, the stimulation of L. terrestris activity by application of manure or compost has the potential to redistribute surface-applied P within the soil profile to a greater extent than when equivalent applications of P are made in the form of inorganic fertilizer.  相似文献   

8.
A slightly modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (BCR) for analysis of sediments was successfully applied to soil samples. Contaminated soil samples from the lead and zinc mining area in the Mezica valley (Slovenia) and natural soils from a non-industrial area were analysed. The total concentrations of Cd, Pb and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS). Total metal concentrations in natural soils ranged from 0.3 to 2.6 mg kg-1 for Cd, from 20 to 45 mg kg-1 for Pb and from 70 to 140 mg kg-1 for Zn, while these concentrations ranged from 0.5 to 35 mg kg-1 for Cd, from 200 to 10000 mg kg-1 for Pb and from 140 to 1500 mg kg-1 for Zn in soils from contaminated areas. The results of the partitioning study applying the slightly modified BCR three-step extraction procedure indicate that Cd, Pb and Zn in natural soils prevails mostly in sparingly soluble fractions. Cd in natural soils is bound mainly to Fe and Mn oxides and hydroxides, Pb to organic matter, sulphides and silicates, while Zn is predominantly bound to silicates. In contaminated soils, Cd, Pb and Zn are distributed between the easily and sparingly soluble fractions. Due to the high total Cd, Pb and Zn concentrations in contaminated soil close to the smelter, ! and their high proportions in the easily soluble fraction (80% of Cd, 50% of Pb and 70% of Zn), the soil around smelters represents an environmental hazard.  相似文献   

9.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

10.
Hydroponic and pot experiments were conducted to assess the uptake of heavy metals (Cd and Zn) by a common crop plant, African basil, Ocimum gratissimum. In addition, the effects of soil amendments, hydroxyapatite (HA) and cow manure on plant growth and metal accumulations were compared. In the hydroponic study, plants were exposed to various concentrations of Cd (2.5 and 5 mg L?1) and Zn (10 and 20 mg L?1) for 15 days. O. gratissimum was shown to be a Cd accumulator more than a Zn accumulator. Cadmium concentration in its shoots exceeded 100 mg kg?1. In the pot experiments, soils from a heavily Cd-contaminated site (Cd 67.9 mg kg?1 and Zn 2,886.8 mg kg?1) were treated with cow manure and HA at the rates of 10% and 20% (w/w), and 0.75 and 1.5% (w/w), respectively. Plants were grown in the greenhouse for 3 months. The addition of cow manure resulted in the highest biomass production and the lowest accumulations of Cd in plant parts, while HA was more efficient than cow manure in reducing Zn uptake. Leaves of African basil showed a decreased Cd concentration from 1.5 to 0.3 mg kg?1 (cow manure) and decreased Zn concentration from 69.3 to 34 mg kg?1 (HA). This clearly demonstrates the efficiency of HA and cow manure in reducing metal content in leaves of plants grown on high metal-contaminated soil to acceptable or close to acceptable values (0.2 mg kg?1 for Cd, 99.4 mg kg?1 for Zn).  相似文献   

11.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

12.
Thirty field experiments on a range of soils in different rainfall zones of South Western Australia were used to examine the effectiveness, relative to freshly applied zinc (Zn) fertilizer of previously applied Zn fertilizer for grain yield of wheat. The soils had been fertilized with Zn at 0.2 to 1.2 kg Zn ha‐1, 9 to 24 years previous. The effect of applied nitrogen (N) fertilizer on grain yield and Zn concentrations in the youngest emerged blade (YEB) was also examined. At all sites, the current application of Zn fertilizer to soils previously treated with Zn did not increase grain yield. The highest level of N fertilizer did not reduce grain yield where Zn had been applied previously or induce Zn deficiency in wheat plants. The lowest level of Zn (0.2 kg Zn ha‐1, Experiment 17) applied 15 years earlier was still fully effective for maximum grain production. The application of currently applied Zn increased the Zn concentration in the YEB for 23 experiments. Application of N decreased Zn concentration in YEB in the 19 experiments, had no effect on the Zn concentration in 11 experiments, and increased Zn concentrations in two experiments. This was so for recent and previously applied Zn. In experiments where N decreased the Zn concentration in YEB, the concentration declined to 10 mg kg‐1 in seven experiments. Zn concentration in the grain was increased by the current application of Zn in 25 experiments. It had no effect in five experiments (Experiments 11–13, 21–22). The application of N fertilizer decreased the Zn concentration of the grain for both previously and currently applied Zn in 20 experiments. Nitrogen decreased the concentration of Zn in the grain to 10 mg Zn kg‐1 in seven experiments. Zinc extracted from the soil by DTPA was correlated with the amount of previously applied Zn fertilizer. DTPA‐extractable Zn for the experimental sites were 0.3 mg kg‐1, except for 2 experiments which were 0.2 mg/kg. The results show that where Zn fertilizer had been applied previously, applications of high levels of N fertilizer to cereal crops did not require further applications of Zn if superphosphate (400–600 mg Zn kg‐1) was used in the cropping and pasture phase. This is because of contaminates of Zn in rock phosphate used to make superphosphate. However, the requirements for Zn for wheat grain need to be reconsidered if diammonium phosphate (DAP) is used for cropping and if superphosphate applications are less than 150 kg ha‐1 during the legume crop or pasture species in rotation with the cereal.  相似文献   

13.
Yellow lupin (Lupinus luteus L.), which is grown as a grain legume in rotation with spring wheat (Triticum aestivum L.) on acidic, sandy soils of south-western Australia, accumulates cadmium (Cd) in grain. Application of fertilizer is required to combat zinc (Zn) and phosphorus (P) deficiency for yellow lupin production on these soils, which may affect Cd concentration in grain. In the same field experiment conducted at two sites on acidified sand over clay duplex soils, five Zn levels (0, 0.8, 1.6, 3.2, 6.4 kg Zn ha-1), as Zn oxide, and three P levels (0, 10, and 20 kg P ha-1), as triple superphosphate, were applied. At both sites, applying increasing Zn levels decreased Cd concentration in grain, whereas applying increasing P levels increased Cd concentration in grain. The ZnxP interaction was not significant for either grain yield or Cd concentration in grain. At the 8–10 leaf stage, Zn and P concentration was measured in whole shoots (WS), and Zn concentration was also measured in the youngest mature growth (YMG). The concentrations of the elements that were related to 90% of the maximum grain yield (critical prognostic plant test Zn and P) was i) for WS, 29 mg kg-1for Zn and 3.5 g kg-1for P; and ii) for YMG, was 23 mg kg-1for Zn.  相似文献   

14.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

15.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

16.
The effect of red mud (10 g kg–1), a by‐product of the alumina industry, zeolite (20 g kg–1), a naturally‐occurring hydrous aluminosilicate, and lime (3 g kg–1) on metal lability in soil and uptake by fescue (Festuca rubra L.) (FEST) and amaranthus (Amaranthus hybridus L.) (AMA) was investigated in four different soils from Austria. The soil collection locations were Untertiefenbach (UNT), Weyersdorf (WEY), Reisenberg (REI), and Arnoldstein (ARN). The latter was collected in the vicinity of a former Pb‐Zn smelter and was highly polluted with Pb (12300 mg kg–1), Zn (2713 mg kg–1), and Cd (19.7 mg kg–1) by long‐term deposition. The other soils were spiked with Zn (700 mg kg–1), Cu (250 mg kg–1), Ni (100 mg kg–1), V (100 mg kg–1), and Cd (7 mg kg–1) salts in 1987. The two plant species were cultivated for 15 months. Ammonium nitrate (1 M) extraction was used in a soil : solution ratio of 1:2.5 to assess the influence of the amendments on the labile metal pools. The reduction of metal extractability due to red mud was 70 % (Cd), 89 % (Zn), and 74 % (Ni) in the sandy soil (WEY). Plant uptake in this treatment was reduced by 38 to 87 % (Cd), 50 to 81 % (Zn), and 66 to 87 % (Ni) when compared to the control. Sequential extraction revealed relative enrichments of Fe‐oxide‐associated metal fractions at the expense of exchangeable metal fractions. Red mud was the only amendment that decreased lability in soil and plant uptake of Zn, Cd, and Ni consistently. Possible drawbacks of red mud application (e.g., As and Cr concentration) remain to be evaluated.  相似文献   

17.
Bioaccumulation of trace metals in plant tissues can present a health risk to wildlife, and potentially to humans. The Passamaquoddy tribe in Maine was concerned about health risks of cadmium (Cd) because of a health advisory for moose liver and kidney consumption due to high Cd levels. This study found relatively low to moderate concentrations of Cd, nickel (Ni), lead (Pb), and zinc (Zn) concentrations in four common terrestrial moose browse species, associated forest soils, and two species of aquatic vegetation on Passamaquoddy tribal land in eastern Maine. Terrestrial plant tissue concentrations ranged from 0.1 to 1.97, 0.65 to 7.08, 0.29 to 2.0, and 42 to 431 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Deciduous species, particularly aspen and birch, may be a more significant source of Cd and Zn to wildlife compared to coniferous or aquatic species. Aquatic plant tissue concentrations ranged from 0.11 to 0.14, 0.46 to 1.01, 0.8 to 0.9, and 22 to 41 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Total O horizon concentration means for coniferous and deciduous were 0.50 and 1.00, 4.27 and 4.11, 55 and 21, and 55 and 167 mg kg?1 for Cd, Ni, Pb and Zn, respectively. The study provides baseline vegetation and soil trace metal concentrations for a remote region in Maine impacted by non-point sources.  相似文献   

18.
The survival of free-living rhizobia in soil is sensitive to elevated heavy metals in soil and can explain adverse effects of metals on symbiotic nitrogen fixation in soils. A survival experiment was set-up to derive critical cadmium (Cd) and zinc (Zn) concentrations in a range of field-contaminated soils in the absence of their host plant (Trifolium repens L.). Soils applied with metal salts or sewage sludge >10 years ago were sampled and were inoculated with Rhizobium leguminosarum bv. trifolii (108 cells g−1 soil) and incubated outdoors for up to 6 months. The most probable number (MPN) decreased 1-2 orders of magnitude in uncontaminated soils during the incubation. There was no significant effect of total metal concentrations on rhizobia survival in soils contaminated with Cd salts or with high Ni/Cd sewage sludge with highest Cd concentrations between 18 and 118 mg Cd kg−1. In contrast, survival was strongly affected in soils contaminated by sewage sludge, where Zn was the principal metal contaminant. Neither total Cd nor soil solution Cd was large enough to attribute these effects to Cd when compared with the soil series, where Cd salts had been applied. The MPN decreased at least one order of magnitude above total Zn concentrations of 233 mg Zn kg−1 (soil pH 5.6) and 876 mg Zn kg−1 (soil pH 6.3). The EC50s of log MPN were 204 and 604 mg Zn kg−1, respectively, and were lower than those for the symbiotic nitrogen fixation measured in the pot trial on the same soils (respectively 602 and 737 mg Zn kg−1). This study corroborates the evidence that symbiotic nitrogen fixation is affected by Zn in the field when Zn decreases the free-living population of rhizobia to below a critical threshold.  相似文献   

19.
A pot experiment, in which composted pig manure was applied to soils at rates of 0%, 0.5%, 1.5%, 3.0%, and 5.0% (W/W) to simulate additions of different amounts of cadmium (Cd), copper (Cu), and zinc (Zn) to soil, was conducted to assess accumulation of metals by rice (Oryza sativa L.) plants from soils treated with manure. Results indicated that Cd concentrations in rice grains were more than the limit of 0.2 mg kg?1 when 0.14 mg kg?1 or more Cd was loaded to Ferralsols by manure application, but it was not more than the limit in Calcaric Cambisols. Zinc contents in polished rice grains did not exceed the permissible limit of 50 mg kg?1 in two soils. Copper concentrations in rice grain were slightly more than the limit of 10 mg kg?1 in Ferralsols but not in Calcaric Cambisols. Results suggested greater risk of heavy‐metal contamination from manure to paddy rice in Ferralsols than in Calcaric Cambisols.  相似文献   

20.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号