首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The productivity of kiwifruit (Actinidia deliciosa) orchards varies widely in New Zealand. We hypothesized that such variation was attributable in part to nutrient imbalance. However, nutrient imbalance is currently diagnosed using critical nutrient ranges that are noisy and biased. Unbiased diagnosis can be performed using the isometric log ratio (ilr) technique for ad hoc balances. Our objective was to present, calibrate, and validate ilr balance standards to diagnose nutrient problems in New Zealand kiwifruit orchards. We collected leaf analytical data [nitrogen (N), sulfur (S), chloride (Cl), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe)] in 433 kiwifruit orchards grown under conventional or organic farming in various agroecological zones of the North Island of New Zealand. Nutrients were arranged into sound balances illustrated by a mobile-fulcrums-buckets metaphor with balance sliders at fulcrums (domain of balances where statistics are computed) and concentrations in buckets (domain of concentrations where nutrient levels are examined relatively to each other). We developed optimum ranges of ilr balances to reach high yield levels and computed a nutrient imbalance predictor as the Mahalanobis distance. The critical Mahalanobis distance was 4.45 ± 0.13 at high yield level (>44 049 ± 334 kg ha?1), averaged from a five-fold cross-validation test; the test performance was 85 percent using the receiver operating characteristic curve, indicating that the test was informative for diagnostic purposes. After assessing relative nutrient levels in the concentrations domain, the most limiting nutrients appeared to be Cl, Mg, and Fe in poor-yield imbalanced specimens and Cl and S in organic orchards. Indeed, kiwifruit has high demand for Cl. Balance standards should be further tested in field trials.  相似文献   

2.
Evaluation of nutrient accumulation trends in fruit during fruit development and nutrient status in the leaves are important components defining nutrient requirements. Such nutrient demand should be met by nutrient supply in order to develop optimal rate and timing of fertilizer application. In a 3‐year study the citrus (orange) varieties, ‘Valencia’, ‘Parson Brown’, ‘Hamlin’, and ‘Sunburst’ were fertilized with either 168, 224, or 280 kg N ha‐1 yr‐1 as a broadcast application of N:P:K dry soluble granular fertilizer. These rates did not significantly affect the fruit nutrient status, juice quality, or nutrients concentrations in the spring flush. The concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in the fruit decreased with their enlargement during June through November. However, micronutrient concentrations in the fruits increased from June through August or September and then decreased. Fruit dry weight was greatest in ‘Valencia’ followed by ‘Hamlin’, ‘Parson Brown’, and ‘Sunburst’ varieties. Soluble solids concentration (SSC) were higher in ‘Valencia’ and ‘Sunburst’ fruit than in the other two varieties. Other juice quality parameters were not significantly different among the varieties. This study indicated non‐significant influence of fertilizer rates on concentrations of various mineral elements in 6‐month‐old spring flush with most of those concentrations within the optimal ranges.  相似文献   

3.
Citrus production in Florida is ranked first in the United States. Success of the citrus industry in the state relies heavily on sound water and nutrient management practices. Recently, citrus production has been declining due to the escalating prevalence of the citrus greening (Liberibacter asiaticus) and canker (Xanthomonas axonopodis) diseases. One option being explored is the manipulation of nutrient management scenarios to increase and enhance tree productivity. The paper presents a review of the management, analytical and application methods of three major nutrients Nitrogen (N), Phosphorus (P), and Potassium (K) on Florida's sandy soils with low organic matter (OM) and high leaching potential due to heavy annual rains (~1200 mm). The NPK management options for Florida citrus are compared with those of other citrus producing regions around the world. Also, the critical tissue and soil nutrient concentrations for optimal and high citrus production are discussed. The review paper should provide important nutrient management guidelines to citrus growers in Florida and other regions with similar climatic and soil conditions.  相似文献   

4.
Spartina alterniflora (loisel) is critical to wetland structure, productivity, and vertical accretion in marshes worldwide. Previous studies along the Atlantic coast have addressed responses of carbon (C), nitrogen (N), sodium (Na), and phosphorous (P) concentrations and ratios in S. alterniflora tissue to variation in salinity and nutrient availability, but data are lacking from Louisiana wetlands. Spartina alterniflora were collected from sites with a range of freshwater and nutrient availability along Louisiana’s coast and measured chemical contents in leaf tissue. The C/N ratios in leaf tissue of S. alterniflora in Louisiana were unaffected by salinity, but the researchers also failed to detect a relationship between Na and salinity. There was no evidence found of P limitation. These results indicate that Spartina alterniflora responds similarly on both coasts, but that salinity and nutrient availability differ between coasts.  相似文献   

5.
Spatially dependent patterns in microbial properties may exist in temperate alley cropping systems due to differences in litter quality and microclimate in areas under trees compared to those in the alleys. The effect of tree row location was evaluated for its impact on soil enzyme activities and Biolog substrate use patterns. Soils were sampled to a depth of 30 cm at the tree row and at the middle of the alley at two sites: a 21-year-old pecan (Carya illinoinensis)/bluegrass (Poa trivials) intercrop (Pecan site) and a 12-year-old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (Maple site). Sampling was done in fall 2001 and summer 2002. β-Glucosidase activities, Biolog patterns expressed as average well color (AWC), substrate richness, and Shannon diversity index, and total Kjeldahl nitrogen (TKN) were significantly higher (P<0.05) in the tree row than at the middle of the alley for surface soils at the Pecan site. Fluorescein diacetate (FDA) hydrolytic activity was also higher at the tree row for soils sampled in the fall, but did not differ significantly for soils sampled in the summer. At the Maple site, AWC and substrate richness were significantly higher at the tree row for soils sampled in 2001. Soil volumetric water content and temperature were generally lower in the tree row at the Maple site. The results of this study suggest that functionally different microbial populations may be present under pecan trees compared to cropped alleys which may promote disparities in nutrient availability necessitating differential long-term nutrient management in such alley cropping systems.  相似文献   

6.
The majority of the citriculture in Brazil is located in the state of São Paulo, with a total production area of 700,000 ha. Trees are grafted mostly on ‘Rangpur’ lime (RL; Citrus limonia Osbeck) rootstock. Despite its good horticultural performance, use of other rootstocks has increased with the search for disease-tolerant varieties to improve grove productivity and longevity. Furthermore, there is a lack of information on young tree response to fertilization, and optimal nutrient requirements of different scion/rootstock combinations for maximum fruit yield. A network of field experiments was conducted to study the differential response of young sweet orange trees on selected rootstocks to nitrogen (N), phosphorus (P), and potassium (K) fertilization. The application of soil and leaf analyses to develop optimal fertilizer recommendations was evaluated. Experiments were conducted in three locations using fractional factorial design of one-half (4 × 4 × 4) type with four rates of N, P, or K calculated to be applied for five years after tree planting. Fruit yield response was evaluated during the last two years and correlated with soil and leaf analyses data. The trees on RL rootstock demonstrated increased efficiency of nutrient use and fruit production compared with those on ‘Cleopatra’ mandarin (CL; C. reshni hort. ex Tanaka) or ‘Swingle’ citrumelo [SW; Poncirus trifoliata (L.) Raf. × C. × paradisi Macfad.] rootstocks. The trees on SW rootstock appeared to require greater N and K rates than those on RL rootstock. Phosphorus requirement was greater for ‘Natal’ or ‘Valencia’ trees on CL than on RL rootstock. These results will become the basis for revising current fertilizer recommendation guidelines for young trees in Brazil.  相似文献   

7.
In the litter of six deciduous tree species (Fagus sylvatica, Tilia spp., Fraxinus excelsior, Carpinus betulus, Acer pseudoplatanus and Acer platanoides) and in stand-specific litter mixtures, we compared mass loss and nutrient release across diversity levels along a gradient of decreasing proportion of Fagus in stands with similar environmental and physical soil conditions. The litterbag studies ran over 22 months. The decomposition rate constants (k) of the temperate forest species ranged from k = 0.5 for Fagus to k = 1.5-2 for all other tree species. In Fagus, k was closely negatively correlated with the thickness of the litter layer and positively correlated with soil pH and isopod abundance. k was significantly higher in the mixed species stands (except for Carpinus and Fraxinus) and was positively correlated with earthworm abundance. Over the whole incubation time, nutrient amount and release rates of N, P, K, Ca and Mg as well as C-related ratios showed significant differences between tree species but no consistent differences among the diversity levels. Initial C-related nutrient ratios of the leaf litter and abundance of mesofauna and macrofauna were correlated with the length of time lag before nutrient release. We conclude that the mere number of tree species is not the main driver of nutrient release and decomposition processes, but that key groups of the decomposer fauna as well as the characteristic traits of the individual tree species are decisive.  相似文献   

8.
Abstract

A new method was proposed for assessing the difference in the capacity of soils to supply Cd to plants. The relation of tissue (tc) to soil (sc) Cd concentrations can be expressed as; log(tc) = α+βlog(sc), where α and β are the regression coefficients. When the same plant is grown on another soil, the equation will change to; log(tc) = α'+β'log(sc’). Based on both equations, the relationship between sc‘and sc becomes; log(sc’) = (α‐α')/β’ + (β/β') log(sc). Set p = (α‐α')/β’ and q = β/β’, then the difference of Cd availability between two soils can be evaluated according to the values of p and q. The p and q values were determined among four treatments in which radish was grown on a sand soil and a silty loam soil at two pH levels. The values showed that the Cd present in the sand soil (pH 5.6) and the metal in the silty loam soil (pH 7.5) were the most and least available, respectively. It was therefore considered that the parameters p and q could be used as criteria for selecting an ideal extractant capable of removing the actually available Cd from soils.  相似文献   

9.
ABSTRACT

Calcium (Ca) deficiency is an important problem in peanut (Arachis hypogaea L.) production, with lines from the sub-species A. hypogaea hypogaea (Virginia type) being considered more susceptible to Ca deficiency than those of A. hypogaea fastigata (Spanish and Valencia types). Fifteen peanut lines comprising five Virginia bunch, one Virginia runner, six Spanish, two Valencia types, and one Valencia × Spanish cross were grown for 30 d in continuously flowing solution culture at constant external Ca concentrations ranging from 9 to 2500 μM. Two lines required <9 μM Ca for near-maximum growth, whereas 5 lines required 15–20 μM, six lines required 25–50 μM, and two lines required >75 μM Ca for maximum growth. The Ca concentration in the youngest fully expanded leaves required for maximum growth also differed considerably among the lines, ranging from <5.7 g kg?1 in ‘SH-2’ to 17.3 g kg?1 in ‘Red Spanish’). The differences in solution and tissue Ca requirement for growth did not coincide with the broad botanical groupings despite that Virginia type peanut lines had consistently lower Ca concentrations in youngest fully expanded leaves than Spanish or Valencia lines at all solution Ca concentrations. Leaf magnesium (Mg), potassium (K), phosphorus (P), iron (Fe), and manganese (Mn) concentrations in the leaves decreased as the solution Ca concentration increased and it seemed probable that growth reductions observed at above-optimum Ca concentrations were due to induced deficiencies of P, Mg, or possibly Fe.  相似文献   

10.
This study investigated the genotypic variation in foliar nutrient concentrations, isotopic signature (δ13C), and chlorophyll fluorescence (Fv/Fm) and tree growth of 40 radiata pine clones grown on a New Zealand serpentine soil, and the relationships between growth and physiological traits of these clones from improved and unimproved groups. Genotypic variation in growth and physiological traits existed within (i.e., clonal) and between groups, with larger variation among clones. The clonal repeatabilities were greater for foliar nitrogen (N), calcium (Ca), magnesium (Mg), boron (B) concentrations, δ13C, and Ca : Mg ratio (0.35–0.64) than for growth traits (0.14–0.27) and other physiological traits (0.08–0.24). Significant phenotypic correlations were found between growth traits and foliar phosphorus (P), potassium (K), sulfur (S), iron (Fe), and K : Mg and Ca : Mg ratios and Fv/Fm (positive), and foliar Mg (negative). This study indicates that the trees on this serpentine soil generally suffered from multiple nutrient deficiencies and imbalances and the clonal variation in growth performance was more related to their capabilities of acclimation to nutrient than water stresses. Overall, the clones that absorbed more P, K, S, and Fe and less Mg from the soil grew better on this serpentine soil. For unimproved clones, the most limiting nutrients for tree growth were foliar K and Fe, while for improved clones it was foliar K.  相似文献   

11.
Many studies have dealt with the links between nutrient supply and tree growth. High N availability usually leads to increased growth but it may also be a stress factor and may affect the ability of the tree to take up both water and nutrients. We measured the nutritional status of the trees and estimated their tolerance to drought by examining the flushing of new shoots and needle loss. The studies were carried out on trees grown under different N and water supply in a field experiment using a 25–30 year old Norway spruce (Picea abies) in SW Sweden. The treatments included in this study were ammonium sulphate (NS) where 100 kg N ha?1 was applied yearly, N-free fertiliser (V) where P, K, Ca, Mg and S but no N was applied, and also the combinations of ammonium sulphate and drought (ND) and N-free fertiliser and drought (VD). The NS treatment caused increased N but decreasing P/N, K/N and Mg/N ratios in the needles whereas the N-free fertiliser resulted in increased P/N and Ca/N ratios. In ND and VD, nutrient ratios remained relatively unchanged compared with NS and V. Thus, trees keep a stable internal nutrient balance. However, as a response to the drought, ND seemed to stop the flushing of new shoots to a higher degree than VD. In conclusion, this study showed that nutrient status did affect drought resistance which could be seen as differences in the flushing of new shoots rather than changes in nutrient ratios in the needles.  相似文献   

12.
ABSTRACT

Preliminary compositional nutrient diagnosis (CND) norms for maize (Zea mays L.) were developed from a small database as means and standard deviations of row-centered log ratios V X of five nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and a filling value R, which comprised all nutrients not chemically analyzed and quantified in 72 leaves of hybrid ‘Pioneer 3044.’ Norms were derived from maize grain yields higher than 7.7 t ha?1. Principal-component analysis performed using CND nutrient indexes allowed us to identify an antagonism between N and Mg explained by the calcareous nature of the soil and the relevant N fertilization with ammonium (NH4 +), and a positive interaction between P and K, and P-Ca and K-Ca antagonisms. Maize plants tended to take up lower amounts of N and K and higher amount of Mg in our calcareous soil than the concentrations of these nutrients reported to be optimum.  相似文献   

13.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

14.
ABSTRACT

In the scheduling of nutrient supply programs, analysis of plant nutrient status has been found to be useful to prevent the deficiency or toxic effects of nutrients in any horticultural crop. So the present study was framed to assess the foliage nutrient content and vegetative growth under different irrigation and fertigation combination modules. Recently apple (Malus ×domestica) orchards in the state Himachal Pradesh of India have converted from the traditional royal delicious orchard at 6 × 6 m spacing with rainfed/basin irrigation to early spur varieties on dwarfing rootstock with drip irrigation, both with or without fertigation. An experimental field trial was started at the end of 2018 in a ‘Super Chief’/MM106 orchard at an experimental farm of the department of Soil Science & Water Management, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan (HP). A factorial experiment with 16 treatment combinations of 4 irrigation levels viz. I1 – drip irrigation at 100% ETc, I2 – drip irrigation at 80% ETc, I3 – drip irrigation at 60% ETc, I4 – conventional irrigation, and four fertigation levels viz. F0 – No fertilizer application (absolute control), F1 – 100% of AD (NPK), F2 – 75% of AD (NPK) and F3 – 50% of AD (NPK) were replicated thrice with 3 plants in each replication. Vegetative growth parameters and leaf nutrient contents were affected by both fertilization and water rate. Irrigation and nutrient levels and their interactions exhibited significant effect on leaf N (3.10%), P (0.28%), K (1.77%), and S (0.44%) contents. Significantly maximum contents were observed in the irrigation level I1 (DI at 100% ETc). Among fertigation level, F1 [100% AD (NPK)] recorded highest contents of leaf N (3.17%), P (0.29%), K (1.80%), S (0.46%). Interaction I1F1 registered maximum leaf N (3.36%), P (0.36%), K (1.92%) and S (0.63%).

With an increase in the water volume and an increasing dose of NPK, vegetative growth parameters, i.e., tree height, plant spread, tree volume, trunk girth, and annual extension growth were noted to increase proportionately. Treatment DI at 100% ETc (I1), increased the tree height by 9.41, plant spread (EW by 32.0, NS by 16.3), tree volume by 61.36, trunk girth by 8.05, and annual extension growth by 14.22% over conventional irrigation (I4). Drip fertigated trees with F1 [100% AD (NPK)] reported the highest growth parameters. The results of two years apple trial suggested a positive effect of fertigation on enhanced effectiveness of fertilization and improved foliage nutrient content and vegetative growth.  相似文献   

15.
The biodegradable portion of city waste is a potential source of plant nutrients, and appropriate techniques of composting can convert it to quality compost with higher nutrient content and lower levels of pathogenic microorganisms. An amount of 68.19 tons of waste is generated in Imphal City, Manipur, India, of which 24.84 tons were biodegradable. Of the total biodegradable municipality waste (MW), 20.7 tons were produced in households and the vegetable markets of the city. The MW were found to contain pathogenic bacteria (PB), namely, Salmonella spp., Shigella spp., Micrococcus spp., and Enterobacter spp. in the range of 6.35–9.28 (log cfu/g dry biomass), and agriculturally beneficial bacteria (BB), namely, phosphate solubilizers, Azospirillum spp., Azotobacter spp., and cellulose degraders in the range of 6.25–8.83 log cfu/g dry biomass. Pre-treatment of the MW by exposure at temperatures of 27°C–50°C in a greenhouse for 5 days could not reduce the level of PB and BB, but by heating at 100°C for 8 h followed by 30°C for 16 h of a day for three consecutive days, the PB (except Micrococcus spp.) could be eliminated. Aerobic composting of the mixture of MW with cow dung (CD) and rice straw (RS) and by inoculation with epigeic earthworm Eisenia fetida, produced high quality manure as evident from more finer particle (56.6%), higher nutrient (2.19% N) content, higher population of BB (7.03–9.19 log cfu/g dry biomass), and reduced level of PB (6.87–8.09 log cfu/g dry biomass).  相似文献   

16.
A new approach for determining optimum nutrient element ratios in plant tissue is presented. Essential steps in the procedure involve: a) measuring patterns of response to pairs of nutrient elements in factorial fertilizer trials, b) modeling the yield response surface using a bivariate, Mitscherlich‐related response function, c) defining balanced nutrition in terms of the parameters of the response surface, d) identifying combinations of P and S fertilizer resulting in balanced nutrition, and e) determining from plant chemical analysis the ratio of nutrients in plant tissue in nutritionally balanced combinations. The approach is illustrated by data from a phosphorus (P) by sulfur (S) factorial field fertilizer trial on a mown mixed white clover (Trifolium repens cv Grasslands Huia) and ryegrass (Lolium perenne L cv Grasslands Nui) sward. Different parameters of yield [total dry matter production, clover dry matter production, clover nitrogen (N) uptake] required different ratios of S:P in fertilizer and consequently in plant tissue for nutritional balance. Also, plant tissue S:P ratios for balanced nutrition declined as the level of nutrition increased. Economic optimum S:P fertilizer ratios were higher than those ratios required for nutrient element balance due to the lower cost and higher effectiveness per kilogram of fertilizer S compared with fertilizer P. Ratios of S and P to N in clover tissue were useful indicators of the adequacy of S and P for clover which was dependent on N2 fixation for its N supply. It is suggested that a nutrient element index system showing both relative and absolute nutrient element status might be built around N as an internal standard for legumes dependent on N2 fixation and possibly also for non‐legumes.  相似文献   

17.
In the semi-arid tropics (SAT), there exists large yield gaps (two- to four-fold) between current farmers’ yields and achievable yields. Apart from water shortages, soil degradation is responsible for the existing gaps and inefficient utilization of whatever scarce water resource is available. On-farm soil fertility testing across different states in Indian SAT during 2001–2012 showed widespread new deficiencies of sulfur (46–96 percent), boron (56–100 percent), and zinc (18–85 percent) in addition to already known phosphorus (21–74 percent) and nitrogen (11–76 percent, derived from soil carbon). Based on these results, a new fertilizer management strategy was designed to meet varying soil fertility needs at the level of a cluster of villages by applying a full nutrient dose if >50 percent fields were deficient and a half dose in the case of fields <50 percent deficient. Improved nutrient management significantly increased crop productivity in groundnut (Arachis hypogaea) (17–86 percent), sorghum (Sorghum bicolor) (30–55 percent), soybean (Glycine max) (10–40 percent), and maize (Zea mays) (10–50 percent) with favorable benefit-cost ratios (1.43–15.2) over farmers’ practice. Nutrient balancing improved nitrogen-fertilizer-use efficiency in respect of plant uptake from soil, transport into grain, use efficiency in food production, and grain nutritional quality. Balanced-nutrient-managed plots showed better postharvest soil fertility. Residual benefits of sulfur, boron, and zinc were observed in up to three succeeding seasons. Results of soil-test-based nutrient-management trials have sensitized policy makers in some states for desired policy orientation to benefit millions of smallholders in the Indian SAT.  相似文献   

18.
The elemental ratios of plant tissues are associated with the adaptive and competitive success of a plant species in an ecosystem. So far, no study has evaluated if and how crop–weed competition influences the elemental ratios of competing populations, although such information is important to understand weed infestation dynamics and to improve weed management in agroecosystems. The objective of this study was to analyze weed–crop elemental ratios during interspecific competition between weeds and crops in greenhouse experiments. For this, maize (Zea mays L.) and the weeds Amaranthus viridis L, Bidens pilosa L., and Ipomoea grandifolia (Dammer) O'Donell were grown under seven treatments: maize and weed monocultures, and maize in competition with weeds. Competition between plants practically did not influence growth and nutrient contents of maize but reduced weed growth and nutrient uptake. Maize showed few changes in elemental ratios. In contrast, B. pilosa and I. grandifolia were very sensitive to competition and showed significant increases in C : N, C : P, C : K, N : P, and N : K ratios when grown with maize. A. viridis showed low flexibility of nutrient : nutrient ratios under the same competitive pressure as that faced by B. pilosa and I. grandifolia. The interspecific competition led to increases only in the C : P ratio of A. viridis shoots. Therefore, interspecific competition changes the elemental ratios, mainly of the weeds, and the magnitude of this change is dependent on the plant species involved. Interspecific competition changes plant biomass quality (higher C : nutrient ratios), mainly for B. pilosa and I. grandifolia.  相似文献   

19.
ABSTRACT

The effectiveness of nitrogen (N)+ zinc (Zn) soil and foliar fertilizer applications on growth, yield, and quality of apple (Malus domestic Borkh ‘Golden Delicious’) fruit was studied in the Zanjan province, Iran. There were eight treatments 1) control (no fertilizer), 2) soil applied N, 3) soil applied Zn, 4) soil applied N+Zn, 5) foliar applied N, 6) foliar applied Zn, 7) foliar applied N+Zn and 8) combined soil and foliar applied N+Zn. The N source was urea [CO(NH2)2, 46% N] applied at 276 N tree? 1 yr?1 and the Zn source was zinc sulfate (ZnSO4,7H20, 23% Zn) applied at 110 g Zn tree? 1 yr? 1. The soil treatments of N and Zn, were applied every two weeks during June through August (total of 6 times/year) in a 1 m radius around the tree trunk (drip line of trees). The foliar solutions of N (10 g l? 1 urea) and Zn [8 g l? 1 zinc sulfate (ZnSO4)] were sprayed at the rate of 10 L tree? 1 every two weeks at the same times as described for soil applications. The highest yield (49 kg tree? 1), and the heaviest fruits (202 g) were obtained in the soil and foliar combination of N+Zn treatment. The lowest yield (35 kg tree? 1), and the smallest fruits (175 g) were recorded in the control. Nitrogen, and to a lesser extent Zn, foliar application resulted in decreasing fruit quality (caused russeting, and lower soluble solid), but increasing N leaf and fruit concentrations (2.4% DW and 563 mg kg? 1, respectively). There were significant differences among yield and leaf mineral nutrient concentration in different treatments. But there was no significant difference between fruit mineral nutrient concentration (except N). Ratio of N/calcium (Ca), potassium (K)/Ca, and [magnesium (Mg)+K]/Ca in fruits were found suitable for fruit quality prediction. Combining the zinc sulfate with urea in the foliar applications increased the concentration of Zn from 0.7 to 1.5 mg per kg of apple tissue. Leaf N concentration varied during growth season. Foliar applied nutrient can be more efficient than soil applied, but a combination of soil and foliar applications is recommended for apple tree nutrient management.  相似文献   

20.
Abstract

Variable‐rate technology provides crop producers with the opportunity to vary the crop and soil management practices. The objective of this study was to assess the temporal and spatial stability of nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), pH, and soil organic matter (OM) for precision nutrient management. This study was conducted over three growing seasons on a continuous maize (Zea Mays L.) production field in northeastern Colorado, USA. Soil samples were collected using a soil sample grid size of 76.2 m×76.2 m. The field was classified into areas of low, medium, and high productivity potential management zones. Spatial statistical analysis was performed. Measured soil parameters varied significantly over space and time (p<0.01). Management zones were effective in identifying homogenous subregions within the field across time (p<0.01). The data suggest that management zones account for spatial and temporal variability for the various soil parameters evaluated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号