首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrogenic carbon (C) is produced by incomplete combustion of fuels including organic matter (OM). Certain ranges in the combustion continuum are termed ‘black carbon' (BC). Because of its assumed persistence, surface soils in large parts of the world contain BC with up to 80% of surface soil organic C (SOC) stocks and up to 32% of subsoil SOC in agricultural soils consisting of BC. High SOC stocks and high levels of soil fertility in some ancient soils containing charcoal (e.g., terra preta de Índio) have recently been used as strategies for soil applications of biochar, an engineered BC material similar to charcoal but with the purposeful use as a soil conditioner (1) to mitigate increases in atmospheric carbon dioxide (CO2) by SOC sequestration and (2) to enhance soil fertility. However, effects of biochar on soils and crop productivity cannot be generalized as they are biochar‐, plant‐ and site‐specific. For example, the largest potential increases in crop yields were reported in areas with highly weathered soils, such as those characterizing much of the humid tropics. Soils of high inherent fertility, characterizing much of the world's important agricultural areas, appear to be less likely to benefit from biochar. It has been hypothesized that both liming and aggregating/moistening effects of biochar improved crop productivity. Meta‐analyses of biochar effects on SOC sequestration have not yet been reported. To effectively mitigate climate change by SOC sequestration, a net removal of C and storage in soil relative to atmospheric CO2 must occur and persist for several hundred years to a few millennia. At deeper soil depths, SOC is characterized by long turnover times, enhanced stabilization, and less vulnerability to loss by decomposition and erosion. In fact, some studies have reported preferential long‐term accumulation of BC at deeper depths. Thus, it is hypothesized that surface applied biochar‐C (1) must be translocated to subsoil layers and (2) result in deepening of SOC distribution for a notable contribution to climate change mitigation. Detailed studies are needed to understand how surface‐applied biochar can move to deeper soil depths, and how its application affects organic C input to deeper soil depths. Based on this knowledge, biochar systems for climate change mitigation through SOC sequestration can be designed. It is critically important to identify mechanisms underlying the sometimes observed negative effects of biochar application on biomass, yield and SOC as biochar may persist in soils for long periods of time as well as the impacts on downstream environments and the net climate impact when biochar particles become airborne.  相似文献   

2.
We investigated the impact of biochar application on fungal (acetate incorporation into ergosterol) and bacterial (leucine incorporation) growth rates in two case studies: a temperate UK pasture soil and a Mediterranean Australian agricultural soil. We added biochar at similar rates per unit of soil organic carbon (SOC) and monitored both the immediate (after 1 week equilibration) and longer‐term (1–3 years) effects. The immediate effect of the biochar applied to the UK soil was a decreased fungal‐to‐bacterial growth ratio, driven by greater bacterial growth. The immediate effect of biochar application to the Australian soils was subtle, only slightly increasing the fungal‐to‐bacterial growth ratio. In both case studies, the biochar effects were transient, and no long‐term effects (1–3 years) on microbial growth rates could be detected in either soil. The bacterial growth increase in the UK soil was probably related to a release of large amounts of labile C from the biochar, or as C released from the resident SOM caused by the biochar‐induced pH increase. The increase in fungal‐to‐bacterial growth ratio could be related to a release of poor quality C in the Australian soils. There were immediate effects of biochar application on microbial growth in agricultural soils, but they were disparate between cases, making any generalization of mechanisms difficult. However, the microbial responses were consistently transient. Taken together, biochar application to agricultural soil appears to have an impact upon the decomposer community, suggesting limited resistance. However, the microbial functioning appeared resilient to these effects, stabilizing microbial communities to their initial state within 1–3 years of application.  相似文献   

3.
The use of biochar in agriculture to achieve the dual benefits of improving soil quality whilst sequestering carbon (C) has received much attention. However, in low-intensity broadacre agricultural systems where yield is constrained by rainfall and costs associated with phosphorus (P) fertiliser, the application of biochar at rates commonly reported (>10 t ha?1) are likely to be prohibitively expensive where yield benefits cannot be guaranteed. In marginal areas where calcareous soils dominate, biochar application has no liming effect, reducing its value compared to application in acidic soils. In the present study, we use a field experiment to investigate the interaction between P fertilisation and biochar banding at low application rates (<1 t ha?1) on wheat yield and soil P fractionation (assessed by a modified Hedley method) in a highly alkaline Haplic Calcisol in a dryland broadacre cropping system. Our results demonstrate no statistically significant effect of low rate biochar banding on wheat yield in this highly P-constrained soil, but a significant effect of both biochar and fertiliser on P fractionation in both years of the study. Higher P fertiliser rates significantly increased wheat yield in all biochar treatments. The interactions between biochar, P fertiliser and P fractionation indicate shifts in potential P availability both as a result of P fertilisation and also biochar application. Further work is required in low productivity calcareous systems such as that studied here to elucidate the potential for biochar amendment to improve productivity and sequester C.  相似文献   

4.
农田土壤黑碳应用研究进展   总被引:1,自引:1,他引:0  
在应对全球气候变暖和保障粮食安全的双重背景下,如何增加土壤碳库容量、 提升土壤生产力以及减少环境危害已成为农学家、 土壤学家和环境学家在二十一世纪的研究重点和热点,黑碳(或生物碳)在农田土壤中的应用作为一种增加土壤碳库和提高土地生产力的新方法引起了极大关注。本文综述了黑碳在农业土壤中的含量,应用黑碳(生物碳)对作物产量、 土壤肥力和温室气体排放的影响; 探讨了应用黑碳影响作物生产力和土壤环境行为的机理以及农田土壤应用黑碳在不同区域、 作物类型、 用量和黑碳性质上的差异表现; 展望了农田应用黑碳未来研究的方向和热点。  相似文献   

5.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

6.
The stability of biochar in soils is the cornerstone of the burgeoning worldwide interest in the potential of the pyrolysis/biochar platform for carbon (C) sequestration. While biochar is more recalcitrant in soil than the original organic feedstock, an increasing number of studies report greater C‐mineralization in soils amended with biochar than in unamended soils. Soil organisms are believed to play a central role in this process. In this review, the variety of interactions that occur between soil micro‐, meso‐ and macroorganisms and biochar stability are assessed. In addition, different factors reported to influence biochar stability, such as biochar physico‐chemical characteristics, soil type, soil organic carbon (SOC) content and agricultural management practices are evaluated. A meta‐analysis of data in the literature revealed that biochar‐C mineralization rates decreased with increasing pyrolysis temperature, biochar‐C content and time. Enhanced release of CO2 after biochar addition to soil may result from (i) priming of native SOC pools, (ii) biodegradation of biochar components from direct or indirect stimulation of soil organisms by biochar or (iii) abiotic release of biochar‐C (from carbonates or chemi‐sorbed CO2). Observed biphasic mineralization rates suggest rapid mineralization of labile biochar compounds by microorganisms, with stable aromatic components decomposed at a slower rate. Comparatively little information is available on the impact of soil fauna on biochar stability in soil, although they may decrease biochar particle size and enhance its dispersion in the soil. Elucidating the impacts of soil fauna directly and indirectly on biochar stability is a top research priority.  相似文献   

7.

Purpose  

A potential means to diminish increasing levels of CO2 in the atmosphere is the use of pyrolysis to convert biomass into biochar, which stabilizes the carbon (C) that is then applied to soil. Before biochar can be used on a large scale, especially in agricultural soils, its effects on the soil system need to be assessed. This is especially important in rice paddy soils that release large amounts of greenhouse gases to the atmosphere.  相似文献   

8.
四种农业土壤上生物炭-土壤的交互效应   总被引:1,自引:0,他引:1  
Soils in south-western Australia are highly weathered and deficient in nutrients for agricultural production. Addition of biochar has been suggested as a mean of improving soil C storage, texture and nutrient retention of these soils.~Clay amendment in sandy soils in this region is a management practice used to improve soil conditions, including water repellence.~In this study a woody biochar (Simcoa biochar) was characterised using scanning electron microscopy before, and four weeks after, it was incorporated into each of four soils differing in clay content and organic matter. Scanning electron microscopy of Simcoa biochar after incubation in soil showed different degrees of attachment of soil particles to the biochar surfaces after 28 d. In addition, the effects of three biochars, Simcoa biochar, activated biochar and Wundowie biochar, on soil microbial biomass C and soil respiration were investigated in a short-term incubation experiment. It was hypothesised that all three biochars would have greater potential to increase soil microbial activity in the soil that had higher organic matter and clay. After 28-d incubation in soil, all three biochars had led to a higher microbial biomass C in the clayey soil, but prior to this time, less marked differences were observed in microbial biomass C among the four soils following biochar application.  相似文献   

9.
Here we selected eight types of feedstocks to assess the effects of pyrolysis temperature (300°C, 400°C, 500°C and 600°C) and residence time (0.5, 1, 2, 4, 8 and 24 h), respectively, on the physicochemical properties. The fixed-carbon content, pH value and amount of basic functional groups in biochars increased as the pyrolysis temperature increased from 300°C to 600°C; the opposite trend was found in the biochar yield, adsorption capacity and amount of acidic functional groups. Increasing the residence time at low pyrolysis temperature (300°C) resulted in a gradual reduction in the biochar yield and progressive increase in the pH and iodine adsorption number of biochars. However, increasing the residence time at high pyrolysis temperature (600°C) had little effect on the biochar yield or pH, while it decreased the iodine adsorption number of biochars. Given the effects of pyrolysis conditions on the pH and iodine adsorption number of biochars, low-ash agricultural wastes (e.g. wheat straw) can be pyrolysed at 300°C, 2 h to produce biochar for improving alkaline soils; high-ash agricultural wastes (e.g. sweet potato vine) and forest litter (e.g. fresh leaves of apricot tree) are preferably pyrolysed at 300°C, 4 h to produce biochar for use in acidic soils.  相似文献   

10.
Low soil fertility and soil acidity are among the major bottlenecks that limit agricultural productivity in the humid tropics. Soil management systems that enhance soil fertility and biological cycling of nutrients are crucial to sustain soil productivity. This study was, therefore, conducted to determine the effects of coffee‐husk biochar (0, 2.7, 5.4, and 16.2 g biochar kg?1 soil), rhizobium inoculation (with and without), and P fertilizer application (0 and 9 mg P kg?1 soil) on arbuscular mycorrhyzal fungi (AMF) root colonization, yield, P accumulation, and N2 fixation of soybean [Glycine max (L.) Merrill cv. Clark 63‐K] grown in a tropical Nitisol in Ethiopia. ANOVA showed that integrated application of biochar and P fertilizer significantly improved soil chemical properties, P accumulation, and seed yield. Compared to the seed yield of the control (without inoculation, P, and biochar), inoculation, together with 9 and 16.2 g biochar kg?1 soil gave more than two‐fold increment of seed yield and the highest total P accumulation (4.5 g plant?1). However, the highest AMF root colonization (80%) was obtained at 16.2 g biochar kg?1 soil without P and declined with application of 9 mg P kg?1 soil. The highest total N content (4.2 g plant?1) and N2 fixed (4.6 g plant?1) were obtained with inoculation, 9 mg P kg?1, and 16.2 g biochar kg?1 soil. However, the highest %N derived from the atmosphere (%Ndfa) (> 98%) did not significantly change between 5.4 and 16.2 g kg?1 soil biochar treatments at each level of inoculation and P addition. The improved soil chemical properties, seed yield, P accumulation and N2 fixation through combined use of biochar and P fertilizer suggest the importance of integrated use of biochar with P fertilizer to ensure that soybean crops are adequately supplied with P for nodulation and N2‐fixation in tropical acid soils for sustainable soybean production in the long term.  相似文献   

11.
生物炭对土壤肥力与环境质量的影响机制与风险解析   总被引:18,自引:4,他引:18  
生物炭作为土壤改良剂和促进作物生长的应用价值已经被很多研究证实。该文综述了生物炭在改善农业土壤质量和作物生长中的应用研究进展,系统阐述了生物炭在提高农业土壤有效水含量,增加土壤矿质元素利用效率,缓解土壤酸化,降低土壤重金属生物有效性和提高农作物产量与质量方面的重要作用与微观机制。特别地,该文强调了生物炭应用于农业生态系统过程中可能引起的多环芳烃、重金属等污染物富集以及氮素根系吸收量下降等不可忽视的潜在问题,并对今后的重点研究方向进行了系统分析总结,以期为生物炭在提高土壤肥力质量与环境质量中的安全与高效利用提供科学参考。  相似文献   

12.
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover.High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.  相似文献   

13.

Purpose

This paper reviews chemical, physical, and biological problems of salt-affected soils and different reclamation methods applied to rehabilitate these soils.

Methods

Methods to increase C stocks in these lands are discussed with a focus on biochar application as a potential new approach to not only to increase the C content but also to improve soil properties. Gaps in research knowledge in this field are then identified.

Results

Given the concern on the continued worldwide expansion of salt-affected lands and the focus on C sequestration processes, this review has evaluated current knowledge on salt-affected soils and their remediation with organic materials and plants. The review of the published literature has highlighted important gaps in knowledge, which limit our current understanding of rehabilitation of salt-affected soils with organic amendments specially biochar and the associated carbon dynamic. Knowledge about application of biochar in salt-affected soils is scant, and to date, most studies have evaluated biochar use only in nonsalt-affected soils.
  相似文献   

14.
We developed a rapid-test to screen for effects of biochar on seed germination and soils. Crop seeds were placed in containers and covered with 15 g of soil with 1% biochar by weight. Two agricultural soils from South Carolina USA were used. Eighteen biochars were produced from six primary feedstocks [pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG); and two blends of PC and PL, 50% PC/50% PL (55), and 80% PC/20% PL (82)]. Each feedstock was pyrolyzed at 350, 500 and 700°C. There were few biochar effects on seed germination. Shoot dry weight was increased for carrot, cucumber, lettuce, oat, and tomato; primarily with biochars containing PL. Soil pH, electrical conductivity and extractable phosphorus primarily increased with PL, SS, 55, and 82 treatments for both soil types and across species. This method can be an early indicator of biochar effects on seed germination and soil health.  相似文献   

15.
碳氮添加对雨养农田土壤物理性状的影响   总被引:1,自引:1,他引:0  
为探明添加不同碳源及不同量氮肥4年后对土壤物理性质、产量的影响,依托布设于甘肃省定西市安定区李家堡镇的不同碳源田间定位试验,设置2种碳源(生物质炭15t/hm^2,秸秆4.5t/hm^2),3个氮肥施用量(0,50,100kg/hm^2),共计9个处理。研究了生物质炭、秸秆配施氮肥对试区土壤容重、总孔隙度、土壤饱和导水率、土壤团聚体稳定性、产量的影响。结果表明:较之无碳添加处理,添加生物质炭或秸秆均可改善土壤物理性质,但生物质炭效果最好。秸秆输入对0-5cm土层土壤容重的降低和总孔隙度、水稳性团聚体稳定性的提升具有显著效应,对土壤饱和导水率和0-30cm各土层机械稳定性团聚体稳定性的提升具有显著效应,而生物质炭对0-30cm各土层的土壤物理指标的改善均具有显著效应。氮素添加对土壤物理指标影响较小。生物质炭、秸秆、氮素均可促进作物增产,总体而言,生物质炭增产效果优于秸秆,尤其是生物质炭15t/hm^2+施纯氮100kg/hm^2处理。因此,添加生物质炭更有利于该区土壤物理性质的改善和产量的增加。  相似文献   

16.
The degradation of soil fertility and quality due to rapid industrialization and human activities has stimulated interest in the rehabilitation of low-fertility soils to sustainably improve crop yield. In this regard, biochar has emerged as an effective multi-beneficial additive that can be used as a medium for the amelioration of soil properties and plant growth. The current review highlights the methods and conditions for biochar production and the effects of pyrolysis temperature, feedstock type, and retention time on the physicochemical properties of biochar. We also discuss the impact of biochar as a soil amendment with respect to enhancing soil physical (e.g., surface area, porosity, ion exchange, and water-holding capacity) and chemical (e.g., pH, nutrient exchange,functional groups, and carbon sequestration) properties, improving the soil microbiome for increased plant nutrient uptake and growth, reducing greenhouse gas emissions, minimizing infectious diseases in plants, and facilitating the remediation of heavy metal-contaminated soils. The possible mechanisms for biochar-induced amelioration of soil and plant characteristics are also described, and we consider the challenges associated with biochar utilization. The findings discussed in this review support the feasibility of expending the application of biochar to improve degraded soils in industrial and saline-alkali regions, thereby increasing the usable amount of cultivated soil. Future research should include long-term field experiments and studies on biochar production and environmental risk management to optimize biochar performance for specific soil remediation purposes.  相似文献   

17.
ABSTRACT

Application of alkaline biochar has been proposed as an alternative to lime for remediation of acidic soils. However, questions remain as to how the reactions and fate of metals in acidic soils can be affected by biochar amendment. To find out how biochar addition might affect sorption-desorption behavior of zinc (Zn) in acidic soils, a soil with an initial pH value of 4.67 was treated with different levels [0 (control), 1%, 3%, and 6%] of biochar produced from pyrolysis of sugarcane bagasse at 600°C and incubated for 30 days under 80% of water holding capacity. At the end of the incubation period, important soil chemical properties were measured and batch isotherm experiments were performed to determine soil Zn sorption-desorption parameters. The results showed that the biochar-amended soils had higher pH values (up to 2.5 pH units), electrical conductivity (up to 2.66 times), and cation exchange capacities (up to 42%) relative to the un-amended acidic soil. Biochar addition also led to significant enhancements in soil exchangeable calcium, magnesium, sodium, and potassium cations. Both sorption and desorption isotherm experiments revealed the significantly higher capacity of the biochar-amended soils to retain Zn than that of the control. Moreover, the biochar-amended soils exhibited a higher affinity for Zn sorption than did the un-amended acidic one. It can be concluded that biochar derived from sugarcane bagasse could serve as a good amendment material to reclaim acidic soils and to reduce Zn mobility and toxicity in acidic metal-contaminated soils.  相似文献   

18.
ABSTRACT

Although environmental impacts of biochar are well characterized, impacts on soil quality, nutrient availability and crop productivity, still remain a challenge due to the diverse response of different soil types to different types of biochar, namely those obtained at low temperature. The impact of an alkaline woody biochar (two doses 5% and 10%) obtained at 280°C, on soil enzyme activity, soil microbial respiration rate, mineral nitrogen (N) availability and ammonia volatilization was studied in one conventionally and one organically managed soils, with and without the addition of urea or composted farmyard manure. Biochar additions had different effects on soil enzyme activity in both soils, suggesting lower decomposing microbial activity processes promoted by biochar. Both soils showed a similar decreasing trend regarding soil respiration rates for all treatments, and significant relationships were observed between the treatments with different rates of applied biochar, but not constant for the entire incubation period. Urea application increased soil mineral N concentrations, especially nitrate concentrations when biochar was applied as well. Biochar decreased ammonia volatilization from conventionally managed soil fertilized with urea, but did not have a significant effect when compost was added to the organically managed soil. Biochar altered microbial behavior in soil, and was affected by previous soil management. So, the impact of biochar produced at low temperatures on soil biological processes is similar to those obtained at high temperature, thus proving that there is no need to increase the energy expenditure to produce biochar, to obtain a good product.  相似文献   

19.
Phosphorus availability in soils amended with wheat residue char   总被引:1,自引:0,他引:1  
Plant availability and risk for leaching and/or runoff losses of phosphorus (P) from soils depend among others on P concentration in the soil solution. Water-soluble P in soil measures soil solution P concentration. The aim of this study was to understand the effect of wheat residue char (biochar) addition on water-soluble P concentration in a wide range of biochar-amended soils. Eleven agricultural fields representing dominant soil texture classes of Swedish agricultural lands were chosen. Concentrations of water-soluble P in the soils and in biochar were measured prior to biochar incorporation to soils in the laboratory. Experiments with three dominant soil textures—silt loam, clay loam, and an intermediate loam soil with different rates of biochar addition (i.e., 0.5, 1, 2, and 4 %; w/w) showed that the highest concentration of water-soluble P was achieved at an application rate of 1 %. At higher application rates, P concentrations decreased which coincided with a pH increase of 0.3–0.7 units. When the 11 soils were amended with 1 % (w/w) biochar, water-soluble P concentrations increased in most of the soils ranging from 11 to 253 %. However, much of the water-soluble P added through the biochar was retained (33–100 %). We concluded that wheat residue char can act as a source of soluble P, and low and high additions of biochar can have different effects on soil solution P concentration due to possible reactions with Ca and Mg added with biochar.  相似文献   

20.
Biochar is obtained by the pyrolysis of biomass, and contains abundant carbon and minerals. Biochar supplementation of soils can greatly improve soil health and quality, but these beneficial effects typically develop slowly over time. Depending on the quality of the biochar and the soil to which it is applied, it may take years before positive effects are apparent. This is because organic substances are slowly sorbed onto the biochar over time, and the biochar eventually becomes part of the sorption complex of the soil. It is therefore advisable to apply biochar together with some organic material. We examined the effect of co-application of different doses of biochar with manure on soil dehydrogenase activity (DHA), soil oxidizable carbon (COX), cumulative soil respiration, soil buffering capacity, the soil exchange reaction (pH/KCl) and the production yield of winter rape seeds. We also determined seed production when artificial granular fertilizers were added to biochar and manure. The results showed that the application of biochar and manure significantly increased grain yield, DHA, the soil exchange reaction and cumulative respiration. Thus, application of biochar with organic material can increase seed yield and some properties of agricultural soils. However, the positive effect of biochar on seed yield was not directly proportional to biochar dose, in that the seed yield was lower for a biochar dose of 45 t/ha than 30 t/ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号