首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《土壤通报》2020,(3):505-510
为了实现土壤类型的快速无损识别,提出了一种利用可见-近红外光谱、基于极限学习机的土壤类型鉴别方法。首先,获取4种不同类型土壤的320个样本波长在325~1075 nm范围内的可见-近红外光谱数据;其次,用主成分分析的数学方法对数据进行降维处理,最终提取了三个主成分来代表原光谱数据;再次,将320个样本的数据随机分为测试集和预测集两个部分,建立极限学习机模型,利用该模型对土壤类型进行识别。实验结果表明,将极限学习机应用于土壤类型的识别精度可达100%,其训练速度和泛化性优于BP神经网络和支持向量机,能够快速、准确、无损鉴别土壤类型,使用方便,具有推广价值。  相似文献   

2.
基于高光谱成像的苹果轻微损伤检测有效波长选取   总被引:10,自引:5,他引:5  
为了确定可用于苹果早期轻微损伤检测的有效波长,以具有代表性的阿克苏苹果为研究对象,采用高光谱成像技术和分段主成分分析方法对损伤发生仅为半小时之内的苹果进行损伤检测研究,对比分析不同光谱区域主成分分析对识别结果的影响,优选出识别光谱区域(780~1000nm)。基于此光谱区域结合主成分图像权重系数获取2个有效波长(820和970nm),并利用这2个波长和全局阈值理论开发了多光谱轻微损伤提取算法。利用独立测试集中25个正常苹果和25个损伤苹果对算法的性能进行评估,结果表明,正常果的识别率为100%,损伤果的识别率为96%,整体检测精度为98%。该研究所获得的有效波长可为开发基于多光谱成像技术的苹果损伤检测系统提供参考。  相似文献   

3.
基于计算机视觉和神经网络检测鸡蛋裂纹的研究   总被引:10,自引:1,他引:10  
为了提高鸡蛋裂纹检测的准确性和效率,综合运用计算机视觉技术和BP神经网络技术,实现对鸡蛋表面裂纹的无损检测和分级。首先,通过计算机视觉系统获取鸡蛋表面的图像,对图像分析处理,提取了裂纹区域和噪声区域的5个几何特征参数。其次,将5个参数作为输入,建立结构为5-10-2的BP神经网络模型,对裂纹进行识别和鸡蛋的自动分级。试验结果表明模型对裂纹鸡蛋的识别准确率达到了92.9%,对整批鸡蛋的分级准确率达到了96.8%。  相似文献   

4.
玉米种子活力近红外光谱智能检测方法研究   总被引:3,自引:0,他引:3  
为了实现玉米种子活力的快速无损检测,提出利用近红外光谱和BP神经网络来建立玉米种子活力智能检测模型。首先通过人工老化将样本按老化程度分为3种级别,采集样本的近红外光谱。分别通过卷积平滑(S-G)和多元散射校正(MSC)及二者组合的方法消除光谱噪声和去除奇异光谱。然后分别用主成分分析(PCA)和离散多带小波变换(DWT)提取光谱特征,作为BP神经网络的输入。依据预处理及特征提取的不同构建出6种BP神经网络种子活力检测模型。试验结果表明,组合预处理方法与主成分分析特征提取结合构建的模型最优,其识别的准确率为95.0%,平均识别时间为26.25ms。研究结果为玉米种子活力的快速无损检测提供了理论依据和实用方法。  相似文献   

5.
为研究快速识别灵武长枣表面裂痕、虫眼、碰伤等常见缺陷的有效方法,利用特征波长主成分分析法结合波段比算法进行长枣裂痕、虫眼、碰伤识别。首先,采用近红外(Near Infrared Reflection,NIR)波段范围的高光谱成像系统获取300个长枣反射图像,提取并分析各类型长枣光谱曲线,选择918~1 678 nm波段范围进行主成分分析,通过权重系数提取特征波长;然后,对特征波长下图像进行主成分分析,选择最优的主成分图像进行识别;最后,对未识别的长枣图像采用波段比算法进一步进行识别。NIR波段的正常枣、虫眼枣、裂痕枣、碰伤枣的识别率分别100%、90%、86%、100%。结果表明:NIR高光谱成像仪对长枣外部缺陷识别是可行的,为多光谱成像技术应用于在线检测长枣品质提供了理论依据。  相似文献   

6.
基于多源信息融合技术的马铃薯痂疮病无损检测方法   总被引:6,自引:5,他引:1  
为了提高马铃薯痂疮病无损检测识别精度,基于机器视觉和近红外光谱的多源信息融合技术,该文提出DS(dempster shafer)证据理论结合支持向量机的马铃薯痂疮病无损检测方法。试验以360个马铃薯为研究对象,在图像特征分割时,确定了差影法结合马尔可夫随机场模型法为最佳分割方法;在光谱特征提取时,确定主成分分析方法为最佳降维方法。采用支持向量机识别方法分别建立机器视觉和近红外光谱的马铃薯痂疮病识别模型,模型对测试集马铃薯识别率分别为89.17%、91.67%。采用DS证据理论与支持向量机相结合的方法对获取的图像特征和光谱特征进行融合,建立了基于机器视觉和近红外光谱技术的多源信息融合马铃薯痂疮病检测模型,该模型对测试集马铃薯识别率为95.83%。试验结果表明,该技术对马铃薯痂疮病进行检测是可行的,融合模型比单一的机器视觉模型或近红外光谱模型识别率高。  相似文献   

7.
柿子可溶性固形物含量的可见-近红外光谱检测   总被引:3,自引:0,他引:3  
为了实现柿子(Diospyros kaki thunb)可溶性固形物含量的快速无损检测,提出了一种采用可见-近红外光谱分析技术无损检测柿子可溶性固形物含量的方法。采用Field Spec 3光谱仪对3种不同品种的柿子进行光谱分析,共获取66个样本数据。利用平均平滑法对样本数据进行预处理,再采用主成分分析法,依据可信度获取光谱的6个主成分数据。将样本随机分成51个建模样本(每种各17个)和15个验证样本(每种各5个),把6个主成分数据作为BP神经网络的输入变量,柿子的可溶性固形物含量作为输出变量,隐含层的节点数为11,建立3层BP神经网络检测模型,并用该模型对15个验证样本进行预测。结果表明,所建校正模型的校正标准差(SEC)为0.232,对预测集样本可溶性固形物含量的预测相对误差在3%以下,预测值和实测值的决定系数(R2)为0.99,预测标准差(SEP)为0.257。结果表明应用近红外光谱技术结合主成分分析和神经网络算法检测柿子的可溶性固形物含量是可行的。  相似文献   

8.
基于高光谱成像的苹果虫害检测特征向量的选取   总被引:10,自引:7,他引:3  
利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获得的PC1(the first principal component,第一主成分)图像进行最大熵阈值分割以有效提取虫害区域。然后对比分析虫害区域与正常区域图像的纹理特征,提取灰度共生矩阵的4个方向的4个纹理参数(能量、熵、惯性矩和相关性),并且采用基于高光谱图像的光谱差值获取了2个特征波长对应的光谱相对反射率作为光谱特征。优化组合纹理特征和光谱特征成4个特征向量组,采用BP(back propagation,反向传播)神经网络对正常苹果和虫害苹果进行检测。结果表明,融合0度方向的能量、熵、惯性矩和相关性的纹理特征和646、824 nm波段的相对光谱反射率的光谱特征进行检测识别效果最好,正常果的识别率为100%,虫害果的识别率为100%,并且速度快、误差小。该研究所获得的特征向量可为开发多光谱成像的苹果品质检测和分级系统提供参考。  相似文献   

9.
基于高光谱图像光谱与纹理信息的生菜氮素含量检测   总被引:13,自引:10,他引:3  
高光谱图像包含丰富的光谱与图像信息,该文基于此试图构建生菜氮素检测模型。利用高光谱图像采集系统获取可见-近红外(390~1 050 nm)范围内的生菜叶片高光谱图像,同时利用凯氏定氮法获取对应叶片的氮素值。将光谱反射值较大波长图像与反射值较小波长图像相除并用阈值化法构建掩膜图像,获取感兴趣区域(ROI,region of interest)。由于高光谱数据量大、且数据间冗余性强,因此如何有效的提取一些特征波长十分重要。该文采用主成分分析(PCA,principal component analysis)对原始高光谱图像进行处理,根据前3个主成分图像(PC1、PC2、PC3)在全波长下的权重系数分布图选出662.9、711.7、735.0、934.6 nm 4个特征波长及对应的光谱特征,并且分别提取4个特征波长图像、主成分图像PC1、PC2、PC3在ROI下的基于灰度共生矩阵的纹理特征,最后利用支持向量机回归(SVR,support vector machine regression)分别建立生菜叶片基于特征波长光谱特征、特征波长图像与主成分图像的纹理特征及光谱纹理融合特征与对应氮素值之间的关系模型。结果表明,在校正性能指标决定系数R2C上,基于光谱特征+特征波长图像纹理特征的模型较好,R2C=0.996,校正集均方根误差RMSEC为0.034;在预测性能指标决定系数R2P上,基于光谱特征的模型较好,R2P=0.86,预测集均方根误差RMSEP为0.22。该研究结果可为农作物氮素的快速、无损检测提供一定的参考价值。  相似文献   

10.
利用近红外光谱与PCA-SVM识别热损伤番茄种子   总被引:6,自引:6,他引:0  
为了研究近红外光谱技术用于热损伤种子快速无损识别的可行性,该文以120粒番茄种子为研究对象,其中60粒番茄种子通过高温加热处理的方式成为热损伤种子组,其他60粒番茄种子为正常种子组,利用实验室自主搭建的近红外光谱检测系统获取单粒番茄种子在980~1 700 nm范围内的光谱,分别采用偏最小二乘判别法(partial least squares discriminant analysis,PLS-DA)和支持向量机(support vector machines,SVM)建立了番茄种子热损伤的定性分析模型。试验结果表明:2种判别模型的验证集总正确率均大于96%,均可用于热损伤种子的判别。其中,基于主成分分析(principal component analysis,PCA)预处理的光谱数据构建的支持向量机模型的判别效果最好,其校正集和验证集的判别正确率均为100%,更适用于种子热损伤识别。因此,应用近红外光谱技术可快速无损识别热损伤番茄种子,为种子检验提供了一种新的方法。  相似文献   

11.
基于高光谱图像和光谱信息融合的马铃薯多指标检测方法   总被引:1,自引:7,他引:1  
针对随机放置的马铃薯缺陷多项指标难以同时检测的问题,提出了一种基于高光谱信息融合的流形学习降维算法与极限学习机(extreme learning machine,ELM)相结合的方法,该方法可同时识别马铃薯的多项缺陷指标。分别采集发芽、绿皮、黑心和合格马铃薯的反射高光谱数据(390~1 040 nm),在光谱维,提取马铃薯样本感兴趣区域(region of interest,ROI)的平均光谱,分别采用扩散映射(diffusion maps,DM)、局部线性嵌入(locally linear embedding,LLE)和海森局部线性嵌入(hessian locally linear embedding,HLLE)3种流形学习降维算法对光谱数据进行降维;在图像维,对马铃薯伪彩色图像进行形态学处理,获取基于灰度共生矩阵(gray level co-occurrence matrix,GLCM)的图像纹理信息,采用连续投影算法(successive projections algorithm,SPA)优选图像纹理特征;融合光谱维信息和图像维信息,分别建立基于极限学习机(ELM)与支持向量机(support vector machine,SVM)的马铃薯多分类识别模型。结果表明,扩散映射结合极限学习机(DM-ELM)模型的预测结果较优,该模型对发芽、绿皮、黑心和合格马铃薯样本的单一识别率分别为97.30%、93.55%、94.44%和100%,混合识别率达到96.58%,时间为0.11 s,可知高光谱信息融合技术结合流形学习降维算法可同时识别随机放置马铃薯的多种缺陷指标。  相似文献   

12.
高光谱图像技术在掺假大米检测中的应用   总被引:4,自引:2,他引:2  
为了有效判别出优质大米中是否掺入劣质大米,该文研究了一种针对大米掺假问题的快速、无损检测方法。从市场上购买了东北长粒香大米和江苏溧水大米,按纯东北长粒香大米、3∶1、2∶2、1∶3和纯江苏溧水大米共5个掺合水平进行大米试验样本的制备。利用可见-近红外高光谱图像采集系统(390~1050 nm)获取了200个大米样本的高光谱图像。采用ENVI软件确定高光谱图像的感兴趣区域(region of interest,ROI),并提取出所有样本在ROI内的平均高光谱数据。采用支持向量机(support vector machine,SVM)建立全光谱波段下的大米掺假判别模型,径向基(radial basis function,RBF)核函数模型交叉验证准确率为93%、预测集正确率为98%。由于高光谱信息量大、冗余性强且受噪声的影响较大,该文采用主成分分析方法(principal component analysis,PCA)分别对大米高光谱图像和高光谱数据进行处理,从特征选择和特征提取2个角度对原始高光谱数据进行处理,通过主成分权重系数图选择了531.1、702.7、714.3、724.7、888.2和930.6 nm 6个特征波长,通过留一交叉验证法(leave-one-out cross-validation,LOOCV)确定并提取出PCA降维后的最优主成分数(number of principal component,PCs)为9。最后分别将优选出的特征波长和提取出的最优主成分数作为模型的输入,建立SVM模型。试验结果表明,基于特征波长SVM模型的交叉验证准确率为95%、预测集正确率为96%,基于最优主成分数SVM模型的交叉验证准确率为94%、预测集正确率为98%。该研究结果表明,该文建立的基于特征波长和基于最优主成分数的SVM模型均具有较优的预测性能,且利用高光谱图像技术对大米掺假问题进行检测是可行的。  相似文献   

13.
基于高光谱技术的猪肉肌红蛋白含量无损检测   总被引:2,自引:2,他引:0  
为充分利用猪肉光谱与图像信息,实现猪肉肌红蛋白含量的在线检测,该研究提出一种基于深度学习模型的猪肉肌红蛋白含量无损检测方法。采用高光谱设备采集冷藏过程中猪肉高光谱图像,通过ENVI5.3选择图像感兴趣区域(Region Of Interest,ROI),分别提取ROI平均光谱信息与主成分图像信息。利用卷积自动编码器(Convolutional Auto Encoder,CAE)提取光谱与图像信息深度特征,分别建立光谱特征、图像特征及图-谱融合特征与肌红蛋白含量之间关系的卷积神经网络(Convolutional Neural Network,CNN)预测模型。其中基于融合深度特征CNN预测模型准确度较高,该模型对脱氧肌红蛋白(DeoMb)、氧合肌红蛋白(OxyMb)、高铁肌红蛋白(MetMb)含量预测集决定系数分别为:0.964 5、0.973 2、0.958 5,预测集均方根误差 RMSEP分别为:0.015 8、0.226 6、0.381 6。为进一步验证图-谱融合特征与猪肉肌红蛋白存在对应关系,分别建立偏最小二乘回归(Partial Least Squares Regression,PLSR)、支持向量机回归(Support Vector Regression,SVR)预测模型。结果表明:CAE能充分提取图像与光谱特征;基于融合特征建立回归模型能提高肌红蛋白含量预测精度,相比于光谱信息与图像信息,以MetMb为例其分别提高5.42%、16.12%。该检测方法为肉类质量在线检测提供参考,具有好的应用前景。  相似文献   

14.
为定量分析无人机高光谱成像系统数据获取时因航线变换及太阳辐照度变化而产生的白噪声、运动模糊、条带噪声等导致的影像失真,该研究利用地物光谱仪和机载成像光谱仪获取研究区内棉花冠层光谱数据,基于典型植被光谱特征分析验证数据质量,配合使用数字图像处理方法完成白噪声、散焦模糊、运动模糊、光谱平滑以及条带噪声的模拟样本集构建,并结合设备采集噪声(条带噪声混合白噪声)构建真实样本集,建立影像波段信息、光谱信息以及空间-光谱总体信息质量的评价指标,通过相关性分析评价指标有效性。结果表明:对模拟样本集,除百分比最大绝对差,本文建立的指标均与影像质量显著相关(P<0.01),在实际噪声样本内各指标相关性均产生不同程度下降,仅平均绝对误差(0.609,P<0.01)、均方误差(0.459,P<0.01)、相对均方根误差(0.502,P<0.01)以及总体信息保真度(-0.471,P<0.01)满足相关性要求。研究结果可为低空机载高光谱影像质量分析及失真指标的选取提供借鉴和参考。  相似文献   

15.
基于高光谱图像处理的大豆品种识别(英文)   总被引:2,自引:0,他引:2  
大豆组分(油,蛋白质,脂肪等)在不同的大豆品种间差异很大。对于提高大豆品质来说,大豆品种识别是一个关键因素。该文利用高光谱图像技术对不同的大豆品种进行识别。利用高光谱成像系统获取大豆样本1 000~2 500 nm范围的光谱反射数据;应用主成分分析法(PCA,principal component analysis)对获取到的光谱数据进行数据降维并去除冗余数据;在分类算法中将得分高的主成分值作为输入特征,通过PCA方法从每个特征图像中提取4个特征变量(能量、熵、惯性矩和相关性);对于具体特征提取,从16个特征变量中提取8个重要特征参数;根据选择的特征,应用神经网络方法构建分类器;训练精度精度达到97.50%,平均测试精度达到93.88%以上。结果表明,应用高光谱图像技术结合神将网络建模方法可以对大豆品种进行分类。  相似文献   

16.
OLI与HSI影像融合的土壤盐分反演模型   总被引:5,自引:2,他引:3  
土壤盐渍化问题是黄河三角洲地区主要的土地退化问题,借助遥感技术快速、准确地掌握土壤盐渍化信息,对农业可持续发展具有重要意义。该文以黄河三角洲垦利县为研究区,利用超球体色彩空间变换算法,将环境一号卫星HSI高光谱影像与Landsat 8 OLI多光谱影像进行融合,选择土壤盐分的特征波段,结合土壤盐分的实测数据,建立统计分析模型(多元线性回归、偏最小二乘回归)和机器学习模型(BP神经网络、支持向量机和随机森林),对土壤盐分进行遥感反演。结果表明:OLI影像的统计分析模型和机器学习模型精度均较低,精度最高的随机森林模型相关系数仅为0.570;HSI影像的反演模型精度高于OLI,BP神经网络模型相关系数为0.607;融合影像反演模型精度明显高于HSI影像和OLI影像,土壤盐分含量的实测值与机器学习模型预测值具有良好的相关性,BP神经网络模型、支持向量机模型和随机森林模型的决定系数R~2分别达到0.966、0.821和0.926,模型反演精度较高。研究表明,多光谱和高光谱影像融合能显著提高土壤盐分遥感反演精度,机器学习模型的反演效果明显优于统计分析模型。研究结果对黄河三角洲典型地区的土壤盐分反演具有积极的理论和实践意义。  相似文献   

17.
基于高光谱图像的牧草粗蛋白含量反演模型   总被引:2,自引:2,他引:0  
粗蛋白(crude protein,CP)是评价牧草品质和饲用价值的重要指标。利用高光谱技术实现大面积牧草CP含量实时、准确、无损监测是草地营养状况监测的重要内容。为掌握青海省海晏县金银滩草原牧草CP含量的分布状况,该文采用课题组航空飞艇搭载自主集成高光谱成像系统获取高分辨率高光谱图像,对高光谱数据进行光谱衍生变换,采用不同建模方法构建CP含量的反演模型。选取最佳组合的2种光谱指数为自变量构建牧草CP含量的单变量模型。对于包络线去除的衍生光谱和对数、归一化、一阶微分及其衍生组合变换光谱,使用逐步判别分析法筛选各光谱变量的特征波段作为自变量,构建牧草CP含量的多元线性和非线性回归模型,综合比较各模型的精度选择最优反演模型。结果表明,不同光谱变量相比,微分光谱变量对牧草CP含量拟合效果较好,R~2均达到0.794以上。不同多元回归模型相比,非线性回归模型精度高于对应的线性回归模型。以光谱对数后再一阶微分变量(D(log(R)))构建的多元非线性回归模型为牧草CP含量最优估算模型,R~2为0.918,RMSE为0.054。将D(log(R))建立的非线性回归模型应用于高光谱图像上,绘制研究区牧草CP含量空间分布图。研究为大区域尺度CP含量的定量反演及精准畜牧业的高效实施提供参考和技术依据,也为今后智慧畜牧业的发展奠定基础。  相似文献   

18.
含水率对土壤有机质含量高光谱估算的影响   总被引:3,自引:1,他引:3  
土壤含水率对有机质(soil organic matter,SOM)含量高光谱估算精度有很大的影响。为了探讨SOM高光谱估算中土壤含水率的影响,该文对烘干土、风干土和质量含水率为5%~40%(按5%递增)的土壤样本进行了室内高光谱测量,对光谱数据进行了反射率、反射率一阶导数和反射率倒数对数3种光谱数据变换,运用偏最小二乘回归法(partial least squares regression,PLSR)建立了相应的SOM估算模型。结果表明,风干土的SOM高光谱估算精度较好;当含水率水平小于25%时,SOM估算模型精度受含水率的影响较大,光谱数据进行反射率倒数对数变换后的模型精度最高;当含水率水平大于等于25%时,水分对土壤光谱反射率的影响要大于SOM,不适宜利用土壤光谱数据进行SOM含量高光谱估算。该研究可为大田环境不同含水率情况下光谱估算SOM提供参考。  相似文献   

19.
针对农田高光谱遥感影像端元提取和混合像元分解精度不高的问题,该文提出了利用深度学习自编码结合混合蛙跳算法的农田高光谱影像端元提取方法。首先,利用深度学习的栈式自编码模型对高光谱影像进行光谱特征提取,优选出备选端元集合;然后将影像端元提取问题转化为组合优化问题,设计了待优化的目标函数,通过混合蛙跳算法对目标函数进行优化从而实现对最佳端元组合的搜索;最后利用人工合成的不同信噪比农田高光谱数据和真实的农田高光谱影像,将该算法与3种现有的主要端元提取方法进行对比。试验结果表明,本文提出的端元提取算法对20、30和40 dB信噪比影像提取结果的平均光谱角分别达到0.106 88、0.030 32、0.009 94。对20、30和40 dB信噪比影像和真实影像提取结果的均方根误差分别达到0.050 8、0.015 9、0.005 1、0.006 7。与现有的主要端元提取方法相比,该方法具有端元提取精度高、对不同等级噪声鲁棒性好等优势,在农田高光谱遥感监测中具有广阔的应用前景。  相似文献   

20.
柑橘黄龙病高光谱早期鉴别及病情分级   总被引:13,自引:12,他引:1  
为实现柑橘黄龙病的早期、快速确诊,有效阻止病害蔓延,达到早期防治、保障柑橘生产的目的,该文研究基于高光谱成像的柑橘黄龙病早期无损检测及病情分级,并对多种预处理方法的建模结果进行探讨。试验获取370~1 000 nm健康、不同染病程度及缺锌共5类柑橘叶片的高光谱图像,用遥感图像处理平台(environment for visualizing images,ENVI)得到各类样本感兴趣区域的光谱反射率平均值。运用一阶微分、移动窗口拟和多项式平滑(savitzky-golay,SG)进行数据处理,结合偏最小二乘判别分析(partial least squares-discriminate analysis,PLS-DA)构建黄龙病的早期鉴别及病情分级模型。结果表明:建立的3个判别模型,验证集相关系数均不低于0.9548。其中,经SG平滑及一阶微分预处理所建立的模型分类效果最佳,总体预测准确率达96.4%,预测均方根误差0.1344。该研究为柑橘病害早期诊断和预警提供了新方法,也为黄龙病病害程度遥感监测提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号