首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算   总被引:34,自引:16,他引:18  
生物质燃烧对全球大气碳排放和气候变化产生重要的影响。近年来,利用生物质制备生物炭实现碳封存备受重视。该文根据2001-2010年中国粮食产量,估算了主要粮食作物秸秆产量,结合秸秆露天焚烧比例及CO和CO2排放因子,得出CO和CO2的排放量及碳排放总量。同时,根据实验室条件下秸秆转化为生物炭的产率及碳含量,估算了中国粮食作物秸秆转化生物炭后固定碳的量。结果发现,中国粮食作物秸秆因焚烧年排放CO、CO2和总碳量分别为1.15×107、1.57×108和4.77×107t。中国粮食作物秸秆全部转化为生物炭后年平均可固碳0.96×108t,如果把每年焚烧秸秆的量全部转化为生物炭可减少近一半因焚烧秸秆排放碳的量,可见,生物炭固碳技术是一种非常有前景的碳汇技术。  相似文献   

2.
京津冀秸秆养分资源及秸秆焚烧气体污染物排放定量估算   总被引:7,自引:2,他引:5  
为推动区域农作物秸秆综合利用,减少秸秆露天焚烧气体对环境的影响,以京津冀地区为研究对象,评估分析了各类农作物秸秆资源产生、利用状况及其应用潜力,并定量估算了该地区主要农作物秸秆露天焚烧气体污染物排放特征。结果表明,2012年京津冀地区农作物秸秆资源总产量为5 406.9万t,秸秆中氮、磷、钾养分资源总量分别达到3.7×10~4、7.4×10~4、1.0×10~6 t。秸秆资源化利用方式主要以还田为主,北京市、天津市、河北省还田量分别占秸秆量的67.7%、27.3%和61.2%。秸秆露天焚烧主要以小麦和玉米秸秆为主,占田间秸秆焚烧总量的93.03%,焚烧排放的污染物总量分别达到1.0×10~6和4.8×10~5 t。基于京津冀地区秸秆利用现状,建议因地制宜地推动秸秆全量化利用,并在秸秆还田机制、离田利用机制、组织管理机制、技术研发机制等方面出台系统配套的政策措施,以期为中国不同区域秸秆资源的科学利用提供参考。  相似文献   

3.
利用1978年MSS多光谱数据、2008年中国资源卫星数据和全国第二次土壤普查数据,对黑龙江省土壤退化典型地区大庆地区的植被和土壤碳氮储量进行了估算。结果表明:大庆地区的植被平均碳密度1978年为0.58kg/m2,2008年为0.67kg/m3;土壤平均碳氮密度分别为(9.26±1.73)kg/m3和(0.62±0.17)kg/m3,土地覆被平均土壤碳氮密度分别为(8.10±2.34)kg/m3和(0.50±0.11)kg/m3。1978和2001年植被碳储量分别为(9.38×106)t和(10.40×106)t,30年间植被碳储量增加了(1.02×106)t;全区土壤总碳量为(187.18±34.95)×106t,总氮量为(125.84±33.66)×105t;全区土地覆被土壤总碳量为(163.68±47.34)×106t,总氮量为(102.00±22.55)×105t。大庆地区的植被和土壤平均碳密度都低于中国的平均水平。  相似文献   

4.
利用1978年MSS多光谱数据、2008年中国资源卫星数据和野外实验数据,对黑龙江省土壤退化典型地区大庆地区的植被和土壤碳氮储量进行了估算。结果表明:大庆地区的植被平均碳密度1978年为0.58 kgm-2,2008年为0.67 kgm-2;土壤平均碳氮密度分别为(8.18±1.65)kgm-3和(0.37±0.11)kgm-3,土地覆被平均土壤碳氮密度分别为(7.53±2.16)kgm-3和(0.33±0.16)kgm-3。1978和2008年植被碳储量分别为9.38×106 t和1.04×107 t,30年期间植被碳储量增加了1.02×106 t;全区土壤总碳量为(1.65±0.33)×108 t,总氮量为(7.55±2.15)×106 t;全区土地覆被土壤总碳量为(1.52±0.44)×108 t,总氮量为(6.74±3.32)×106t。大庆地区的植被和土壤平均碳密度都低于中国的平均水平,应加强土地保护,防止土壤的进一步退化。  相似文献   

5.
中国大中型沼气工程温室气体减排效益分析   总被引:23,自引:5,他引:18  
大中型沼气工程是中国可再生能源建设的重点项目,可提供清洁能源、减轻农村环境污染,具有良好的环境效益,同时也可减少CO2、CH4等温室气体排放,缓解全球变暖趋势.该文根据国际通用的减排量计算方法,对1996~2005年间中国大中型沼气工程所带来的主要温室气体减排量和减排效益进行了计算分析.结果表明:2005年,中国大中型沼气工程减少CO2排放0.54×106~1.51×106t,减少CH4排放1.53×105t(CO2当量),以国际市场价格计,中国大中型沼气工程减少CO2和CH4排放可实现1.16×108~2.69×108元(RMB)的经济效益.根据<可再生能源中长期发展规划>预测,2010和2020年中国大中型沼气工程的CO2减排量可分别达到0.56×107~1.71×107 t和1.95×107~5.99×108 t,CH4减排量分别达到1.79×106 t和6.28×106 t,减少主要温室气体(CO2,CH4)排放的经济效益可分别达1.17×109~3.00×109元和0.41×1010~1.05×1010元.中国大中型沼气工程建设可有效减少CO2和CH4等温室气体的排放,基于清洁发展机制具有显著的经济效益.  相似文献   

6.
河南省夏季秸秆焚烧污染物排放量的估算与分析   总被引:1,自引:0,他引:1  
基于2007年夏季秸秆焚烧卫星遥感监测资料,结合粮食产量、谷草比、排放因子等,估算了河南省秸秆焚烧各污染物的排放量。结果表明,2007年夏季河南省秸秆焚烧共排放:PM2.5 30 433.9 t、SO2 1 586.2 t、NOx 12.2 t、NH3 76.1 t、CH4 39.6 t、VOC 82.2 t、CO477.8 t、CO2 2 799.9 t。秸秆焚烧污染物排放量空间分布受小麦种植面积影响较大,中东部多于西部,其中周口、驻马店和南阳排放量最多;夏季秸秆焚烧较为集中,PM2.5的排放多集中在5月下旬和6月上旬,且与郑州市PM2.5日均浓度有较好的相关性。  相似文献   

7.
黄淮海地区农作物秸秆资源分布及利用结构分析   总被引:16,自引:9,他引:16  
为推动区域农作物秸秆全量化利用,以黄淮海地区5省市为研究对象,对各类农作物秸秆进行了统计分析,计算了5省市农作物秸秆资源量、秸秆资源密度、人均秸秆资源占有量,明确了秸秆资源分布及利用现状,初步分析了秸秆全量化利用的潜势。结果表明:黄淮海5省市农作物秸秆资源理论数量达到2.4×108 t,可收集量达到2.1×108 t。秸秆综合利用率达76%,其中肥料化、饲料化、基料化、能源化、原料化利用分别占已利用量的49.0%、31.6%、4.4%、8.8%、6.2%。秸秆资源密度和人均秸秆资源占有量均高于全国平均水平。通过分析黄淮海各省(市)秸秆潜在利用途径,预测竞争性秸秆利用需求量为1.5×108 t,分别为肥料化6.7×107 t、饲料化5.7×107 t、基料化1.1×107 t、原料化1.8×107 t,秸秆资源可能源化利用量则为8.80×107 t。在已有利用结构基础上,黄淮海地区秸秆实现全量化利用的总体趋势表现为"两个增加"、"一个减少"、"两个调节",即基料化和原料化利用分别增加2.5×106和6.3×106 t,饲料化利用减少4.8×105 t,肥料化利用调节范围为-2.2×107~7.2×107 t,能源化利用调节范围为0~7.2×107 t。并提出"区域统筹,整体推进",建立长效运行机制的工作思路。  相似文献   

8.
不同秸秆还田年限对稻麦轮作系统温室气体排放的影响   总被引:4,自引:0,他引:4  
为揭示稻麦轮作系统不同秸秆还田年限下温室气体排放特征及减排调控机制,本研究采用大田小区试验,考察了稻麦轮作不同秸秆还田年限[空白对照(CK)、常规处理秸秆不还田(NT)、1年秸秆还田(SR1)和5年秸秆还田(SR5)]对CH4、CO2和N2O 3种温室气体排放规律的影响,同时测定了土壤固碳量,估算了秸秆焚烧产生的温室气体排放量,综合计算了4种处理对全球变暖的贡献。试验结果表明,SR1和SR5均显著提升CH4和CO2的排放通量,分别高出NT、CK处理73.52%、309.49%和13.29%、13.06%;同时显著降低N2O排放通量,较NT降低29.68%和42.55%;但SR1和SR5之间温室气体排放通量差异不显著;与NT相比,SR1和SR5可以显著提高土壤固碳量517.9%和709.03%,SR5土壤固碳量高出SR1达30.93%;NT秸秆焚烧产生的全球气温变暖贡献为9 698.49 kg(CO2-eqv)·hm?2,比CK高126.98%。综合分析温室气体排放、土壤固碳以及秸秆焚烧3个因素,SR1全球升温贡献最低,显著低于NT 4.72%。短期全量秸秆还田有助于降低总体温室气体排放,长期进行秸秆还田后降低幅度会逐步减小。  相似文献   

9.
我国农田氮肥施用现状、问题及趋势   总被引:142,自引:27,他引:115  
氮素在作物产量和品质形成中起着关键作用。本文综述了什么是合理施氮,包括施氮量、施氮方法和时期,也包括与有机肥和秸秆还田措施的配合等。指出我国农田氮肥施用的主要问题是施肥过程和施肥后的严重损失。依据农户调查所获得的田块尺度施氮量,与田间试验合理施氮量对比分析表明,过量施氮田块占总调查田块的大约33%。依据区域尺度单位播种面积平均施氮量,与作物平均推荐施氮量对比分析表明,全国过量施氮面积占播种面积20%、合理面积占70%、不足面积占10%。总体而言,过量施氮现象还相当普遍,特别是在蔬菜和果树等经济作物上。本文提出了一种估算国家尺度氮肥需求量的方法,可估算出全国合理需氮量范围,称之为氮肥需求量估算法。用三种不同方法估算的我国1980~2010年间的氮肥需求量与实际氮肥使用量比较表明,如仍然依照现在的粗放施肥习惯,应该为现在的实际氮肥使用量,5年平均为N 27.9×106t左右,正好处于合理需氮量范围的中线。在改善施肥技术基础上,我国2006~2010年间5年氮肥平均使用量应该在N 19.6×106t左右;用五种方法预测的我国未来氮肥需求量表明,如果改善施肥技术,我国2020、2030、2050年合理氮肥需求量分别为N 21.0×106t、21.7×106t、23.1×106t;如施肥技术得不到实质性改善,依然粗放施氮,则氮肥需求量应处于合理使用量范围的中线,分别为N 30.4×106t、31.4×106t、33.4×106t。进一步分析了我国粮食产量和氮肥施用量与美国和西欧的差异,我国农田有机肥和碳投入对增加土壤有机碳氮库的重要性。  相似文献   

10.
对长江下游稻麦两熟农田生态系统2009—2010年的CH4和N2O排放以及土壤碳固定进行了分析,初步研究了秸秆还田对稻麦两熟高产农田净增温潜势的影响。结果表明,秸秆还田对稻麦两熟高产农田周年CH4和N2O排放总量、土壤碳固定量以及净增温潜势均有显著或极显著影响:秸秆还田条件下周年CH4、N2O排放总量分别为394 kg CH4.hm-2、2.39 kg N2O.hm-2,土壤碳固定量、净增温潜势分别为1.14 t C·hm-2、6383 kg CO2-equivalents·hm-2;较秸秆不还田增加CH4排放总量152%、减少N2O排放总量14%、增加土壤碳固定量531%、增加净增温潜势57%。以上结果表明,秸秆还田使短期内稻麦两熟高产农田的温室效应明显提高,但其长期效果如何还有待观测。  相似文献   

11.
通过收集长江三峡库区22个区(县)30个退耕还林样地的调查数据,参考LY/T 1721—2008《森林生态系统服务评估规范》,对其中6种主要退耕还林模式涵养水源与保育土壤效益及其价值进行评估。结果表明:1)三峡库区6种主要退耕模式总调节水量(即涵养水源量)达到11.679 1亿t/a;调节水量的价值为68.37亿元/a,净化水质价值约为24.42亿元/a,涵养水源总价值约为92.79亿元/a;2)保育土壤总价值为0.903 6亿元/a,其中马尾松林、落叶阔叶林、竹林、板栗林、柑橘林和茶林保育土壤的价值分别为1 531万、2 251万、1 031万、2 815万、1 157万和251万元/a;3)三峡库区不同退耕模式取得的涵养水源效益和保育土壤效益都存在很大差别,因此,对三峡库区退耕还林工程生态效益不能只从总体上进行评价,还应该考虑不同退耕模式的生态效益,以便更好地评价和指导三峡库区退耕还林工程的实施;4)评价一种退耕模式的好坏,还要综合考虑多种生态效益。  相似文献   

12.
研究不同耕作措施下小麦-玉米轮作农田N_2O、CO_2和CH4等温室气体的综合增温潜势,有助于科学评价农业管理措施在减少温室气体排放和减缓全球变暖方面的作用,为制定温室气体减排措施提供依据。基于2001年开始的位于华北太行山前平原中国科学院栾城农业生态系统试验站的不同耕作与秸秆还田方式定位试验,应用静态箱/气相色谱法于2008年10月冬小麦播种时开始,连续两个作物轮作年动态监测了秸秆整秸覆盖免耕播种(M1)、秸秆粉碎覆盖免耕(M2)、秸秆粉碎还田旋耕(X)、秸秆粉碎还田深翻耕(F)和无秸秆还田深翻耕(CK,代表传统耕作方式)5种情况下冬小麦-夏玉米轮作农田土壤N_2O、CO_2和CH4排放通量,并估算其排放总量。试验期间同步记录每项农事活动机械燃油量、灌溉耗电量、施肥量,依据燃油、耗电和单位肥料量的碳排放系数统一转换为等碳当量,测定作物产量、地上部生物量,估算农田碳截存量,根据每个分支项对温室效应的作用估算了5个处理的综合增温潜势。结果表明,华北小麦-玉米轮作农田土壤是N2O和CO2的排放源,是CH4的吸收汇,每年M1、M2、X、F和CK农田土壤N2O排放总量依次为2.06 kg(N_2O-N)·hm~(-2)、2.28 kg(N_2O-N)·hm~(-2)、2.54 kg(N_2O-N)·hm~(-2)、3.87 kg(N2O-N)·hm~(-2)和2.29 kg(N2O-N)·hm~(-2),CO_2排放总量依次为6904 kg(CO_2-C)·hm~(-2)、7 351 kg(CO2-C)·hm~(-2)、8 873 kg(CO_2-C)·hm~(-2)、9 065 kg(CO2-C)·hm~(-2)和7 425 kg(CO2-C)·hm~(-2),CH4吸收量依次为2.50 kg(CH4-C)·hm~(-2)、1.77 kg(CH4-C)·hm~(-2)、1.33 kg(CH4-C)·hm~(-2)、1.38 kg(CH4-C)·hm~(-2)和1.57kg(CH4-C)·hm~(-2)。M1和M2处理农田生态系统综合增温潜势(GWP)均为负值,表明免耕情况下农田生态系统为大气的碳汇,去除农事活动引起的直接或间接排放的等当量碳,每年农田生态系统净截留碳947~1 070 kg(C)·hm~(-2);其他处理农田生态系统的GWP值均为正值,表明温室气体是由系统向大气排放,CK、F和X每年向大气分别排放等当量碳3 364 kg(C)·hm~(-2)、989 kg(C)·hm~(-2)和343 kg(C)·hm~(-2)。故华北小麦-玉米轮作体系中,秸秆粉碎还田旋耕是最优化的耕作措施,其温室效应相对较低,而又能保证较高的经济产量。  相似文献   

13.
采用生命周期的方法评估规模化肉牛育肥场温室气体排放情况并列出了排放清单。定义的功能单位为育肥期间每1kg活重的增长,评估的边界包括肉牛生产系统、粪便管理系统以及系统扩张出来的作物种植系统、灌排系统、肥料生产系统和农业机械生产系统。结果表明,按1000头存栏计算,规模化肉牛育肥场总温室气体排放为3810.24tCO2-e.a-1,其中CH4为1735.78tCO2-e.a-1,N2O为887.67tCO2-e.a-1,CO2为1186.79tCO2-e.a-1,育肥期间每千克活增重的排放强度为10.16kgCO2-e.a-1。不考虑施用过程,有机肥替代化肥可以减少约33%因化肥生产造成的温室气体排放。  相似文献   

14.
以江苏省为案例,应用江苏省1995—2009年化肥用量、农药消耗量、灌溉面积、农机燃料用量、农膜用量、耕地面积、农作物产量等数据,测算了区域农田生态系统碳吸收、碳排放及碳足迹的变化动态,以及在各地市的空间分布特征。结果表明:近15a来,江苏省农作物碳吸收总量和碳吸收强度呈"V"字形变化,变化范围分别为2933.6×104~3896.9×104t·a-1和6.04~7.71t·hm-2·a-1。农业投入碳排放呈逐渐上升趋势,由727.2×104t·a-1增长至882.7×104t·a-1,同时碳排放强度从1.43t·hm-2·a-1上升到1.88t·hm-2·a-1,增长了31.5%,化肥排放始终占据主导地位。农田生态系统碳足迹呈现波动增长,变化在13.68×105~17.56×105hm·2a-1之间,占同期耕地面积的比重达到27.0%~36.1%,碳生态盈余呈明显减少趋势,变化在36.99×105~32.22×105hm2·a-1之间。各地市之间碳足迹存在明显差异,空间分布格局为由北向南递减。  相似文献   

15.
田间定位试验开始于2008年,共设置秸秆还田翻耕(cT+)、无秸秆翻耕(CT-)、秸秆还田免耕(NT+)和无秸秆免耕(NT-)四个处理。利用静态箱——气相色谱法,测定分析了2010-2011年度和2012-2013年度两个小麦生长季内土壤coz排放、土壤DOC含量及土壤有机质含量的动态变化。结果表明:两个小麦生长季内土壤coz排放规律基本一致,从当年小麦出苗到越冬土壤C02排放量下降,第二年小麦返青后,士壤CO:排放量开始上升,到开花期达到排放高峰,其后开始下降直至小麦成熟。各处理2010-2011年、2012-2013年度土壤C02平均排放通量分别为:CT+246.44、273.94mg·m^-2.h~,CT-183.54、212.57mg·m^-2.h^-1,NT+188.41、200.06mg·m^-2·h^-1,NT-179.66、179.10mg·m^-2·h^-1。土壤DOC含量的动态变化表现为在一定范围内上下波动,各处理2010-2011年、2012-2013度年土壤DOC平均含量分别为:CT+0.601、0.467g·kg^-1;CT-0.530、0.377g·kg^-1;NT+0.621、0.544g·kg^-1;NT-0.528、0.402g·kg^-1。方差分析表明.秸秆还田能增加土壤CO2排放、DOC含量和有机质含量;翻耕能增加土壤CO2排放,对DOC含量和有机质含量无显著影响;免耕减少土壤C02排放,对DOC含量无显著影响,能增加土壤有机质含量。相关分析表明,土壤CO2排放与DOC含量动态变化没有显著相关关系,土壤CO2排放总量与土壤有机质含量正相关,DOC含量和土壤有机质含量无明显相关关系。  相似文献   

16.
农田过量施肥会增加N2O排放,使农田土壤成为重要的温室气体排放源。为减少农田N2O排放,利用自动观测系统研究了春玉米农田中不同肥料对N2O排放的影响,并结合作物产量及N2O的排放量探索减少温室气体排放的施肥措施。采用田间试验方法设定了不施肥(CK)、尿素(U)、尿素加磷肥(NP)和硝酸磷肥(NOP)4个处理进行研究。结果表明,各处理下N2O排放总量分别为:CK0.21kgN·hm-2、U1.19kgN·hm-2、NP0.93kgN·hm-2、NOP0.69kgN·hm-2;N2O排放主要受施肥、灌溉,降雨和土壤温度的影响;在作物生长后期土壤含氮量小于7mgN·kg-1的情况下,观测到土壤吸收N2O的情况;各处理下排放因子均小于政府间气候变化委员会(IPCC)的缺省值1%,表明IPCC推荐的排放因子不适用于估算中国北方的春玉米农田N2O排放。施加磷肥有助于减少农田N2O排放并提高产量,硝态磷肥较尿素可以显著减少N2O排放。综合考虑产量和N2O排放,相对于施用尿素和尿素加磷肥处理,硝酸磷肥处理不仅可节约15%和30%的肥料投入,而且分别减少42%和26%的N2O排放,具有减排不减产的良好效果。  相似文献   

17.
将西柏店村畜禽养殖规模折合为1.50万头猪场当量污染负荷,并将整个园区生产工艺分为养殖、废弃物处理和种植3个阶段,不考虑隐藏流的情况下,以1a为系统边界,通过数据调查、已有资料研究和小区种植试验,采用物质流和能量流分析方法分析了该村养殖种植园区在整个生产工艺过程的氮素和能量流动,以期为村级养殖种植园区大力发展低碳经济提供新的方法和视角,为村级区域循环经济及可持续发展提供减少环境压力解决方案的科学依据。园区养殖种植过程的氮素分析表明,养殖阶段年输入N素总量为7.14×104kg,其中猪身总固氮量为2.68×104kg,粪氮和尿氮总量为3.93×104kg,氮损耗为0.53×104kg。废弃物处理阶段输入的氮主要为粪氮3.28×104kg,而0.65×104kg尿氮直接进入种植阶段,粪氮通过厌氧处理由有机氮转变为无机氮,其中有2.78×104kg无机氮通过沼渣和沼液进入种植阶段,有0.50×104kg氮损失。由于作物对氮的吸收,植株增加氮为7.53×104kg,土壤减少氮为6.37×104kg,不计其他作物种植,如果沼渣、沼液能满足施用于全村43hm2农田,若以保持土壤中N素计算,种植一季玉米土壤还需氮素2.94×104kg,若以作物需求的N素计算,种植一季玉米土壤还需氮素4.10×104kg。整个园区能量流分析表明,饲料投入能为443.51×108kJ,产出的畜产品能179.94×108kJ,养殖阶段能量产出率为40.57%,废弃物处理阶段沼气能产出为26.30×108kJ,种植阶段一季玉米产出能为198.84×108kJ,其中玉米籽粒81.22×108kJ的能量可用于饲料进入新的循环,要满足养殖种植园区的能量循环,以一季玉米种植计算,还需补充饲料能量362.29×108kJ。由氮素流动分析可知,西柏店村具有可容纳该村养殖废弃物的环境容量,有较好实现养殖废弃物循环利用的条件,还可加强养殖业的发展,但需大力加强畜禽废弃物的管理和处理,提高园区养殖废弃物循环利用效率。由园区的能量流分析表明,该园区能较好地实现系统的能量投入产出。  相似文献   

18.
水葫芦厌氧发酵能源化利用已成为水葫芦处理与资源化利用的一个重要途径,以江苏省农业科学院水葫芦中试基地与常州市武进区水葫芦综合利用示范工程为案例,利用生命周期评价的方法建立水葫芦厌氧发酵产沼气工程污染物排放的清单,并对系统生命周期环境影响进行评价,以水葫芦能源利用产生1MWh电能为功能单位,评价其对环境产生的影响。研究过程将整个生命周期分成3个阶段:水葫芦厌氧发酵预处理、水葫芦厌氧发酵产沼气发电和沼液沼渣农田应用,重点考虑了3种环境影响类型:全球变暖、环境酸化和富营养化。评价结果为:各类型环境影响指数分别为2.1×10^-3、4.89×10^-2和1.98×10^-1,与能源作物发电及传统火力发电相比较,水葫芦厌氧发酵能源化利用中的CO2、SOx、NOx等污染物排放量均较低,对环境的负面影响最小,但水葫芦能源利用的生命周期效率仅为0.09,低于能源作物热电联用的技术途径(0.119)。降低水葫芦厌氧发酵能源化利用中的石化能源消耗、控制堆肥及沼液沼渣有机肥施用过程中氨挥发损失,对于提高水葫芦能源转化效率与降低环境影响指数至关重要。  相似文献   

19.
利用IKONOS高分辨率(1m)卫星遥感图,选定代表川中丘陵区特征的四川省金堂县为研究区域,选取冬水田-水稻田(PF)、油菜-水稻田(RR)和小麦-水稻田(RW)3种主要轮作制度下353块稻田为研究对象,于2005年5月-2006年5月对作物田间管理、作物产出、土壤理化性状及施肥情况,以及水质与气象等基础资料进行调查、测定和统计分析,利用DNDC模型模拟川中丘陵区不同轮作制度下稻田CO2排放情况。结果表明:PF、RR和RW 3种轮作制度下CO2年总排放量分别为:4102、7512和8111kg.hm-2,且RW和RR均显著高于PF,但3种轮作制度下单季作物的CO2排放量差异不大,RR处理的单季作物的CO2排放量最小,其年总作物产量居中,RW处理产量最高。PF水稻生长期和休闲期CO2排放通量分别为25.48和3.36kg.hm-2.d-1,水稻生长期是休闲期的7.58倍;RR和RW在水稻生长期CO2排放通量平均为23.32和25.21kg.hm-2.d-1,低于PF水稻生长期CO2排放通量,但差异未达到显著水平,而RR和RW非水稻生长期的CO2排放通量分别为19.34和20.96kg.hm-2.d-1,分别为PF休闲期的5.76和6.24倍。根际呼吸是土壤呼吸的主要部分,整个生长期PF、RR、RW的根呼吸贡献率平均为59.14%~62.96%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号