首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Abstract

Ammonia (NH3) volatilization losses from surface‐applied ammonium sulphate (AS), ammonium nitrate (AN), and urea to winter wheat and the effects of the NBPT [N‐(n‐butyl) thiophosphoric triamide], PG (Phospho‐gypsum), and PR (byproduct‐Pyrite) were determined in a field experiment. Effects on grain yield and protein content of the grain were also measured. Total NH3 losses from AS, AN, and urea varied from 13.6–19.5%, 4.4–6.4%, and 3.9–12.0% depending on the compounds and their levels added to nitrogen (N) fertilizers, respectively. The compounds added to AS and AN increased NH3‐N losses with respect to unamended fertilizers (control). On the other hand, while urea treatments with two tons of PG/ha increased NH3 losses, the other compounds decreased the losses. The highest reductions of NH3 loss were observed with NBPT 0.50% and NBPT 0.25% by 63.4% and 52.8%, respectively. Although the effect of nitrogeneous fertilizers on total N losses and protein content of wheat grain was found statistically significant (p<0.01), as the compounds applied with N fertilizers have had no significant effect. Also, a negative and highly significant correlation (r = ‐0.69???) was found between total N loss and protein content of the grain.  相似文献   

2.
黑土-春小麦中三种化学氮肥的去向   总被引:12,自引:3,他引:9  
金翔  韩晓增  蔡贵信 《土壤学报》1999,36(4):448-453
用^15N田间微区试验研究了黑土-春小麦中作基肥施用的尿素、碳 和硝酸钾三种氮肥的氮素去向。试验设在黑龙江省海伦市郊区,氮肥用量为纯N75kg/hm^2,施肥深度为10cm。结果表明,硝酸钾和尿素的氮素利用率相当,分别为58.4%和55.9%,显著高于碳铵(42.6%)。硝酸钾的土壤中的残留率(28.7%)显著低于碳铵(38.8%)和尿素(38.2%),氮素总损失在5.8% ̄18.6%之间,碳铵的  相似文献   

3.
Additions of ammonium sulfate and urease inhibitor with urea might have potential to increase yield and quality due to increased supply of sulfur (S) and reduction in volatilization loss of nitrogen (N), respectively. Treatments consisting, (i) urea alone, (ii) urea with ammonium sulfate (UAS) and (iii) homogeneous granular fertilizer containing urea and ammonium sulfate (HBU), and (iv) urease inhibitor treated urea (UI), at two application rates, 134 and 168 kg N ha?1, were compared for spring wheat (Triticum aestivum L.) and sugar beet (Beta vulgaris L.) production at Glyndon and Ada of Minnesota, USA, during 2014–2015. For both crops, additions of UI had increased yield due to higher soil N availability over urea only in 2015. In 2014, UI also increased the grain protein content over urea and UAS increased sugar content only over HBU in 2015. Spring wheat and sugarbeet yield and quality response to urease inhibitor or supply of S in the form of UAS depends on soil and climatic factors.  相似文献   

4.
Abstract

N loss by volatilization was measured for surface‐applied granular urea and ammonium nitrate, liquid urea‐ammonium nitrate and liquid acid urea in closed containers. Urea‐containing fertilizers lost between 10 and 451 of the N added within 10 days. The presence of a straw mulch accentuated the losses. N volatilization losses from acid urea solutions were significantly less than from granular urea. Addition of water following surface application of granular urea significantly reduced the loss of N as ammonia from the soil. The results of this laboratory study indicate that use of acid urea for surface application of N fertilizers may reduce N volatilization losses relative to granular urea, but losses still exceed those from ammonium nitrate.  相似文献   

5.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

6.
Nitrogen (N) loss by ammonia (NH3) volatilization is the main factor for poor efficiency of urea fertilizer applied to the soil surface. Losses can be suppressed by addition of zeolite minerals to urea fertilizer. The objective of this study was to evaluate ammonia volatilization from soil and dry-matter yield and nitrogen levels of Italian ryegrass. A greenhouse experiment was carried out with the treatments of urea, urea incorporated into soil, urea + urease inhibitor, urea + zeolite, ammonium nitrate, and unfertilized treatment. Ammonia was captured by a foam absorber with a polytetrafluoroethylene tape. There were few differences between zeolite and urease inhibitor amendments concerning NH3 volatilization from urea. Results indicate that zeolite minerals have the potential to improve the N-use efficiency and contributed to increasing N uptake. Zeolite and urea mixture reduced 50% the losses by volatilization observed with urea.  相似文献   

7.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

8.
A 3-month field experiment comparing nitrogen (N) losses from and the agronomic efficiency of various N fertilizers was conducted on a sandy loam (Typic Hapludand) soil at Ruakura AgResearch farm, Hamilton, New Zealand during October to December 2003. Three replicates of seven treatments: urea, urea + the urease inhibitor N-(n-butyl) thiophosphoric triamide (trade name Agrotain), urea + Agrotain + elemental sulphur (S), urea + double inhibitor [DI; i.e., Agrotain + dicyandiamide (DCD)], diammonium phosphate (DAP), DAP + S, each applied at 150 kg N ha−1, and control (no N). After fertilizer application, soil ammonium () and nitrate () concentrations (7.5-cm soil depth), ammonia (NH3) volatilization, nitrate () leaching, nitrous oxide (N2O) emission, pasture dry matter, and N uptake were monitored at different timings. Urea applied with Agrotain or Agrotain + S delayed urea hydrolysis and released soil at a slower rate than urea alone or urea + DI. Urea applied with DI increased NH3 volatilization by 29% over urea alone, while urea + Agrotain and urea + Agrotain + S reduced NH3 volatilization by 45 and 48%, respectively. Ammonia volatilization losses from DAP were lower than those from urea with or without inhibitors. Total reduction in leaching losses for urea + DI and urea + Agrotain compared to urea alone were 89% and 47%, respectively. Application of S with urea + Agrotain reduced leaching losses by an additional 6%. Nitrous oxide emissions were higher from the DAP and urea alone treatments. Urea applied with DI and urea + Agrotain reduced N2O emissions by 37 and 5%, respectively, over urea alone. Compared to urea alone, total pasture production increased by 20, 17, and 15% for urea + Agrotain + S, urea + Agrotain, and urea + DI treatments, respectively, representing 86, 71, and 64% increases in N response efficiency. Total N uptake in urea + Agrotain, urea + Agrotain + S, and urea + DI increased by 29, 22, and 20%, respectively, compared to urea alone. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses and improve pasture production in intensively grazed systems.  相似文献   

9.
缓/控释氮素肥料玉米苗期养分释放特点   总被引:6,自引:0,他引:6  
采用盆栽试验.模拟田间生态环境.研究施用不同种缓/控释氮素肥料玉米苗期土壤尿素态氮、硝态氮、铵态氮和速效态氮含量,分析比较其在玉米苗期氮素养分释放特点。研究表明,在玉米苗期,施用醋酸酯淀粉包膜脲酶抑制剂nBPT涂层尿素肥料。土壤中尿素态氮和铵态氮的积累量最多.分别为21.72mg/kg和48.31mg/kg;醋酸酯淀粉包膜尿素肥料,硝态氮和速效氮含量最多.分别为102.90mg/kg和135.25mg/kg;丙烯酸树脂包膜脲酶抑制剂nBPT涂层尿素肥料,尿素自膜内迁移到土壤中的量较少,硝态氮和速效态氮含量最少。分别为53.74mg/kg和93.70mg/kg。包膜与脲酶抑制剂nBPT相结合的缓/控释肥料,对减少土壤石硝态氮的生成效果最为明显.明显优于其他缓/控释肥料.丙烯酸树脂包膜nBPT涂层尿素肥料控释效果最好。  相似文献   

10.
Late application of nitrogen (N) fertilizers at heading or anthesis is usually performed to produce wheat (Triticum aestivum L.) with high bread‐making quality. However, increasing energy costs and ecological problems due to N losses call for efficient and simplified N fertilization strategies. This study aimed to investigate the effect of late N fertilization on grain protein quality and thus baking quality and to evaluate if similar wheat quality can be maintained without late N application. Field experiments with two winter wheat cultivars differing in quality groups were conducted. The fertilization treatments comprised a rate of 220 kg N ha?1 applied in two or three doses (referred to as split N application), and 260 kg N ha?1 applied in four doses (additional late N fertilization) with different N fertilizer types. The results show that although split N application had no effect on grain protein concentration (GPC), it affected N partitioning in the grain, increasing mainly the concentration and proportion of the glutenin fraction. As a result, baking quality was improved by split N application. Late N fertilization enhanced GPC and the relative abundance of certain high molecular weight glutenin subunits (HMW‐GS). However, it had no effect on N partitioning in the grain and did not further improve baking quality. No obvious differences were found between N fertilizer types on grain yield and quality. The N fertilization effect was more pronounced on the wheat cultivar whose baking quality was more dependent on protein concentration. In evaluating baking quality of wheat flour, gliadin and glutenin proportions were better correlated with loaf volume than the overall protein concentration.  相似文献   

11.
Five field experiments are described which measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride, and sodium nitrate. Compared with the Nil N treatment, ammonium‐nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of five experiments, while ammonium sulphate topdressed (Astd) reduced the severity in four of the five experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment whereas ASdr was more effective than ACdr in another experiment. In these two experiments (1 and 5), the effects of the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. The results suggest that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Chloride containing fertilizers are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

12.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

13.
  【目的】  包衣和添加抑制剂是常用的制备缓控释肥料的手段。尝试同时使用这两种方法,制备更加可控氮素释放与转化的新型肥料,并研究其在小麦上的应用效果。  【方法】  采用先在大颗粒尿素 (2.5~3.5 mm) 表面涂层,再用树脂包膜的方法制备含不同抑制剂的树脂包膜尿素。依据不同抑制剂,制备了无涂层 (CU)、脲酶抑制剂HQ涂层 (CRU1)、硝化抑制剂DCD涂层 (CRU2) 和HQ + DCD组合涂层 (CRU3) 4种新型树脂包膜尿素。通过扫描电镜观测了4种包膜尿素的微观结构,采用静水释放的方法测定了养分和抑制剂的缓释性能。在山东省潍坊和泰安两地布置冬小麦等氮磷钾施用量和相同施肥方法的田间试验,以普通大颗粒尿素为对照,在冬小麦苗期、拔节期、开花期、灌浆期和成熟期采集耕层土壤样品,测定速效氮含量,并于小麦成熟期测定产量及构成因素。  【结果】  1) 制备的4种包膜尿素成膜完整,包膜厚度均匀,表面光滑且膜层致密,树脂包膜材料能完整地覆盖在肥核的表面,膜表面有微孔,成为尿素和抑制剂向膜外释放的通道;尿素与抑制剂交接处结合严密,无间隙产生,抑制剂在包膜层的完全包围之中,可实现对尿素和抑制剂释放的同时控制。2) 包膜与抑制剂结合可有效控制尿素溶出。静水释放条件下,4种包膜尿素的氮素初期溶出率分别为7.59%、1.96%、2.12%、0.89%,尿素控释期依次是42、56、56、56天;CRU1的HQ释放期为28天,CRU2的DCD释放期为14天,CRU3中HQ和DCD的释放期分别为42和14天。相比较而言,CRU3的氮素释放期长于CRU1和CRU2,抑制剂的释放期也长于CRU1和CRU2,因此缓释效果大于CRU1和CRU2。3) 与大颗粒尿素对照 (U) 相比,4个包膜尿素处理在小麦苗期能维持土壤中NH4+-N的适宜浓度,开花期后显著增加土壤NH4+-N含量,保障了氮素的持续供应;而在小麦整个生育期内均显著降低土壤NO3–-N含量,从而减少氮素淋溶损失。含HQ涂层的CRU1、CRU3处理能在小麦生育期内维持土壤脲酶活性处于较低水平;含DCD涂层的CRU2、CRU3处理能够抑制土壤NH4+-N向NO3–-N的转化,显著降低土壤NH4+-N表观硝化率。与CU相比,CRU1、CRU2和CRU3处理的小麦产量在潍坊试验点分别显著增加23.38%、23.13%和38.79%,在泰安试验点分别增加6.36%、9.52%和28.57%。  【结论】  先在大颗粒尿素表面包裹抑制剂涂层,再包裹树脂,可在尿素表面形成完整且均匀的膜,而且在膜表面仍有一定量的微孔,实现尿素与抑制剂释放的同时控制。小麦整个生育期,与施用单一抑制剂的包膜尿素处理相比,施用含两种抑制剂 (CRU3) 的包膜尿素处理的土壤氮素持续供应能力更强,小麦产量最高;而且土壤硝态氮水平一直较低,也减少了氮素淋溶损失的可能。  相似文献   

14.
In temperate grassland, urea has been shown to have lower nitrous oxide emissions compared to ammonium nitrate‐based fertilizer and is less expensive. However, nitrogen (N) loss via ammonia volatilization from urea raises questions regarding yield performance and efficiency. This study compares the yield and N offtake of grass fertilized with urea, calcium ammonium nitrate (CAN) and urea treated with the urease inhibitor N‐(n ‐ butyl) thiophosphoric triamide (NBPT) at six site‐years. Five annual fertilizer N rates (100–500 kg N/ha) were applied in five equal splits of 20–100 kg N/ha during the growing season. On average, urea produced slightly better yields than CAN in spring (103.5% of CAN yield) and slightly poorer yields in summer (98.4% of CAN yield). There was no significant difference in annual grass yield between urea, CAN and urea + NBPT. Urea had the lowest cost per tonne of DM grass yield produced. However, the urea treatment had lower N offtake than CAN and this difference was more pronounced as the N rate increased. There was no difference in N offtake between urea + NBPT and CAN. While this study shows that urea produced yields comparable to CAN, urea apparent fertilizer N recovery (AFNR) tends to be lower. Urea selection in place of CAN will increase national ammonia emissions which is problematic for countries with targets to reduce ammonia emissions. Promisingly, NBPT allows the agronomic performance of urea to consistently equal CAN across N rates by addressing the ammonia loss limitations of urea.  相似文献   

15.
Nitrogen (N) gas losses can be reduced by using enhanced-efficiency N (EEN) fertilizers such as urease inhibitors and coating technologies. In this work, we assessed the potential of EEN fertilizers to reduce winter losses of nitrous oxide (N2O-N) and ammonia (NH3-N) from a subtropical field experiment on a clayey Inceptisol under no-till in Southern Brazil. The EEN sources used included urea containing N-(n-butyl) thiophosphoric triamide (UR+NBPT), polymer-coated urea (P-CU) and copper-and-boron-coated urea (CuB-CU) in addition to common urea (UR) and a control treatment without N fertilizer application. N2O-N and NH3-N losses were assessed by using the static chamber method and semi-open static collectors, respectively. Both N2O-N and NH3-N exhibited two large peaks with an intervening period of low soil moisture and air temperature. Although the short-term effect was limited to the first few days after application, UR + NBPT urea decreased soil N2O-N emissions by 38% relative to UR. In contrast, urease inhibitor technology had no effect on NH3-N volatilization. Both coating technologies (CuB-CU and P-CU) were ineffective in reducing N losses via N2O production or NH3 volatilization. The N2O emission factor (% N applied released as N2O) was unaffected by all N sources and amounted to only 0.48% of N applied—roughly one-half the default factor of IPCC Tier 1 (1%). Based on our findings, using NBPT-treated urea in the cold winter season in subtropical agroecosystems provides environmental benefits in the form of reduced soil N2O emissions; however, fertilizer coating technologies provide no agronomic (NH3) or environmental (N2O) advantages.  相似文献   

16.
Abstract. Ammonia volatilization with and without gypsum incorporation was measured in Gujranwala soil (Udic Haplustalf) in an incubation study using different nitrogen fertilizers e.g. urea, ammonium sulphate (AS), calcium ammonium nitrate (CAN), and urea nitrophos (UNP). Nitrogen from different fertilizers was applied at the rate of 200 mg N kg−1 to two sets of soils in plastic bags (1.0 kg soil) and plastic jars (0.5 kg soil). Soil moisture was maintained at field capacity. Application of urea increased soil pH to 9, three hours after its addition. Ammonium sulphate and calcium ammonium nitrate had little effect on soil pH. Ammonium volatilization losses from fertilizers were related to the increase in soil pH caused by the fertilizers. Consequently maximum losses were recorded due to application of urea. Losses through ammonia volatilization were significantly lower with AS, CAN and UNP in descending order. Gypsum incorporation significantly reduced the losses. Therefore, application of gypsum to soil before urea may substantially improve N use efficiency for crop production by reducing N losses.  相似文献   

17.
ABSTRACT

Two Chilean soils were used to evaluate the performance of the nitrification inhibitor 3,4-dimetilpirazol phosphate (DMPP) added to ammonium-sulfate-nitrate (ASN) in comparison with traditional nitrogen (N) sources and different N-application forms. Two experiments were conducted: In the first, broccoli (Brassica oleracea var. italica) plants were cultivated in pots under greenhouse conditions, and received a N-fertilization equivalent to 150 Kg N ha?1 as ASN+DMPP (one application), urea (two splits), and sodium-potassium nitrate (three splits). In the second, ryegrass (Lolium spp.) plants were grown in pots under shading conditions. In this case, ASN+DMPP and urea were applied at N rates equivalent to 150 and 300 Kg N ha?1 in a single application. In the first experiment, ASN+DMPP increased dry-matter production, maintained a higher N content in the soil (at least until the middle of the growing period), and improved fertilizer N-use efficiency (FUE) in one soil. There were no significant differences in N-leaching losses. In the ryegrass experiment, ASN+DMPP increased dry-matter production and FUE, while N-leaching losses were reduced. Treatments with ASN+DMPP maintained higher N levels in soil throughout the growing period, and there were no significant differences in the available N fraction between the two N rates. The use of DMPP-containing fertilizers may be a good alternative for increasing FUE.  相似文献   

18.
Abstract

A laboratory experiment evaluated the rate of urea hydrolysis and ammonia volatilization from urea (U) mixed in organo‐mineral (O‐M) fertilizers. These fertilizers were incubated in soil in the presence or absence of N‐(n‐butyl)thiophosphoric triamide (NBPT) as a urease inhibitor. Two organic matrices, leather (L) and peat (P), were used to prepare the O‐M fertilizers. In the absence of NBPT, the highest ammonia losses and the fastest rate of urea hydrolysis were in the soil treated with the fertilizer containing leather (UL50). Significantly lower ammonia losses occurred with peat‐based fertilizers. Although the fertilizer containing peat (UP50) stimulated the rate of urea hydrolysis with respect to the urea alone, no increase in ammonia volatilization was detected. NBPT‐containing fertilizers were stored for different times (0,7, 30, and 60 days) and temperatures (25°C and 40°C), and the NBPT recovery was monitored by extraction and analysis by HPLC. The NBPT recovery decreased by increasing either the storage time or the storage temperature. Differences among the fertilizers occurred after storage at 40°C for 30 or 60 days. With UN, in spite of about 25% extracted amount of NBPT, the ammonia losses did not increase with respect to the non‐stored fertilizer. On the contrary, no inhibitor was recovered from either of the O‐M fertilizers (UNL and UNP). However, in the presence of leather, NBPT reduced the volatilization losses by 35 to 40%, whereas in the presence of peat, a complete loss of NBPT efficiency occurred. In general, either the inhibitor recovery or efficiency were affected by the storage conditions or the type of organic matrix.  相似文献   

19.
Stabilized urea fertilizers are currently being marketed for use in turfgrass, as a more efficient alternative to standard urea that minimizes adverse impacts on the environment. These fertilizers have been evaluated for reducing N losses and increasing grain yield in crop plants, but their effects in turf are not well characterized. The efficacy of two stabilized urea fertilizers containing urease and nitrification inhibitors, N-(n-butyl) thiophosphoric triamide and dicyandiamide or butenedioc-methylenesuccinic acid copolymer, in reducing N losses was studied for a 56-day period in a mixed stand of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) using 15?N-enriched fertilizers. Turf responded to a 49-kg ha?1 N input with increased color, quality, and biomass production. No benefit of nitrification and urease inhibitors compared to urea was observed for clipping production, N use efficiency, or turfgrass color and quality. Though the efficacy of urease and nitrification inhibitors has been demonstrated both in the laboratory and for row crops, inhibitors appear to be of limited value for enhancing N use efficiency in turf.  相似文献   

20.
Abstract

Leaf N and soil nitrate and ammonium levels were monitored in 1986 and 1987 following N fertilization of 8–9 year old highbush blueberries. Urea was applied at 76 kg N/ha in a single application at bud break or in two applications (split) at bud break and petal fall. Controlled release fertilizers (CRF), of two different residual effects (Osmocote 3 mo., Osmocote 8 mo.) were applied at 38 kg N/ha or 76 kg N/ha at bud break. Compared to controls, N applications increased soil ammonium and nitrate levels early in the season and leaf N levels throughout the season. Urea provided a greater increase in leaf N and soil ammonium levels than CRF. Split urea applications increase leaf levels slightly over single urea treatments. Fertilizers increased soil ammonium and nitrate levels below the root zone, indicating that some leaching losses occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号