首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protected cultivation, mainly represented by plastic-film mulching, has greatly improved crop production worldwide since the 1950s. However, despite its widespread use in tropical USA, Europe and China, its use in sub-Saharan Africa is not widespread. A field experiment was conducted using cocoyam (Colocasia esculenta L. Schott) to evaluate the effects of two tillage systems (tilled and no-till) and plastic-film mulch (black and clear plastic-film mulch) on soil properties and cocoyam growth and yield in 2003 and 2004 planting seasons on a Typic paleudult in southeastern Nigeria. The experiment comprised six treatments and was laid out in the field using randomized complete block design replicated three times. Results showed that 70–80% of the corms emerged 7–8 days (21 days after planting [DAP]) earlier in both tilled and no-till plastic-film mulched plots when compared to the unmulched plots. At later stages of crop development, the plants in the tilled black plastic-film mulched plots were taller by 61–67% than those in the unmulched no-till plots, which had the lowest plant height (27–30 cm). At 98 DAP, there were no significant treatment differences in leaf area index (LAI) between tilled and no-till mulched plots with LAI of 15.5–19.8. However, LAI was reduced in both unmulched plots by 35–54% when compared to the mulched plots. On the average soil temperature was higher in plastic-film mulched plots than that under plots without mulch by about 2 °C. Results show significantly lower soil bulk density (between 1.10 and 1.26 Mg m−3) in both tilled clear and black plastic-film mulched plots when compared to the corresponding no-till clear or black plastic-film mulched plots (1.40–1.45 Mg m−3). For the two seasons studied volumetric water content (VWC) in tilled black plastic-film mulched plots were significantly higher than VWC in other mulched plots by between 10 and 38% in 2003 and between 17 and 30% in 2004. At harvest (270 DAP) the highest corm yield was obtained in tilled black plastic mulched plots (29.1 Mg ha−1). This was higher (P = 0.05) than yields obtained in no-till, no mulch plots by 72%. Yields were also higher in tilled black plastic mulched plots when compared to tilled clear plastic mulched plots, no-till black plastic mulched plots and no-till clear plastic mulched plots by 29, 47 and 59%, respectively. These findings suggest that plastic mulched plots provide a better soil environment for cocoyam than unmulched plots and that tilled mulched plots especially tilled black plastic mulched plots provide superior edaphic environment for cocoyam when compared to other treatments used.  相似文献   

2.
A study was carried out on a previously eroded Oxic Paleustalf in Ibadan, southwestern Nigeria to determine the extent of soil degradation under mound tillage with some herbaceous legumes and residue management methods. A series of factorial experiments was carried out on 12 existing runoff plots. The study commenced in 1996 after a 5-year natural fallow. Mound tillage was introduced in 1997 till 1999. The legumes – Vigna unguiculata (cowpea), Mucuna pruriens and Pueraria phaseoloides – were intercropped with maize in 1996 and 1998 while yam was planted alone in 1997 and 1999. This paper covers 1997–1999. At the end of each year, residues were either burned or mulched on respective plots. Soil loss, runoff, variations in mound height, bulk density, soil water retention and sorptivity were measured. Cumulative runoff was similar among interactions of legume and residue management in 1997 (57–151 mm) and 1999 (206–397 mm). However, in 1998, cumulative runoff of 95 mm observed for Mucuna-burned residue was significantly greater than the 46 mm observed for cowpea-burned residue and the 39–51 mm observed for mulched residues of cowpea, Mucuna and Pueraria. Cumulative soil loss of 7.6 Mg ha−1 observed for Mucuna-burned residue in 1997 was significantly greater than those for Pueraria-mulched (0.9 Mg ha−1) and Mucuna-mulched (1.4 Mg ha−1) residues whereas in 1999 it was similar to soil loss from cowpea treatments and Pueraria-burned residue (2.3–5.3 Mg ha−1). There were no significant differences in soil loss in 1998 (1–3.2 Mg ha−1) whereas Mucuna-burned residue had a greater soil loss (28.6 Mg ha−1) than mulched cowpea (6.9 Mg ha−1) and Pueraria (5.4 Mg ha−1). Mound heights (23 cm average) decreased non-linearly with cumulative rainfall. A cumulative rainfall of 500 mm removed 0.3–2.3 cm of soil from mounds in 1997, 3.5–6.9 cm in 1998 and 2.3–4.6 cm in 1999, indicating that (detached but less transported) soil from mounds was far higher than observed soil loss in each year. Soil water retention was improved at potentials ranging from −1 to −1500 kPa by Mucuna-mulched residue compared to the various burned-residue treatments. Also, mound sorptivity at −1 cm water head (14.3 cm h−1/2) was higher than furrow sorptivity (8.5 cm h−1/2), indicating differences in hydraulic characteristics between mound and furrow. Pueraria-mulched residues for mounds had the highest sorptivity of 17.24 cm h−1/2, whereas the least value of 6.96 cm h−1/2 was observed in furrow of Mucuna-burned residue. Pueraria phas eoloides was considered the best option for soil conservation on the previously eroded soil, cultivated with mound tillage.  相似文献   

3.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

4.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   

5.
Four factorial trials were conducted with yam (Dioscorea rotundata Poir.) at Ibadan, Nigeria from 2013 to 2015, investigating effects of (1) tillage (2) fertilizer (3) intercropping (4) yam plant densities. Yam tuber yields varied between years (2013: 16.44 Mg ha?1; 2014: 10.08 Mg ha?1; 2015 26.61 Mg ha?1). In 2013 neither tillage nor fertilizer affected tuber yields. In 2014 tillage increased yields (+25.4%, P < 0.0001), fertilizer reduced yield (?10.5%; P = 0.0046). In 2015 tillage increased tuber yields by 8.1% (ns), fertilizer application increased yield (+17.5%, P = 0.0017). Across the years, tuber yields increased (P < 0.01) with increasing yam density with a constant increase in 2013 up to the highest density, yet yields leveled out above 14,815 plants ha?1 in 2014 and 2015. Intercropping with maize (66,667 plants ha?1) reduced tuber yield by 42.62% in 2013, 44.52% in 2014 and 30.68% in 2015 (P < 0.01 all years) across all yam densities. Maize grain yield was higher in sole crop in 2 years. Fertilizer increased yields in all years (P < 0.0001). Maize yield had no response to the yam densities. Ridging had a negative effect on grain yield in 2015 (?0.3 Mg ha?1, P = 0.0002). Increasing plant density appears a safe measure to increase yam yields.  相似文献   

6.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

7.
Crop residues from millet production in southwest Niger are limited for their utilization as mulch because of many other uses. Thus, branches of an indigenous shrub (Guiera senegalensis J.F. Gmel.) were tested with a randomised block design for their effect on millet (Pennisetum glaucum L.) yield. Pearl millet was planted in 1995 and 1996 on a luvic Arenosol in southwest Niger. Three treatments were applied: control, 1000 kg ha−1 dry matter Guiera-mulch and 2000 kg ha−1 dry matter Guiera-mulch. Mulched plots had 68–94% higher millet yields compared to the control. Differences in soil properties before the treatments were applied, explained a high variability within the treatments. Significant differences of soil properties between blocks led to a distinction of infertile and fertile blocks. In infertile plots with 1000 kg ha−1 Guiera-mulch, millet yield was higher than in plots with 2000 kg ha−1 Guiera-mulch. Due to the many uses of Guiera senegalensis by the local farmers, an application of 1000 kg ha−1 Guiera-mulch, at least on infertile soils, seems a good possibility to increase millet production.  相似文献   

8.
Enhancement of soil organic carbon (SOC) stocks through mulching has been proposed, and although this practice can alter several soil properties, its impact on the temporal variability of carbon dioxide (CO2) emission from soils has not been widely investigated. To that end, we monitored CO2 fluxes from a central Ohio Luvisol (fine, mixed, mesic Aeric Ochraqualf) amended with wheat (Triticum aestivum L.) straw applied at rates of 0 (M0), 8 (M8) and 16 (M16) Mg dry matter ha−1 per year and supplemented with fertilizer (244 kg N ha−1 per year) or without. The experimental design was a randomized complete block design with three replications. The intensity of CO2 emission was higher in the late winter (mean: 2.79 g CO2-C m−2 per day) and summer seasons (2.45 g CO2-C m−2 per day) and lowest in the autumn (1.34 g CO2-C m−2 per day). While no significant effect of N fertilization on CO2 emission was detected, soil mulching had a significant effect on the seasonal variation of CO2 fluxes. The percentage of annual CO2 emitted during the winter and spring was similar across treatments (17–22%); however, 43% of the annual CO2 loss in the M0 plots occurred during the summer as opposed to 26% in the mulch treatments. A close relationship (F=0.47X+4.45, R2=0.97, P<0.001) was found between annual CO2 flux (F, Mg CO2-C ha−1) and residue-C input (X, Mg C ha−1). Litter and undecomposed residue amounted to 0.32 and 0.67 Mg C ha−1 per year in the M8 and M16 plots, respectively. After 4 years of straw application, SOC stocks (0–10 cm) were 19.6, 25.6 and 26.5 Mg C ha−1 in the M0, M8 and M16 treatments, respectively. The results show that soil mulching has beneficial effect on SOC sequestration and strongly influence the temporal pattern of CO2 emission from soils.  相似文献   

9.
Simple tests of structural stability are needed for evaluating the ease with which soils slake and erode when in contact with water. In a laboratory study, we related the percolation stability (PS) of 22 Nigerian soils to land use, soil properties, structural stability indices and simulated rainfall erosion. All measurements were carried out with the 1–2 mm diameter air-dry aggregates. Land use influenced PS more than the type of soil. Forest soils, bush fallows, mulched, minimally tilled plots and pasture lands had rapid PS (>250 ml/10 min) values, whereas mulched conventionally tilled plots, bare fallows and continuously cultivated plots from where residues were removed by burning had relatively slow to moderate PS values (34–241 ml/10 min). The single most important soil property that correlated positively with PS is organic matter (OM) (r = 0.55*) followed by total Fe + Al (r = 0.52*). The significant inverse relationship (r = −0.49*) between log (PS) and log (pH/OM) indicates a decrease in PS of these acidic, low-OM soils with increasing pH levels. The percent water-stable aggregate (WSA) >0.20 mm diameter, aggregated clay index (AC) and clay dispersion ratio (CDR) correlated weakly with PS. Conversely, the sealing index (SI) (i.e. the ratio of saturated hydraulic conductivity of an uncrusted to that of a crusted soil) had a strong, inverse relationship with PS (r = −0.97***). These relationships indicate that PS measures the slakability (and not dispersibility) of soils. The relationship between PS and erosion (E) was an exponential decay form, E = 102 e−0.0043PS (r2 = 0.98) and showed that high interrill erosion rates would be expected on soils with PS < 250 ml/10 min. The PS which is simple to measure, is, therefore, a good indicator of structural stability for assessing the potential of these soils to erode.  相似文献   

10.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

11.
Soybean (Glycine max (L.) Merr.) is an important crop in the southeastern United States, and thus there is a need for additional information on the effects of tillage, weed control methods and row spacing on soybean yields, weed populations and soil properties. The objective of this study was to determine the effects of three weed control methods (none, cultivation, and herbicide) and three row spacings (45, 60 and 90 cm) on soybeans planted in a conventionally prepared seedbed or planted in wheat stubble (no-till (NT)) on a Decatur silty clay loam (Rhodic Paleudult) soil during the 1987 and 1988 growing seasons. Following NT planting, soybean plots produced a seed yield of 3102 kg ha−1 with herbicide, 2911 kg ha−1 with cultivation and 2216 kg ha−1 with no weed control. On a conventionally prepared seedbed, herbicide and cultivation resulted in almost equal seed yields (3898 kg ha−1 and 3954 kg ha−1 respectively) which were significantly higher than those from the no weed control plots (3151 kg ha−1). Soybeans in narrow (45 cm) rows (3997 kg ha−1) consistently out-yielded those in the wider 60 cm rows (3130 kg ha−1) and 90 cm rows (2490 kg ha−1) in both growing seasons, results averaged across years showed that conventionally planted soybeans produced higher yields (3668 kg ha−1) than NT planted soybeans (2743 kg ha−1). The weed infestation was significantly less with herbicide or cultivation than with no weed control and also less in narrow rows (45 cm) than in wider rows (60 and 90 cm). Data on the soil properties (from a depth of 0–15 cm) showed that moisture content, organic matter content and total soil nitrogen were higher in NT plots than in conventional plots. Similarly, disease ratings and infestation of bacterial blight of soybean were significantly higher in NT than in conventional tillage systems.  相似文献   

12.
The yield of direct-seeded and transplanted upland rice was investigated for seven tillage methods for an ultisol in a high rainfall region of southeastern Nigeria. The tillage methods were: two compaction passes of a 6-t roller with and without residue mulch; six compaction passes with mulch; ploughing with and without mulch and no-till with and without mulch. Soil compaction decreased seedling emergence and shoot and root growth. Residue mulching decreased seedling emergence by 35.6% in direct-seeded rice. There were more leaves, productive tillers and dry matter in the ploughed plots. Root densities at 10–20- and 20–30-cm depths were higher by 157 and 47%, respectively, in ploughed treatments. The highest grain yields of 6.3 and 6.1 Mg ha−1 in ploughed plots for the first and second seasons, respectively, were associated with greater uptake of P, Na, Fe and Zn at flowering and of N, Mg, K, Mn and Cu at both maximum tillering and flowering growth stages. The grain yield in the first season was 2.1 and 2.5 Mg ha−1 for two- and six-compaction pass mulched plots, respectively. In the second season, the yields of no-till and compacted treatments were identical and ranged from 1.5 to 2.4 Mg ha−1. Mulching decreased grain yield by 43, 27 and 12% on compacted, no-till and ploughed plots, respectively, due to transient flooding and mechanical impedance to seedling emergence by the mulch cover. Within the unmulched treatments, ploughing increased rice yield by 71 and 35% over two compaction passes and the no-till treatments, respectively. The least bulk density and penetrometer resistance were also observed in ploughed plots.  相似文献   

13.
Autumn ridging is a modified version of the ridge tillage system. Instead of setting up ridges during the growing season, they are established in autumn and left for the winter. Previous studies have documented positive effects of autumn ridging on potato yield and we hypothesized that subsoiling could enhance these effects. To determine the effect of autumn ridging and inter-row subsoiling on potato yield and quality a field experiment was conducted on sandy soil from 2001 to 2003. Autumn ridging resulted in an average total and marketable tuber yield of 25.6 and 9.2 t ha−1, which was not significantly different from the average total and marketable yield of 25.6 and 8.9 t ha−1 with ploughing. However, autumn ridging significantly reduced the incidence of black scurf from 2.5% to 2.2%. Inter-row subsoiling in the growing season significantly increased marketable potato tuber yield from 8.4 to 9.6 t ha−1 and reduced the occurrence of malformed potatoes from 9.3% to 7.5%, irrespective of tillage treatment and irrigation level. There was no significant interaction between autumn ridging and subsoiling. The beneficial effect of subsoiling on marketable yield was driven by a 48.5% increase in the dry year of 2001. Subsoiling reduced the incidence of common scab from 7.8% to 6.9% when irrigation was reduced. It is concluded that at least three factors may modify the effects of subsoiling: Soil water status in the growing season, precipitation immediately before and after the subsoiling operation, and crop growth stage at the time of subsoiling.  相似文献   

14.
Crop residues and reduced tillage become current tendency in modifying tillage due to better water management, organic and nutrient supply and increasing crop production. This study was carried out to quantify the effect of fodder radish mulching and different tillage systems in wheat production. In 2004–2006 the field trial was set up on Luvic Chernozems derived from loess. This experiment consisted of two factors: tillage system (conventional or reduced) and mulch (with or without). The air–water properties of soil with particular focus on macropore characteristics were investigated.The tillage system and mulch application significantly influenced physical properties of investigated soil. Reduced tillage, without mouldboard plough, increased the soil density with respect to conventional tillage. However, in the upper soil layer (0–10 cm) with mulch residues the bulk density decreased and reached the similar value as those obtained at conventional tillage (1.25 g cm−3). The macroporosity of soil with conventional tillage (14.79%) was significantly higher in comparison with reduced tillage (6.55%). The mulch of fodder radish added at reduced tillage increased the macroporosity in pore diameter range of 50–500 μm. These changes referred to all shape classes: regular, irregular and elongated pores. The lowest transmission pores content (0.078 cm3 cm−3) was noticed at the reduced tillage without mulch at the 0–10 cm layer. Due to lack of differences in storage pores the tillage and mulching had no effect on both AWC (available water content) and PWC (productive water content) values. The higher value of AWC was noticed in the upper soil layer (0.198 cm3 cm−3 in average), whereas in the 10–20 cm soil layer it was 0.186 cm3 cm−3. Similar relation was recorded in PWC values, 0.165 and 0.154 cm3 cm−3, respectively. The results obtained in physical properties of soil reflected in wheat yields. The yields obtained at reduced tillage system without mulch (5.54 t ha−1) were significant lower with respect to treatment when mulch applied (6.79 t ha−1). The mulch residues did not affect yields at conventional tillage (6.53 t ha−1 without mulch and 7.00 t ha−1 with mulch). The main conclusion is that the mulching can help to avoid yield reduction in wheat production when reduced tillage is used.  相似文献   

15.
Summary In the 25-year-old vineyard of a farm near the Maremma National Park (Central Italy), replicate plots were established with a mulch of Trifolium subterraneum L. or cultivation and two levels of fertilizer. The mai objective of this research was to analyse responses by soil invertebrates and nutrients after introducing a herbaceous component into the system; the yield was also considered. The greater availability of organic substrate and the reduced cultivation as a result of green mulching increased the soil mesofauna biomass, especially detritivores. With time, a significant difference became evident between the populations of invertebrates present in the mulched plots and those in the cultivated plots. Over 2 years, most nutrients (Ca, K, P, and N) were significantly increased in the mulched plots compared to the cultivated plots. Grape yields were consistently higher in the bare plots. No significant differences were found in fertilizer effects.  相似文献   

16.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

17.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   

18.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

19.
为探求不同覆膜方式及滴灌带布设对作物产量及收获系数的影响,设置不同滴灌带间距(A1:1 m;A2:0.5 m)与覆膜方式(M1:全覆盖;M2:半膜覆盖),通过2年田间试验研究其对根区土壤水氮分布均匀度(CUw, CUN)及春玉米根冠生长及产量的影响。结果表明:膜下滴灌条件下,根区土壤含水率与其分布均匀度具有一致性;高频滴灌施肥虽提高根区土壤NO3-含量却降低其分布均匀度,表现出不一致性。提高土壤水、氮分布均匀度未显著影响作物根长密度,但增加地上部叶面积,从而降低作物根冠面积比。相比滴灌带布设,覆膜方式对春玉米产量和收获系数的影响更为显著。低频灌溉条件下,全膜覆盖处理提高春玉米根区土壤水分和NO3-含量及均匀度,其作物产量较部分覆膜处理提高37.4%;而高频灌溉下,部分覆膜处理的作物产量较全膜覆盖处理提高7.7%。当根表面积与叶面积之比(RSA/LA)趋于4时,作物产量和收获系数最高,RSA/LA过高或过低均会降低作物产量和收获系数。综合考虑作物产量、收获系数和滴灌带成本,低频灌溉下建议选择A1M1处理,高频充分灌溉条件下建议选择A1M2处理。  相似文献   

20.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号