首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blue-green algae (Òyanobacteria) have been studied in soils of specially protected natural territories of the Cis-Ural and Southern Ural regions. The species composition of the algae has been determined in water and dish cultures with fouling glasses. The investigated soils are characterized by the rich flora of bluegreen algae comprising 79 species and intraspecies taxa. Recreation loads on the territory have resulted in a drop in the species diversity and numbers of algae; their taxonomic structure is becoming simplified. Active development of algae from the Oscillatoriales order assigned to the P-form and to the typical xerophytes (species of the Oscillatoria, Phormidium, and Plectonema genera) has been registered in some anthropogenically disturbed areas.  相似文献   

2.
A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10–100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.  相似文献   

3.
The saturated hydraulic conductivity (Ks) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of Ks using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate Ks by using available soil data and fractal parameters. There were found significant correlations between Ks and fractal parameters of particles and microaggregates. Estimation of Ks was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve Ks estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of Ks. Generally, fractal parameters can be successfully used as input parameters to improve the estimation of Ks in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to Ks.  相似文献   

4.
Urbanozems (Urbic Technosols) contaminated by heavy metals and polychlorbiphenyls (Urbic Technosols Toxic) and intruzems (Urbic Technosols Toxic) were studied in Moscow; additionally, we studied recreazems (Urbic Technosols Thaptohumic) and culturozems (Urbic Technosols Pantohumic) on the territory of the Botanical Garden of Moscow State University (Aptekarskii Ogorod, the Apothecaries’ Garden). In the soils contaminated with heavy metals and oil products, the number of viable cells of bacteria decreased, whereas the content of filterable forms of bacteria increased. The taxonomic structure of saprotrophic bacterial complexes in contaminated urban soils was transformed towards an increase in the diversity of bacterial taxa atypical of natural undisturbed soils. Rhodococci (Rhodococcus genus) predominated in the soils contaminated with oil and polychlorbiphenyls, enterobacteria (Escherichia, Enterobacter, and Klebsiella genera) predominated in the soils contaminated with municipal wastes, and Arthrobacter genus was dominant in the soils contaminated with cement dust. Soils of both Botanical Gardens of Moscow State University were characterized by the high population density and specific distribution of bacteria in the profile; the structure of their saprotrophic bacterial complex had some similarity with that in the soils of more southern regions. The obtained data on the bacterial diversity of urban soils attest to considerable transformation of bacterial communities both in the contaminated urban soils and in the soils of botanical gardens.  相似文献   

5.
The population and taxonomy of actinomycetes in chestnut soils of Mongolian plains were studied. The actinomycetes identified belong to the genera Streptomyces, Micromonospora, Saccharopolyspotra, Streptosporangium, and Microbiospora. In the composition of Streptomyces, the species of sections Cinereus, Helvo-Flavus, Albus, and Imperfectus were present. The species of Imperfectus section predominated in the Streptomyces complex and amounted to 88.2%.  相似文献   

6.
The number, biomass, length of fungal mycelium, and species diversity of microscopic fungi have been studied in soils of the tundra and taiga zones in the northern part of the Kola Peninsula: Al-Fe-humus podzols (Albic Podzols), podburs (Entic Podzols), dry peaty soils (Folic Histosols), low-moor peat soils (Sapric Histosols), and soils of frost bare spots (Cryosols). The number of cultivated microscopic fungi in tundra soils varied from 8 to 328 thousand CFU/g, their biomass averaged 1.81 ± 0.19 mg/g, and the length of fungal mycelium averaged 245 ± 25 m/g. The number of micromycetes in taiga soils varied from 80 to 350 thousand CFU/g, the number of fungal propagules in some years reached 600 thousand CFU/g; the fungal biomass varied from 0.23 to 6.2 mg/g, and the length of fungal mycelium varied from 32 to 3900 m/g. Overall, 36 species of fungi belonging to 16 genera, 13 families, and 8 orders were isolated from tundra soils. The species diversity of microscopic fungi in taiga soils was significantly higher: 87 species belonging to 31 genera, 21 families, and 11 orders. Fungi from the Penicillium genus predominated in both natural zones and constituted 38–50% of the total number of isolated species. The soils of tundra and taiga zones were characterized by their own complexes of micromycetes; the similarity of their species composition was about 40%. In soils of the tundra zone, Mortierella longicollis, Penicillium melinii, P. raistrickii, and P. simplicissimum predominated; dominant fungal species in soils of the taiga zone were represented by M. longicollis, P. decumbens, P. implicatum, and Umbelopsis isabellina.  相似文献   

7.
The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.  相似文献   

8.
Mesophilic and thermotolerant actinomycetes were identified in strongly heated desert-steppe soils of Mongolia, mountainous meadow soils of the Central Caucasus, and cyanobacterial films on volcanic ash near hot springs of Kamchatka. Thermotolerant actinomycetes in these soil objects were more abundant and had a greater taxonomic diversity in comparison with mesophilic actinomycetes. Thermotolerant Streptomyces were present in all the objects, except for sample 117 from the desert-steppe soil and the cyanobacterial film on volcanic ash. Thermotolerant actinomycetes from the Micromonospora and Actinomadura genera predominated in the desert-steppe soil; representatives of the Micromonospora genus predominated in the cyanobacterial film on volcanic ash, and representatives of the Microtetraspora genus predominated in the samples of geyserite near hot springs of Kamchatka.  相似文献   

9.

Purpose

This study compared the effects of four invasive plants, namely Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, and Solidago gigantea, as well as two native species—Artemisia vulgaris, Phalaris arundinacea, and their mixture on soil physicochemical properties in a pot experiment.

Materials and methods

Plants were planted in pots in two loamy sand soils. The soils were collected from fallows located outside (fallow soil) and within river valley (valley soil) under native plant communities. Aboveground plant biomass, cover, and soil physicochemical properties such as nutrient concentrations, pH, and water holding capacity (WHC) were measured after two growing seasons. Discriminant analysis (DA) was used to identify soil variables responsible for the discrimination between plant treatments. Identified variables were further compared between treatments using one-way ANOVA followed by Tukey’s HSD test.

Results and discussion

Plant biomass, cover, and soil parameters depended on species and soil type. DA effectively separated soils under different plant species. DA on fallow soil data separated R. laciniata from all other treatments, especially I. glandulifera, native species and bare soil, along axis 1 (related mainly to exchangeable K, N-NH4, total P, N-NO3, and WHC). Large differences were found between R. laciniata and S. gigantea as indicated by axis 2 (S-SO4, exchangeable Mg, total P, exchangeable Ca, and total Mg). DA on valley soil data separated R. japonica from all other treatments, particularly S. gigantea, R. laciniata, and native mixture, along axis 1 (N-NO3, total N, S-SO4, total P, pH). Along axis 2 (N-NO3, N-NH4, Olsen P, exchangeable K, WHC), large differences were observed between I. glandulifera and all other invaders.

Conclusions

Plant influence on soil differed both among invasive species and between invasive and native species. Impatiens glandulifera had a relatively weak effect and its soil was similar to both native and bare soils. Multidirectional effects of different invaders resulted in a considerable divergence in soil characteristics. Invasion-driven changes in the soil environment may trigger feedbacks that stabilize or accelerate invasion and hinder re-colonization by native vegetation, which has implications for the restoration of invaded habitats.
  相似文献   

10.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

11.
The structure of algological and mycological complexes in Al–Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpinа, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria–algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest  相似文献   

12.
There is an increasing interest in elemental S as a S fertiliser source, but to be available to plants, elemental S has to be oxidised to sulphate. Elemental S oxidation is known to be affected by soil properties and environmental conditions, but it is still unclear if elemental S oxidation is related to the abundance and diversity of S-oxidising bacteria in cropping soils. In this study, we investigated the abundance and diversity of S-oxidising bacteria by targeting a functional gene (soxB) and assessed their relationship with elemental S oxidation in ten cropping soils. Positive correlations between soil C, N and S contents on the one hand and the abundances of soxB and 16S ribosomal deoxyribonucleic acid (rRNA) genes on the other suggested that the abundances of S oxidising bacteria in particular and of bacteria in general depend on soil C and nutrient supply. Both soxB and 16S rRNA gene abundances were significantly correlated with the oxidation rate of elemental S (P < 0.05). In addition, more than 80% of the variation in the oxidation rate of elemental S could be explained by the combination of soxB or 16S rRNA gene abundances and soil pH, suggesting that pH not only affected bacterial abundances but also their activity during elemental S oxidation. Clone libraries constructed with the soxB primers showed genera belonging to Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria and Actinobacteria. The phylogenetic diversity and relative distribution of soxB clones revealed great differences across soils. However, no direct linkage was found between the diversity of S-oxidising bacteria and elemental S oxidation rate.  相似文献   

13.
Antibiotics are often misused or overused, resulting in large residue inputs in the environment. Electricity and antibiotics were regarded as potentially important factors, which impact on the microbial community during treatment of antibiotics in three-dimensional biofilm-electrode reactors (3D-BERs). Unfortunately, only a few studies have been reported yet. Four 3D-BERs and one 3D-BR (reactor with biological sludge and no voltage) were designed to assess the effect of low current, sulfamethoxazole (SMX), and tetracycline (TC) on microbial populations. The 3D-BERs achieved excellent removal efficiencies of 72.20–93.52 and 82.61–95.80% for SMX and TC, respectively. Microorganisms were classified into 58 phyla, 125 classes, 166 orders, 187 families, and 220 genera. Proteobacteria held the overwhelming predominance, followed by Bacteroidetes, Chloroflexi, Actinobacteria, Verrucomicrobia, Firmicutes, and Acidobacteria. The 3D-BERs achieved higher richness of microbial composition compared with the 3D-BR. Microbial communities and relative abundance at the phyla level were affected by low current. The microbial communities in the 3D-BERs were similar at the genus level, even with different antibiotic concentrations. However, the relative abundances and compositions of the microbial communities decreased during the treatment of antibiotics. To increase the performance of 3D-BERs, the function of microorganisms should be investigated in future studies.  相似文献   

14.

Purpose

This work investigated changes in priming effects and the taxonomy of soil microbial communities after being amended with plant feedstock and its corresponding biochar.

Materials and methods

A soil incubation was conducted for 180 days to monitor the mineralization and evolution of soil-primed C after addition of maize and its biochar pyrolysed at 450 °C. Responses of individual microbial taxa were identified and compared using the next-generation sequencing method.

Results and discussion

Cumulative CO2 showed similar trends but different magnitudes in soil supplied with feedstock and its biochar. Feedstock addition resulted in a positive priming effect of 1999 mg C kg?1 soil (+253.7 %) while biochar gave negative primed C of ?872.1 mg C kg?1 soil (?254.3 %). Linear relationships between mineralized material and mineralized soil C were detected. Most priming occurred in the first 15 days, indicating co-metabolism. Differences in priming may be explained by differences in properties of plant material, especially the water-extractable organic C. Predominant phyla were affiliated to Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Zygomycota, Euryarchaeota, and Thaumarchaeota during decomposition. Cluster analysis resulted in separate phylogenetic grouping of feedstock and biochar. Bacteria (Acidobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes), fungi (Ascomycota), and archaea (Euryarchaeota) were closely correlated to primed soil C (R 2?=??0.98, ?0.99, 0.84, 0.81, 0.91, and 0.91, respectively).

Conclusions

Quality of plant materials (especially labile C) shifted microbial community (specific microbial taxa) responses, resulting in a distinctive priming intensity, giving a better understanding of the functional role of soil microbial community as an important driver of priming effect.
  相似文献   

15.

Purpose

Rhizosphere soil bacterial communities are crucial to plant growth, health, and stress resistance. In order to detect how bacterial communities associated with the rhizosphere of phylogenetically related plant species vary in terms of composition, function, and diversity, we investigated the rhizosphere bacterial community structure of two perennial shrub species, Caragana jubata and Caragana roborovskyi, under natural field conditions in northwest China and analyzed the influence of soil properties and environmental factors.

Materials and methods

Eighteen root samples, eight for C. jubata, and ten for C. roborovskyi, along with any adherent soil particles, were collected from multiple sites in northwest China. The rhizosphere soil was washed from the roots, and bacterial communities were analyzed using Illumina MiSeq sequencing of 16S rRNA gene amplicons. Then, α-diversity and β-diversity were calculated using QIIME.

Results and discussion

Across species, Proteobacteria (29 %), Actinobacteria (15 %), Chloroflexi (10 %), Acidobacteria (10 %), Bacteroidetes (8 %), Firmicutes (8 %), Planctomycetes (7 %), Gemmatimonadetes (4 %), and Verrucomicrobia (3 %) were the most abundant phyla in the rhizosphere of C. jubata and C. roborovskyi. However, principal co-ordinates analysis indicated strong interspecific patterns of bacterial rhizosphere communities. Further, the richness of Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, Firmicutes, and Nitrospirae was significantly higher in the rhizosphere of C. jubata compared with C. roborovskyi, while the opposite was found for Actinobacteria and Cyanobacteria. However, the Shannon index showed no significant difference in α-diversity between C. jubata and C. roborovskyi. Distance-based redundancy analysis indicated that soil properties and environmental factors exerted strong influences on the structure of the rhizosphere bacterial community and explained 47 and 46 % of community variances between samples, respectively.

Conclusions

Our results showed strong interspecific clustering of the bacterial rhizosphere communities of C. roborovskyi and C. jubata. Altitude explained most of the variation in the composition of bacterial rhizosphere communities of C. roborovskyi and C. jubata, followed by soil pH, water content, organic matter content, total nitrogen content, and mean annual rainfall.
  相似文献   

16.
General ecological and taxonomic characteristics of cyanobacterial–algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial–algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial–algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.  相似文献   

17.

Purpose

The presence of high concentrations of trace elements (TEs) in mine soils like those in the Sierra Minera of La Unión-Cartagena (SE Spain) limits the development of a vegetation cover on such sites, and pollution dispersion by water and wind erosion represents a serious risk for the surrounding ecosystems. The aim of this study was to evaluate different phytostabilisation procedures based on the co-culture of a legume (Bituminaria bituminosa) and a high-biomass (Piptatherum miliaceum) species for this type of soils.

Materials and methods

A pot experiment was carried out where B. bituminosa was tested as a soil pre-treatment strategy. Five different procedures were followed to study the growth stimulation or competition of both species in a contaminated soil from the Sierra Minera: (i) sowing of P. miliaceum without B. bituminosa (control treatment), (ii) sowing of P. miliaceum for co-cultivation of both species, (iii) sowing of P. miliaceum and co-cultivation of both species in soil with compost, (iv) harvesting and elimination of the aerial part of the plants before sowing of P. miliaceum and (v) harvesting and incorporation to the soil of the aerial part of B. bituminosa before sowing of P. miliaceum.

Results and discussion

The results showed that the co-culture of both species favoured the growth of P. miliaceum, whilst incorporating the aerial part of the legume to the soil increased nitrogen concentration in P. miliaceum but reduced its growth. The use of compost improved both the growth and N uptake of P. miliaceum and did not inhibit nodulation in B. bituminosa. TE extractability in the soils and accumulation in the plants were rather low and very little affected by the addition of the amendments or by co-culture of species.

Conclusions

Nitrogen availability plays an important role in P. miliaceum growth in TE-contaminated mine soils. The addition of compost together with legume cultivation is proposed as an effective combination for the cultivation of P. miliaceum in these soils, as both plant growth and soil conditions were improved following this procedure.
  相似文献   

18.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

19.

Purpose

Soils formed in metallic mines and serpentinite quarries, among other unfavourable features, have high levels of heavy metals. They can release into the environment causing surface and subsurface water contamination, uptake by plants, their accumulation in the food chain and adverse effects on living organisms. In this work, we studied the magnitude of the soils’ toxic effects not only on spontaneous plants but also on two species with phytoremediation potential.

Materials and methods

Several soils from two different exploitations were selected: a lead and zinc mine and a serpentinite quarry. Soils were characterized, and the pseudo-total and extractable contents of Co, Cr and Ni in soils from a serpentinite quarry were determined. The Cd, Pb and Zn pseudo-total and extractable contents were determined in soils developed in the Pb/Zn abandoned mine. Using a biotest, the chronic toxicity of the soil samples on higher plants was determined. Festuca ovina L., Cytisus scoparius (L.) Link., Sinapis alba L. and Brassica juncea L. were selected, the first two because they are spontaneous plants in the study areas and the last two because they have heavy metal phytoremediation potential.

Results and discussion

Pseudo-total contents of Co, Cr and Ni in the serpentinite quarry soils and of Zn, Pb and Cd in the Zn/Pb mine soils exceed generic reference levels. CaCl2 is the reactant that extracts the highest proportion of Co, Cr and Ni in the quarry soils and EDTA the largest proportion of Pb Zn and Cd content in the mine soils. The germination index values based on seed germination and root elongation bioassays revealed increasing plant sensitivity to the mine soils in the following order: B. juncea?<?S. alba?<?F. ovina?<?C. scoparius. The wide range of GI values indicates that the response of test plants to soil heavy metals depended on their concentrations and soil characteristics, especially pH and organic matter content.

Conclusions

The pollution index indicates severe Cd, Pb and Zn contamination in the mine soils, as well as high Cr and Ni and moderate Co contamination in the serpentinite quarry soils. The performed biotests were suitable for identifying toxic soils and showed that the studied soils are toxic to the spontaneous plants, more to C. scoparius than to F. ovina. They also indicate that the mine soils are more toxic than the quarry soils for both species.
  相似文献   

20.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号