首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profiles of vertical 137Cs distribution in alluvial meadow soils on the low and medium levels of the Lokna River floodplain (central part of the Plavsk radioactive spot in Tula oblast) 28 years after the Chernobyl fallout have been studied. A significant increase in the 137Cs pool is revealed on the low floodplain areas compared to the soils of interfluves due to the accumulation of alluvium, which hampers the reduction of the total radionuclide pool in alluvial soils because of radioactive decay. The rate of alluvium accumulation in the soil on the medium floodplain level is lower by three times on average. An imitation prognostic model has been developed, which considers the flooding and climatic conditions in the region under study. Numerical experiments have quantitatively confirmed the deciding role of low-mobile forms in the migration of maximum 137Cs content along the soil profile in the absence of manifested erosion–accumulation processes.  相似文献   

2.
We investigated changes in the radiocesium concentration in a blueberry (Vaccinium virgatum Aiton) orchard in Fukushima prefecture to clarify the radiocesium contamination for 3 years after the Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident occurred in mid-March 2011. In the aboveground part of blueberry bushes, the concentrations of radiocesium in branches that were directly affected by radioactive fallout were the highest among the samples investigated, and the concentrations in fruits were the lowest. The concentration of radiocesium decreased exponentially in the fruits and leaves over 3 years. The radiocesium concentrations in soils were higher in the surface layer. The amount of radiocesium in organic matter on the soil surface under the canopy greatly decreased from 2011 to 2012. The transfer factor of the radiocesium from soil to blueberry fruits decreased annually. These results suggest that radiocesium adhered directly to the aboveground organs of blueberry bushes in March 2011, and it is possible that the accumulation of radiocesium in fruits is mainly due to radiocesium transfer from the branches and trunk to fruits for several years after the nuclear power plant accident.  相似文献   

3.
The role of the mineralogy of the clay fraction and the physicochemical properties of alluvial soils in the floodplain of the Iput River and its tributary the Buldynka River (in the region of the settlement of Starye Bobovichi in Bryansk oblast) in the distribution and immobilization of radioactive isotope 137Cs from the atmospheric fallout after the Chernobyl accident was studied. The soils had a sandy texture; a significant variation in the content of amorphous iron oxides (0.1–0.77%) and labile manganese (11.2–193 mg/kg), the cation exchange capacity (6.1–54.2 meq/100 g soil), and the base saturation (29–100%) was common; an appreciable content of X-ray amorphous mineral substances in the clay fraction (<1 μm) enriched with organic carbon (7.7–13.1%); the predominance of trioctahedral hydromicas (Me=50%) in the clay fraction; and the presence of fine-disperse quartz and lepidocrocite. The specific activity of the 137Cs in the clay fraction of the moderately and strongly contaminated layers increased with the increasing portion of smectite formations and (or) hydromicas. On the whole, the presence of the clay fraction favored a decrease in the 137Cs mobility (the correlation between its content and that of exchangeable cesium was r=?0.608, n=17). However, the portion of exchangeable radiocesium (extracted with 1 M CH3COONH4, 1:10) had a tendency toward an increase with increasing content of hydromicas in the clay fraction. Thus, the minerals of this group were a potential source of exchangeable 137Cs in the soils. The significant role of amorphous and mobile iron forms in the immobilization and migration of radiocesium in the secondary contaminated horizons of the alluvial soils was revealed.  相似文献   

4.
We investigated changes in radiocesium concentrations in a Japanese chestnut (Castanea crenata Sieold &; Zucc.) orchard in Ibaraki prefecture for 3 years after the Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in March 2011. The radiocesium concentrations in the aboveground organs of Japanese chestnut trees were almost the same, while the concentration in the roots was the lowest among all the organs investigated. The concentration of radiocesium decreased exponentially for 3 years in nuts, leaves and current shoots. The radiocesium concentrations in soils were higher in the surface layer, and the trend of an annual decrease in radiocesium in the soils was similar to that of the natural decay of radiocesium. The transfer factor of radiocesium from soils to nuts of Japanese chestnut decreased annually. These results suggest that radiocesium adhered directly to the aboveground organs of Japanese chestnut trees in March 2011, and that the accumulation of radiocesium in nuts is mainly due to radiocesium transfer from the branches and trunk to nuts several years after the nuclear power plant accident.  相似文献   

5.
The results of the study are presented on the distribution and migration of radiocesium in mountainous (580–620 m a.s.l.) landscapes in the northeast of Honshu Island (Tohoku Region, Miyagi Prefecture) subjected to radioactive contamination after the nuclear accident at Fukushima-1 NPP. In July 2014, the average contamination density with radiocesium (134Сs and 137Сs) over the territory (150 km to the northwest from NPP) was equal to 16 kBq/m2. This contamination is estimated at the acceptable level according to both Japanese and Russian standards and legislation. Three years after the accident, radiocesium is found to be unevenly distributed by the biogeocenosis components, i.e. 45% in litter, 40% in plants, 10% in soil, and 5% in roots. As for the distribution of total radiocesium (Cs tot = 134Сs + 137Сs) by the profile of volcanic podzolic-ocherous soil (Dystric Aluandic Andosols), its maximal content (about 80%) was found in the surface layer (0–2.5 cm), with the specific activity ranging from 250 to 10070 Bq/kg and sharply decreasing with the depth. Radiocesium amount in the soils of forest ecosystems was on average by 20% higher than in meadow ecosystems. Accumulation of radionuclides in soils of lower and middle parts of a slope with an insignificant vertical migration was found to be the most general regularity. The air dose rate did not exceed the maximal permissible level, and the snow cover acted as an absorbing and scattering screen.  相似文献   

6.
Several series of well-developed paleosols of different ages have been examined on the Moskva River floodplain. In the beginning of the Holocene, forest-steppe biomes were widespread in this area, and dark-humus (Black) soils with stable humate humus and without features of textural differentiation predominated on the floodplain. The presence of meadow-steppe vegetation communities during this period is confirmed by the results of palynological and anthracological analyses. The lower paleosol in section RANIS 2 is represented by the deep humus horizon with 14C dates from 5500 to 8400 BP and the carbonate-accumulative horizon; it also contains large and deep tunnels of burrowing animals typical of chernozems. Wood charcoal is absent, and pollen of Artemisia and Chenopodium species predominates. Paleosols of the second half of the Holocene are represented by gray-humus and soddy-podzolic soils (Luvisols). In these soils and in the alluvial sediments, beginning from the Subboreal period, pollen of trees predominates; there are abundant charcoal of spruce and burnt spruce needles. In that time, forest-steppe and broadleaved forest biomes on the floodplain were replaced by southern taiga biomes. The second half of the Holocene is also specified by the human impacts on the local landscapes. Palynological and anthracological data attest to the large-scale burning of forests for pastures in the Bronze Age and, later, for cropland. The paleosol of the Iron Age is enriched in humus. It contains tunnels of burrowing animals related to the stage of anthropogenic meadows. It also contains pyrogenic calcite. The recent centuries have been characterized by extremely high floods triggered by the human activity; they have been accompanied by the fast accumulation of coarse-textured alluvial sediments and the formation of weakly developed alluvial soils.  相似文献   

7.
Following the accident at the Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP), radiocesium (134Cs + 137Cs) concentrations in deciduous mature fruits were determined in orchards in the northern area of Fukushima Prefecture. At the time of the nuclear accident, most deciduous fruit trees were in the dormant stage prior to bud burst. To evaluate the relationship between radiocesium deposition in the soil and fruit contamination, radiocesium concentrations were measured from the 5-cm topsoil and from six fruit species across 17 orchards in 2011. The vertical distribution of radiocesium in the topsoil (0–30 cm in depth) and its spatial distribution in the 5-cm topsoil underlying the tree canopy of a peach, Prunus persica (L.) Batsh, orchard (“Akatsuki” cultivar) were also investigated. Significant correlations between the radiocesium concentration in the mature fruit and that in the 5-cm topsoil layer were observed for the 17 orchards as well as for the trees of the peach orchard. However, 93% of the 137Cs found in the 30-cm soil core was retained within the top 3 cm of the soil in the peach orchard. Considering the profile of the root of this deciduous fruit tree, we assumed a negligible level of radiocesium uptake via the roots. However, the possibility of inward migration via the bark was undeniable, because some radiocesium adhered to the tree canopy before bud burst while depositing on the soil surface. Additionally, transfer factors for peach and grape, hybrid of Vitis labrusca L. and Vitis vinifera L., from young, uncontaminated trees cultivated with contaminated soil were lower than those previously reported.  相似文献   

8.
Structural changes in the 137Cs contamination fields in natural and agroecosystems of the northern forest steppe (the remote zone of the Chernobyl accident) were studied. It was shown that the lateral and vertical distribution of 137Cs in soils of different biogeocenoses depends on the features of functioning biogeocenoses and the spatial variation of the initial fallout. The effect of biogeocenosis on the spatial variation of the contaminant distribution increases with time. At present, the variation of primary distribution in soils of agrocenoses is changing. The soils of forest biogeocenoses have retained the features of primary distribution, particularly in the upper 0-to 5-cm sublitter layer. The 137Cs penetration depth is greatest in the soils of layland and functioning agrocenosis and least in the soils of forest biogeocenoses.  相似文献   

9.
Five years have passed since the accident at Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station that was triggered by the Great East Japan Earthquake on 11 March 2011. Severe damage to agriculture and the environment is still of great concern in Japanese society. We review the contamination status of agricultural products and soils, decontamination efforts and countermeasures to reduce radiocesium concentration in soil and crops, as well as the responses of Japanese ministries. Since rice is an important staple food for Japanese, the impact of radiocesium on rice (Oryza sativa L.) and paddy fields has been extensively investigated since the accident, and, therefore, issues concerning rice receive considerable attention in this review.  相似文献   

10.
The vertical distribution and bioavailability of 137Cs in Histosols and mineral soils with different physicochemical properties from the southeast of Bavaria (Germany) more than ten years after the Chernobyl accident were the focus of this study. The vertical distribution of 137Cs was low in the investigated soils. About 85–98 % of the total 137Cs was located in the upper 10 cm of the mineral soils. Slightly higher 137Cs percentages were observed in deeper soil layers of the peat soils. Although the organic matter is assumed to enhance 137Cs mobility in soils, 137Cs was also located in the upper 10 cm of the peat soils (73–85 %). The highest 137Cs‐activities were found in the humus layers of forest soils, where 45–93 % of the total 137Cs soil inventories were observed. To determine the bioavailability of radiocesium, the soil‐to‐plant transfer of 137Cs and additionally added 134Cs was investigated under controlled conditions. The results revealed that the 134+137Cs soil‐to‐plant transfer factors as well as the percentages of NH4‐exchangeable 134+137Cs were much higher for the peat soils and humus layers than for the mineral soils. Nevertheless, the migration of 137Cs from the humus layers to the underlying soils was low. Considering the high bioavailability and low migration of radiocesium in the humus layers, it is suggested that radiocesium is involved in a shortcut element cycle in the system humus layer‐plant uptake‐litter. Furthermore, the organic matter has to be taken into account for radiocesium immobilization.  相似文献   

11.
A refined imitational model of the seasonal dynamics of radiocesium in soils of forest ecosystems is suggested. This model has been used to predict the dynamics of biologically available and unavailable forms of radiocesium in an artificially contaminated sandy soddy-podzolic soil of an oak ecosystem for a period of 50 years.  相似文献   

12.
ABSTRACT

Following the Fukushima Daiichi Nuclear Power Plant accident of 2011, the potential for radiocesium transfer from contaminated soils, such as Andosols, to agricultural crops became a significant concern. Andosols account for up to 70% of paddy soils in the northern and northwest areas of Tochigi Prefecture, where the radiocesium concentration is 1000 Bq kg?1 or greater in the soil of some fields. The present study was carried out in order to determine the phytoavailability of radiocesium in Andosols by comparing it with that of gray lowland soils in the first 3 years following the accident. The transfer factor (TF) tended to be higher in Andosols than in gray lowland soils, leading to higher radiocesium concentrations in brown rice grown in Andosols. The exchangeable potassium (Ex-K2O) in Andosols was highly and negatively correlated with TF, followed by clay. The Ex-K2O value was positively correlated with the clay/total carbon (T-C) value, suggesting that a high T–C ratio could weaken K2O adsorption on clay mineral sites; hence, the low clay/T-C values can partially explain the relatively large TF values of Andosols. Samples with Ex-K2O contents less than 200 mg kg?1 and with low clay/T-C values showed striking decreases in TF values from 2011 to 2012. However, the decrease from 2012 to 2013 was quite small; radiocesium in these samples was potentially available for rice uptake for a long time, likely due to the reversible adsorption and fixation characteristics of allophane. Most gray lowland soil samples showed very low TF values over the 3 years of the study, except for those with TF values greater than 0.1 due to low Ex-K2O and clay contents; the geometric mean (GM) value of TF was below 0.01 in 2012. The extraction of exchangeable radiocesium (Ex-Cs) with a 1 mol L?1 ammonium acetate solution may not be an appropriate method for explaining the variability in radiocesium TF in Andosols. This is because the Ex-Cs value was significantly correlated with Ex-K2O in Andosols, but not in gray lowland soils, indicating that Ex-K2O explained this variability in relation to Ex-Cs.  相似文献   

13.
We investigated the distribution of radiocesium (134Cs and 137Cs) in three orchards in Tsukuba, 170 km southwest from the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant 9 months after the accident. The radiocesium was distributed mainly in the surface soil. The distribution of radiocesium differed between deciduous and evergreen plants. In deciduous blueberry (Vaccinium virgatum Aiton), the concentration was high in the old branches because the bushes had no leaves at the time of the accident. Therefore, the concentration per bush was greater in unpruned than in pruned bushes. More radiocesium was present in the trunk and rootstock of each bush, although the concentration was low. In evergreen Satsuma mandarin (Citrus unshiu Marcow), the concentration was high in the leaves, and it was higher in old leaves that expanded before the accident than in new leaves that expanded after the accident, because the old leaves were contaminated by direct deposition of the fallout. However, the total radiocesium was higher in the new leaves than in the old leaves because of the greater amount of new leaves. The radiocesium concentration in fruits was higher in trees with fewer fruits than in trees with many fruits, but the total radiocesium in fruits was higher in trees with many fruits.  相似文献   

14.
The main regularities of soil development in the Selenga delta area of the Baikal region have been studied. The terraces of Lake Baikal and the Selenga River are occupied by soddy forest and gray forest soils. Intrazonal saturated and calcareous alluvial soils are formed on the Selenga floodplain and delta. Soddy soils of pine forests occur on natural levees along the streams; hollows and depressions are occupied by swampy soils.  相似文献   

15.
The lithostratigraphic, radiocarbon, macro- and micromorphological, particle-size, and other analyses have been applied to reconstruct the Holocene evolution of soils and landscapes on the high- and mediumlevel floodplains of the Nepryadva River in the Kulikovo field area. It is shown that the soils buried within the thickness of alluvial sediments on the high- and medium-level floodplains were formed in different times and had their own evolution patterns; the polygenetic nature of these soils is demonstrated. The development of floodplain landscapes in the Holocene was affected by the long-term climatic fluctuations. The bed of the high floodplain was formed during the Late Valdai glacial stage. The beginning of the development of an intricate sequence of buried soils and sediments of the floodplain dates back to the Boreal period. This pedosedimentary sequence in the studied area can be referred to as the Kulikovo sequence. In the course of its formation, the pedogenic stages with a predominant development of soils alternated with the lithogenic stages of active alluviation and deposition of colluvial deposits from adjacent slopes on the floodplain.  相似文献   

16.
The patterns of concentration of the Cs-137 derived from the Chernobyl accident were analysed in a series of vertical profiles ofSphagnum collected at two peatlands in the southern Alps. The peak concentrations of the Chernobyl radiocesium were found in segments ofSphagnum located at different distances from the growing apex, probably corresponding to the plant tissues produced in the 1986 vegetation season. This indicated that the growth rates ofSphagnum are subject to considerable variations not only between species, but also between years and even between individuals of the same species when growing in different microhabitats at the same site. However, the concentrations of the Chernobyl-derived radiocesium are high also in theSphagnum segments produced after 1986. This was due to a continuous translocation of Cs-137 towards the capitulum, probably determined by the chemical similarity between cesium and potassium. Although the two sites investigated received nearly the same amounts of rainfall in the two-week period following the arrival of the Chernobyl plume, the average concentrations of radiocesium in allSphagnum species were significantly higher at one of them, presumably because the fall-out deposition was conditioned by a number of meteorological factors besides precipitation.  相似文献   

17.
Abstract

Leaf composting is an essential technique in organic farming; it improves the physicochemical properties of soil such as texture, structure, water-holding capacity, and nutrient content. However, the use of leaf compost is prohibited in the Fukushima and Ibaraki prefectures because large areas of the Fukushima and Ibaraki forests were contaminated by radiocesium (134Cs and 137Cs) after the Fukushima Daiichi nuclear power plant (FDNPP) accident. We examined the changes in radio Cs concentration and other physicochemical properties in leaf compost made from Ibaraki and Fukushima forest leaves. At the beginning of the composting process, rice bran-treated compost showed 25%–32% lower radio Cs concentration than the leaf-only compost; however, 2?years after composting, the difference in concentration between these treatments had increased to 35%–63%. Moreover, the incorporation of rice bran significantly increased the compost temperature, moisture, electrical conductivity, bulk density, and total nitrogen during the composting process. Plant uptake of radio Cs was significantly lower in rice bran-treated compost than the leaf-only compost at each level of application; furthermore, the levels of soil radio Cs showed a similar trend. Potassium application combined with leaf compost resulted in a significant reduction of radio Cs plant uptake. Our data revealed that adding rice bran to leaves positively affects radio Cs reduction in leaf compost and also reduces its uptake by plants. Our findings may improve the management of leaf composting after the FDNPP accident.  相似文献   

18.
A new approach for determining the trend of changes in the rate of degradation of arable soils is suggested. It is based on the assessment of volumes of soil material eroded from arable fields and accumulated on the bottoms of first-order valleys during two time intervals: 1954(1963)?1986 and 1986?2015. For dating of this material, 137Cs of global fallout and Chernobyl fallout are used. This approach in combination with a detailed morphometric characterization of the valley bottoms, the pathways of sediment transport from the fields, and the morphology and composition of the sediments accumulated on the bottoms makes it possible to give reliable estimates of the volumes of soil loss from tilled slopes. The benchmarks of 1963 and 1986 are related to maximum 137Cs fallout during nuclear bomb testing and immediately after the Chernobyl accident. As an example, the rates of formation of stratozems (stratified aggraded soils formed due to accumulation of eroded sediments) within the first-order catchment of the Veduga River basin (Voronezh oblast, Russia) are analyzed. The results of the study indicate that the mean annual rate of soil loss from arable fields of the catchment in 1986–2015 was at least two times lower than that in the preceding period from 1954 (the beginning of the global fallout) to 1986 (the Chernobyl accident).  相似文献   

19.
Horizontal distribution of radiocesium in forest soils under spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) The horizontal distribution of radiocesium in the soil under the canopy of several beeches and spruces was examined. At the base of spruces mean 137Cs activities are about twice, and under beeches 5 to 15 times as high as under more distant parts of the canopy. Between 80 and 95% of the 137Cs activity can be attributed to the Chernobyl fallout, the rest to the global fallout from weapons testing in the 1950s and 1960s. While the 137Cs accumulation at the base of spruces can be explained by litter fall and remains of bark, the up to 30 times increased values at the base of beeches are explained by stemflow. Mean activity of radiocesium in the bark of spruce (0,62 Bq/g dry weight) is about twice as high as in the bark of a beech. This can be explained by considering that in contrast to beeches the 137Cs activity in the soil under spruces is corresponding to some extend with the main rooting zone. Thus, we expect an increased uptake by the roots of this species and a subsequent transfer to the bark.  相似文献   

20.
The distribution patterns of the chemical elements in the bottom sediments and alluvial soils of the Urkan River valley (one of the largest tributaries of the Zeya River, a tributary of the Amur River) have been examined. It is shown that the concentrations of the chemical elements in the bottom sediments generally correspond to those in the bedrocks composing the river catchment and in the upper part of the continental earth’s crust, though the accumulation of most of the elements in the bottom sediments is somewhat lower. The composition of the microelements in the alluvial soils is mainly determined by the composition of the microelements in the bottom sediments. The alluvial soils are somewhat enriched in Mn, Zn, Co, and Cu, which is related to the biological accumulation of these elements entering the trophic chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号