首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
基于实测甩负荷的水轮机力矩特性曲线拟合   总被引:1,自引:1,他引:0  
水电站过渡过程计算中,水轮机特性曲线对计算结果有着十分重要的影响。由于水轮机模型试验得到的综合特性曲线仅包含了水轮机工作的相对高效率区、导叶大开度下水轮机特性,无法满足甩负荷过渡过程计算的要求,需要对特性曲线进行拓展得到水轮机在导叶小开度区、低效率区及制动工况区的特性。目前对于水轮机特性曲线的处理主要根据经验和数学方法对力矩特性进行拓展和拟合,其仿真结果与实测结果存在较大的差异,无法满足对甩负荷过渡过程精确仿真的要求。虽然通过内特性或CFD的方法能够增加水轮机特性的仿真精度,但是需要能够获得详细及准确的水轮机结构及尺寸参数,实际情况中这些参数往往无法准确获取,不利于工程应用。该文基于真机甩负荷实测结果对水轮机力矩特性曲线的拟合进行了研究,通过甩负荷实测数据得到导叶零开度线下的水轮机力矩特性,结合最小二乘法对整个力矩特性曲线进行拓展和拟合。将利用该处理方法得到的水轮机力矩特性曲线与传统处理方法得到的结果进行对比,结果表明,在导叶大开度、高效率区及水轮机正常运行范围内2种特性曲线基本重合,而在导叶小开度下2种特性曲线存在较大的差异,原因在于本文中零导叶开度线上的力矩特性通过甩负荷实测结果得出其更加精确,零导叶开度线力矩特性的差异导致了特性曲线拟合中边界条件的不同。利用本文处理方法得到的特性曲线对不同调速器参数下的甩负荷过渡过程进行了计算,并分析了调速器参数对甩负荷过渡过程的影响,计算结果表明,调速器参数对甩负荷中导叶开度的快关过程和机组转速的上升下降过程无影响,其主要影响机组转速接近稳态后的调节过程,调速器参数设置不当会造成调节系统的调节品质变差,甚至会导致水轮机调节过程失稳。分别采用2种特性曲线对水电机组甩负荷过渡过程进行仿真,并将仿真结果与实测结果进行对比,结果表明,相比传统处理方法得到的特性曲线,本文处理方法得到的特性曲线能更准确反映机组在导叶小开度下的力矩特性,机组频率仿真结果中,传统特性曲线计算结果与实测结果最大偏差达到了15.74%,本文特性曲线计算结果与实测结果最大偏差为1.05%;导叶开度仿真结果中,传统特性曲线计算结果与实测结果最大偏差为36.07%,本文特性曲线计算结果与实测结果最大偏差为9.74%。通过对比可以看出,本文所提出的特性曲线拟合方法可大大提高甩负荷过渡过程计算精度,能够有效指导水电机组的安全运行。  相似文献   

2.
采用数值计算的方法,基于Navier-Stokes方程κ-ε紊流模型,研究了轴流转桨式水轮机内部的流动特性。通过分析水流自活动导叶出口到转轮进口的轴向速度,以及速度矩在不同工况下的分布规律,说明活动导叶开度不同时流道转弯对转轮叶片进口速度分布产生一定的影响:其中小流量工况时,流道转弯对轴向速度起到改变其分布规律的作用,对速度矩起增加的作用,在大流量工况时流道转弯对轴向速度起平衡作用,对速度矩起到减小的作用。这些研究对转轮进口处的位置确定,提供了参考,达到优化叶片提高水轮机效率的作用。  相似文献   

3.
贯流式水轮机是农村小水电电网中的重要组成部分,其低水头、大流量的特点,易导致电站机组效率低下、出力降低。而贯流式水轮机运行中的最优运行问题很少引起学者关注,目前最优工况的研究仅仅局限于某点或线。该文从转轮水力损失的角度,理论上分析了影响贯流式水轮机效率的翼型阻力损失、端部损失与撞击损失,依据现场实际导叶与桨叶翼型,在定水头、定桨叶方式下,通过改变转轮进口水流角,对转轮进、出口速度三角形进行计算,从能量角度,进行工况优化,得到转轮10°工况下导叶在53.9°~58.8°的最优特性区域,效率可提高约3%~8%。利用数值仿真技术,对其工况做相应的数值仿真,并进行流场分析,在此基础上,进行真机试验,结果与理论分析相符,与数值仿真计算的误差小于2%,采用此方法对电站机组的全工况进行了计算,全工况范围内进行区域工况优化,得到转轮在7°~42°,导叶在0~78°的最优特性曲线,通过一段时间运行,数据显示机组的能量特性与稳定性效果比较理想。  相似文献   

4.
抽蓄机组在低水头起动时易进入其全特性曲线的反S不稳定区,从而导致机组并网失败,严重影响机组的安全稳定运行。其中机组内部复杂流动演变导致的剧烈压力脉动是影响机组动态特性的关键。该研究基于计算流体动力学(computational fluid dynamics,CFD)数值模拟方法对水泵水轮机低水头起动过程进行研究,重点分析了导叶与尾水管区域的压力脉动特性及产生原因。结果表明:机组起动过程中,无叶区时均压力幅值是固定导叶与活动导叶间的6倍,且时均压力幅值在无叶区沿周向分布不均。动静干涉主导了无叶区时均压力和脉动压力的变化,而在上游固定导叶与活动导叶间的动静干涉作用主要影响的是压力脉动幅值。尾水管直锥段压力脉动在机组起动过程不同阶段表现出不同的波动特征,PID(proportion integration differentiation)调节阶段压力波动较为明显。通过内部流动对比发现,活动导叶开启会引起无叶区水流速度的分布变化和波动,活动导叶小开度下转轮进口和无叶区存在明显的大尺度旋涡,这些和动静干涉联合作用是导致无叶区时均压力和脉动压力波动幅值高的原因。尾水管涡带在起动过程经历了从边条状涡...  相似文献   

5.
不完全蜗壳轴流式水轮机大流量工况性能分析   总被引:1,自引:1,他引:0  
为了研究大流量工况下,轴流式水轮机机组振动严重、效率锐减、空蚀破坏严重、叶片产生裂纹等问题产生的原因,该文以某不完全蜗壳轴流转浆式水轮机模型为研究对象,对其最优工况及大流量工况进行了全流道数值分析,以揭示引起大流量工况下水轮机运行性能变差的主要原因,结果表明:水流惯性使大部分流量直接由非蜗形区域进入导水机构,蜗形区域过流量偏少,蜗壳内流场沿圆周方向分布的轴对称性变差,并且将这些不均匀性传递向下游;水流沿导叶高度方向分配不均匀,蜗形段的活动导叶叶道内产生叶道涡,形成圆周方向不均匀的非稳定源,并对下游转轮产生影响;蜗壳及导叶内的不均匀水力要素传递向下游,使得转轮内不同位置的叶片所受水力矩产生差异,转轮叶片在旋转过程中受交替动应力作用而容易产生裂纹和破坏。因此在大流量工况下,这些水力不稳定因素不仅限制了水轮机的运行范围,而且对机组的稳定性及强度产生威胁。该研究结果对轴流水轮机的水力设计以及大流量工况下的实际运行具有一定的参考意义。  相似文献   

6.
与常规的水泵或水轮机转轮相比,可逆式水泵水轮机转轮要兼顾水泵和水轮机2种工况下的性能,设计要求高、难度大,且影响转轮性能的设计参数较多,很难通过设计-修正-试验的方法获得2种运行工况下性能均优的可逆式水泵水轮机转轮。针对这些困难,该文将三维反问题设计、CFD计算与多目标优化策略相结合,构建了可逆式水泵水轮机转轮的优化设计系统。该设计系统不仅可缩短转轮设计周期,且能对多个运行工况下的多个目标同时进行优化。利用该优化设计系统,以叶片载荷和叶片倾角为优化变量,以水泵设计工况点的转轮效率和水轮机额定工况点的转轮效率为优化目标,以水泵设计工况的扬程为约束,对某一抽水蓄能电站的水泵水轮机转轮进行了优化设计。结果表明利用该优化设计系统能够设计出在水泵和水轮机2种运行工况下转轮水力效率均高于95%的可逆式水泵水轮机转轮,其中水泵设计工况下转轮效率提高了0.15%,水轮机额定工况下转轮效率提高了2%,表明了该优化设计系统在提高可逆式水泵水轮机转轮性能方面的可行性和有效性。该研究可为水力机械,包括水泵水轮机、常规水轮机、水泵的设计开发提供参考。  相似文献   

7.
双向潜水贯流泵装置性能试验与数值分析   总被引:4,自引:3,他引:1  
该文针对城市防洪排涝泵站的特点,研发了2套双向潜水贯流泵装置,并采用CFD(computational fluid dynamics)技术计算了双向潜水贯流泵装置的内流场,分析了灯泡体段对泵装置正反向运行的影响,包括灯泡体段的水力损失、导叶体内部的流态及"S"形叶轮的水力性能,并经试验验证分析了数值计算结果的有效性。计算结果表明,反向运行时导叶体内部流态较好,反向运行工况优于正向运行;正向运行工况流量为4和5m3/s时,导叶体内均出现涡旋;灯泡体支撑件对"S"形叶轮的水力性能影响极小,但对泵装置水力性能影响较大;正向工况时"S"形叶轮所受轴向力小于反向工况。通过泵装置模型性能试验比较了2套泵装置的综合水力特性指标,并给出了供参考的潜水贯流泵装置的结构尺寸,其中导叶体扩散角为3°,灯泡体长度为2.43D、灯泡体直径为0.46D、泵装置总长为13.45D(D为叶轮名义直径),灯泡体采用流线型尾部及5片支撑件。  相似文献   

8.
转轮下环间隙对混流式水轮机内部流动特性的影响   总被引:1,自引:1,他引:0  
水轮机转轮间隙内的泄漏涡、泄漏流等复杂的湍流易影响水轮机的性能与稳定性。为了分析下环间隙对混流式水轮机能量特性和内部流态的影响,该文基于N-S方程和SST湍流模型,考虑了0.6 Qd(Qd为设计流量工况)、0.8 Qd、Qd、1.2 Qd共4种流量工况,对5种下环间隙下的混流式水轮机模型机进行三维全流道数值计算。通过对比不同下环间隙方案对混流式水轮机效率与容积损失的影响,结合不同水轮机内部流场特征,分析下环间隙与水轮机性能的关系。计算结果表明:下环间隙由0.4 mm增大到1.3 mm,机组泄漏量增大,水轮机效率整体呈下降趋势。其中,当机组在小流量0.6 Qd工况运行时,间隙对水轮机能量特性影响最为明显,效率下降了4.1个百分点。当机组在小流量0.6 Qd与0.8 Qd工况运行时,下环间隙增大,间隙内部流场与尾水管内部流场呈现小幅度恶化;当机组在大流量1.2 Qd工况运行时,下环间隙增大,转轮叶片吸力面压力分布以及尾水管内部流场均得到改善。该研究可为混流式水轮机结构设计提供有效参考。  相似文献   

9.
水泵水轮机转轮叶片低压边相比其他部位更具有空蚀的危险性。首先基于低比转速混流式转轮设计程序,设计了3个具有不同低压边轴面位置的叶片。然后采用数值模拟方法对3个转轮分别进行了3个不同出力的水轮机工况以及3个不同流量的水泵工况的全流道定常数值计算,对比分析了各计算工况下转轮的能量特性、流动特征及空化形态。研究表明,在一定范围内,叶片低压边轴面位置前移可以改善大流量水泵工况下转轮叶片进口的脱流情况,从而提高大流量水泵工况的扬程和空化性能。低压边轴面位置的后移,使得水轮机设计工况和满负荷工况的水力效率降低,但是改善了水轮机大流量工况的空化性能;并且叶片低压边轴面位置后移可以改善小流量工况下叶片进口的来流均匀性,从而提高小流量水泵工况的空化性能。相比而言,低压边在上冠型线位置的直径与转轮直径之比为0.4998的第2种低压边位置转轮在水轮机和水泵2种工况下都表现出比较好的空化性能,满足设计要求。  相似文献   

10.
为定量研究肘形进水流道对轴流泵水力性能的影响,实现性能预测,该文采用雷诺时均N-S方程和标准 紊流模型,数值模拟了某肘形进水流道和轴流泵联合运行时的三维流场,获得了水泵的流量~扬程曲线、流量~功率曲线和流量~效率曲线,并与设计进水条件下的水泵性能进行了对比。在该肘形进水流道提供的进水条件下,在计算流量范围内,泵的扬程和效率分别平均下降约8.62%和5.74%,轴功率平均增加约3.56%,最优工况点效率降低了5.99%,流量减少了8.59%。通过5个肘形进水流道设计方案的计算对比发现,流道出口水流的偏流角与水泵性能的发挥密切相关,在相同流量下,水泵效率差值达4.34%。因此,为确保水泵高效、安全地运行,应重视进水流道水力设计优化和面向对象的水泵设计,改善水泵进水条件,减少进水流道对水泵水力性能的影响。  相似文献   

11.
[目的]对抽水蓄能电站建设期水土流失及其次生灾害风险进行评价,对涉及的要素特征进行筛选分析,为提高工程建设期绿色安全施工水平提供科学支持。[方法]采用层次分析法结合模糊综合评价法,从3个维度共选取了8个一级指标和34个二级指标进行分析评价。[结果]构建了抽水蓄能电站建设期水土流失及其次生灾害风险评价模型,并划分为5个风险等级,将模型应用于安徽省绩溪抽水蓄能电站的研究表明该电站在建设期水土流失风险灾害等级为3级,属一般安全等级。结合该工程建设期的实情,验证了模型的可行性。[结论]抽水蓄能电站选址在很大程度上决定着工程建设期水土流失及其次生灾害风险等级。采用该方法评价风险等级为3级及以下的工程,可在确保工程水土保持措施按照要求落实建设的基础上,增强建设期水土保持监测水平。应重点关注建设期弃渣堆置不合规及取弃土过程中的潜在土壤流失量,防微杜渐,避免水土流失及其次生灾害现象的发生。  相似文献   

12.
某电站混流式水轮机转轮叶片历年出现不同程度的裂纹情况,为了分析该转轮叶片裂纹产生的原因,该文首先采用流体动力学技术,对该水轮机机组在额定水头下、不同负荷的4个工况进行了全三维的非定常湍流数值模拟,分析对比了各个工况下转轮内部流场的变化和压力脉动情况,计算结果表明:在低负荷情况下转轮内部出现叶道涡,叶道涡的存在使得转轮内部压力脉动变大,从而引起机组运行不稳定;其次采用结构有限元技术对转轮在上述4个工况下进行了动应力分析,模拟结果显示:应力最大发生在转轮上冠和叶片出口连接处,且在低负荷下动应力最大,最大值可达到164.3 MPa,长期在低负荷工况下运行容易引起叶片疲劳;最后对转轮单个叶片进行了模态分析,从模态分析结果可知叶片固有频率远离各个水力激振频率,因此不会发生水力共振。该文通过计算流体动力学(computational fluid dynamics)的方法全面分析了叶片产生裂纹的原因,并提出了相应的裂纹控制对策,为机组的稳定运行提供了参考。  相似文献   

13.
贯流式水轮机飞逸过渡过程瞬态特性CFX二次开发模拟   总被引:4,自引:4,他引:0  
当水轮发电机组处于飞逸状态时,水轮机内部会出现严重的不稳定现象,容易引起机组的振动。贯流式水轮机因为水头低、流量大、通道短等特点,其过渡过程与常规的立式水轮机有许多不同之处。基于此,该文通过CFX16.0和Fortran程序的二次开发建立了水轮机飞逸过程的数值计算方法,对贯流式水轮机的飞逸过程进行了数值模拟,获得了转速、流量、力矩、轴向力等外特性参数在飞逸过程中的变化历程以及水轮机内部流场的动态特性。结果表明:计算得到的最大飞逸转速为2 190 r/min与试验测得的结果较为接近,误差不超过2.5%,验证了该数值方法的可靠性;飞逸过程中其余外特性参数的变化规律均符合高比转速水轮机飞逸过程的流动规律;在飞逸过程中,由于转速和流量的增加使得水轮机转轮进口相对液流角降低,水流在叶片吸力面进水侧靠近叶缘处发生撞击形成高压,在叶片压力面进水侧叶缘处出现脱流产生负压,并随着转速的升高,高压区和低压区逐渐增大,转轮叶片受力变得极为不均匀容易引起疲劳破坏;同时,转速的增加使得转轮出口环量增加,在尾水管内部将会形成偏心的螺旋涡带,引起了强烈的低频压力脉动,振幅最大可达到试验水头的104%,不利于机组的安全稳定运行。  相似文献   

14.
为提高双向潜水贯流泵装置正反向运行时的水力性能,该研究提出在叶轮前后布置可调导叶,并通过模型试验和数值模拟的方法研究其水力性能,对比灯泡前置和灯泡后置性能差异.研究结果表明:采用可调导叶的双向潜水贯流泵装置兼顾正、反向性能,灯泡前置和后置最优导叶角度分别为12°和20°,最高效率分别为67.9%和66.5%,最高效率点...  相似文献   

15.
混流式水轮机主轴中心孔补水对尾水管性能的影响   总被引:1,自引:1,他引:0  
混流式水轮机在低负荷工况下运行时,尾水管内出现旋转的偏心涡带,会引起强烈的压力脉动和振动,严重威胁厂房的安全。为了使机组稳定运行,该文提出了一种通过从上冠泄水锥引入高压补水的方法来降低尾水管的不稳定性。该文首先采用商业软件CFX16.0,对某电站混流式水轮机在低负荷工况下进行了可靠而准确的全三维非定常数值模拟,结果表明在该工况下尾水管内部存在明显的偏心涡带,并伴随着振幅较大的压力脉动,这与试验结果相吻合。其次,对该工况下不同补水流量进行了数值模拟计算,研究表明:尾水管内补高压水可以有效降低尾水管内部的流动损失,且随着补水量的增加而越小,但过大的补水量会引起叶片正背面压力的降低,影响水轮机的空化性能,故补水量的大小必须综合考虑;主轴中心孔高压补水可以增加转轮出口的轴向速度,从而改变涡带内速度场的分布,可有效消除回流现象,当补水流量过小时,抑制回流作用不明显;当补水量为进口流量1%时,尾水管内部压力脉动振幅变化不大,改善效果不明显;当补水量为进口流量3%时,尾水管内部涡带由双螺旋变成单螺旋,锥管段压力脉动振幅不减反增,不稳定性有所加剧;当补水量为进口流量5%时,尾水管内部压力脉动振幅从18.4%降低至1.63%,同时改变了压力脉动的主频,使其远离转轮主频,避免发生共振,提高了机组的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号