首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
曹守启  禹松  张铮 《农业工程学报》2020,36(10):158-165
现代渔业养殖朝着精细化的方向发展,渔业物联网的应用越来越广泛。对于部署的终端节点,除了需要获取环境感知信息,还必需获取节点的位置信息,这样采集数据才有应用价值。该研究提出了一种面向渔业物联网应用的基于LoRa(LongRange)网络的低成本GPS(GlobalPositioningSystem)相对定位方法。首先通过误差分析建立相对定位策略数据模型,然后设计了基于LoRa网络的相对定位方法和改进的时分多址(Time Division Multiple Access, TDMA)传输策略,实现了高精度定位和高能效数据传输,最后设计了LoRa物联网硬件节点并在近海渔场进行了部署测试,试验数据表明了该文提出方法的有效性与可靠性。在采用低成本GPS商用模块的情况下,距离网关1 000和499 m的终端节点的平均定位精度由10 m分别提高到4.8和2.4 m,数据投递率由80%提高到95%以上。  相似文献   

2.
针对海岛环境中水产养殖区域分散、工作环境恶劣、人工巡检不便等问题,设计了基于低功耗广域物联网的海岛养殖环境监测系统。系统包括集成Arduino和传感器的终端采集节点,通过LoRa技术实现数据汇总和远距离传输的汇聚网关,利用Python与PostgreSQL开发用于数据接收、存储、处理、访问和控制的后台监测系统。通过对网络拓扑复杂度、能耗等方面的评估,表明在海岛环境下部署水产养殖环境监测系统,相比传统Zigbee多跳无线传感网,采用LoRaWAN,其单跳节点覆盖范围更大,而网络复杂度、能耗等更优。测试表明该系统能以较低功耗实现整片区域内远距离数据采集,有效传输养殖区水体环境数据。网络生存期与传输可靠性测试表明,当传感器节点采用3.7 V/4 200 mAh锂电池,上传周期为30 min时,监测网络的有效生存期理论上可达2.4 a;在800 m通信范围内,发射功率为20 mW时,节点丢包率小于3.6%,具有较高的通信可靠性。该研究可为水产养殖生产和物联网应用研究提供有效参考。  相似文献   

3.
为了提高苗圃灌溉控制系统的稳定性和健壮性,该文在无线传感器网络中,以网关节点调度为目标,提出了一种新的基于马尔可夫链的网关节点调度方法。首先,理论上分析单个网络节点的存在状态,及其接入行为;其次,以网关和终端节点共同状态为基础,通过单个节点的状态转移概率关系,得到系统平衡方程;第三,根据此平衡方程进行节点的调度,以及描述系统工作过程;最后对得出的系统调度模型进行性能参数估计。试验建立一个无线传感器网络仿真平台,对该模型进行从带宽利用率、被迫中断概率、以及网络容量和阻塞率进行比较分析。结果表明随着用户的呼叫率增多,带宽的利用率、终端被迫中断概率和系统容量都随之增长,而当呼叫量增长到一定程度时,系统容量会慢慢趋于平缓。该模型在提高传感器网络带宽利用率的同时保证了一定的系统中断概率。  相似文献   

4.
随着农业集约化、规模化及产业化的发展,联合收获机开始以机群形式进行多机联合作业,由此衍生出对于联合收获机群物联网及无线通信的需求。在无线通信技术中,LoRa技术在传输距离、部署方式等方面具有独特的优势。该研究提出了一种基于2.4 GHz LoRa技术的联合收获机群通信网络结构和工作模式。对LoRa相关参数使用NS-3网络仿真平台建立仿真模型,对扩频因子分配方案选择、可容纳节点数量和最小发送间隔进行分析,并在联合收获机群模拟通信场景进行仿真,同时开发了机载终端硬件和软件。仿真试验结果表明,在模拟通信场景下,选择特定比例分配扩频因子可改善网络通信性能;在保证90%以上接收成功率的前提下,静态场景下1 625 kHz带宽可支持25个节点以1 s的发送间隔进行通信,在动态场景下1 625 kHz带宽通信时延低于10 ms。田间试验结果表明,"报告(Report)"模式下通信总体成功率为99.3%;"请求(Request)"模式下通信总体成功率为92.5%,平均响应时间为123.07 ms。该研究将2.4 GHz LoRa技术应用于联合收获机之间的无线通信,可为联合收获机机群协同作业时通信提供可行方法。  相似文献   

5.
基于发射功率自适应的稻田无线传感器网络节点设计   总被引:1,自引:1,他引:0  
针对水稻生长过程环境因素变化较大以及传感器节点的能量大部分被无线射频阶段所消耗,设计了发射功率自适应的无线传感器节点,建立了长时间、稳定、高可靠性的稻田无线传感器网络。试验测试了水稻的株高、叶面积与生长天数的关系以及对无线信道的影响,结果表明水稻株高和叶面积的增加会降低无线信号强度和通信成功率;通过增大发射功率可以提高通信质量克服由于水稻生长因数对无线信道的影响。在软件设计方面,传感器节点采用睡眠、苏醒工作机制来降低功耗。同时为了延长工作时间、提高通信质量,提出了根据水稻生长周期、通信距离、接收信号强度、平均丢包率等因素自动调整节点发射功率的能量自适应功耗调整机制。田间试验结果表明,水稻田节点发射功率越大,有效通信距离越远,且水稻的密度和高度等对通信有重要的影响;节点发射功率在5 dBm以下时,发射功率的改变对节点工作电流影响较小,节点工作电流均小于40 mA;采用该机制对发射功率进行调整,增大节点发射功率可使通信成功率有大幅的提升;降低节点发射功率仍然保持良好的通信效果。水稻分蘖和抽穗2个生长时期的田间试验结果表明,采用发射功率自适应策略,提高了通信质量,平均丢包率在5%以下,通信成功率大于97%,达到了预期设计目的。  相似文献   

6.
该文基于ZigBee无线传感器网络技术,设计了一种节能型水产养殖环境监测系统,用于实时监测水的温度、pH值、溶解氧浓度和浊度等参数。系统采用CC2530为核心处理器设计无线传感器节点;运用开源的Z-stack协议栈开发了节点应用程序,提高了系统的稳定性和可靠性;使用9 V锂电池为无线传感器节点供电,实现了系统的无线化;采用C/S和B/S混合编程模式开发了简单直观的本地用户监测界面和远程监测网站,实现了系统的本地监测和远程监测;采用分时、分区供电的方式和数据融合技术延长了节点的生存时间。该文介绍了系统软硬件设计方法,并重点阐述了软件和硬件的节能策略。实验室测试表明,采用方案4(传感器不一直工作,数据全部发送),节点数据采集周期为10 min,节点能正常工作94 d,实际系统上线时,节点数据采集周期为30 min,节点预计能正常工作280 d左右;运用节能策略后,节点寿命延长了1倍。在甘肃省某虹鳟鱼养殖基地进行了实地测试,路由节点剩余能量约占总能量的47%,终端节点剩余能量约占总能量的33%,路由节点能量消耗较快,距离汇聚节点最近的16号路由节点的寿命预估只有134 d。结果表明该系统具有功耗低、运行稳定、网络寿命长等优点,能实现水产养殖环境的实时监测,具有很好的市场前景和推广价值。  相似文献   

7.
农田信息采集无线传感器网络节点设计   总被引:26,自引:12,他引:14  
农田信息的及时准确获取是精准农业实施的基础。该文分析了几种典型无线传感器网络技术应用实例,基于当前无线传感器网络在农田信息采集中的应用现状,提出了设计体积小、工作持续时间长的农田信息采集无线传感器网络节点的必要性。基于ATmega128L单片机和CC1000射频芯片设计了无线传感器网络节点通信电路,并给出了土壤温湿度、电导率传感器、空气温湿度传感器及光照度传感器的选型和指标参数。设计了节点软件系统,描述了一种基于优先级的静态任务调度机制的实现方法,将S-MAC中的SYNC帧和RTS/CTS帧融合并加入了睡眠周期动态调度机制,并实现了全网的长周期睡眠。最后对节点进行了验证试验,给出了节点吞吐能力曲线和系统电压变化曲线,并进行了分析。试验表明,在论文给出的低功耗机制控制下,节点每秒具有6个数据包处理能力;在20个节点容量的全覆盖网络中,10 min采样周期下,节点可有效持续工作150 d以上,可以满足精准农业信息采集需求。  相似文献   

8.
基于ZigBee技术的粮库监测系统设计   总被引:11,自引:4,他引:7  
针对大型粮库设施粮食存储环境相关参数监测点分散的现状,设计出了一种层次型网络拓扑结构的无线传感器网络中央监测系统。以承载ZigBee技术的CC2430芯片为无线节点的检测与信息处理核心,结合温度、湿度传感器模块,构成无线传感器网络终端检测子节点,对现场环境实时检测,并通过路由节点将数据上传;路由节点模块设计,采用无线或RS-485标准的方式与中心节点进行信息通讯,使现场循环检测数据能实时传送给中央监控计算机,实现深入粮仓内部的多点检测、实时监测。结果表明,系统功能扩展方便、布网灵活、施工成本低,为大型粮库设施现代化管理奠定了基础。  相似文献   

9.
分析了无线传感器网络的发展情况,提出了一种适用于无线传感器网络的基于IEEE802.15.4协议的JN5139终端节点设计,对影响大田作物生长造成影响的诸多因素,如土壤温湿度、空气温湿度、光照强度、二氧化碳浓度、有害气体(二氧化硫)浓度等环境因子提取实时数据,并对这些数据进行存储、分析处理,以及转发。借助GPRS网络实现对数据的上传,并传入到Internet,通过TCP-IP传送到相关用户,及时了解所需信息,指导耕作方向。根据实际需求分析、设计、实现等方面叙述了开发过程,并通过实验测试数据,图片等形象手段体现作者的思路。  相似文献   

10.
基于ZigBee技术的温室无线智能控制终端开发   总被引:26,自引:12,他引:14  
针对温室农业控制的需要,开发了温室无线智能控制终端。该系统基于ZigBee无线网络,以Jennic公司生产的ZigBee无线微型控制器JN5139-M01模块为核心,整个无线传感器网络由无线生理生态监测节点、ZigBee温室无线智能控制终端和智能语音模块组成。无线传感器节点分布于温室的各个测量点执行各数据的采集、预处理和无线发送等工作,温室无线智能控制终端负责处理所有无线传感器节点采集的数据信息。智能语音模块能够根据采集到的信息及时提供生产指导建议。温室无线智能控制终端实现了对温室环境因子(土壤温度、叶片温度,光照、茎秆生长、土壤水分等)的数据采集和有效控制。通过试验验证,该系统运行稳定,并且操作简单,使用方便。  相似文献   

11.
大面积水稻田无线传感器网络组网设计与优化   总被引:1,自引:1,他引:0  
为解决大面积水稻田无线传感器网络能量消耗过快和丢包率严重等问题,该文提出了不同天线模式下的3种组网方案:配备全向天线的分环多跳网络、配备定向天线的多跳网络和配备混合天线的分簇多跳网络。第一组网络,处于不同环中配备全向天线节点采用多跳传输模式将数据包传输到基站;第二组网络,各级配备定向天线节点采用多跳传输模式将数据包传输至第一级节点;最后一组网络,借助于双簇头分簇思想,主簇头接受副簇头汇聚于成员节点的数据包与基站多跳通信。首先,介绍了3种网络拓扑结构间的差异;然后,从网络能耗角度,理论上分别计算了3组网络的能量消耗;仿真试验表明,混合天线分簇多跳组网方案相比定向天线多跳方案数据包个数提升了近10倍;相比全向天线分环多跳方案网络稳定周期延长了24.3%,网络寿命延长了28.2%;最后,采用无线通信模块nRF905射频芯片和TDJ-0825BKM1定向天线进行了水稻田组网试验,结果表明混合天线分簇多跳网络相比全向天线分环多跳网络丢包率降低了8.11%,平均存活时间效率提高了8.66%。该研究可为大面积水稻田无线传感器网络组网方案的设计提供参考。  相似文献   

12.
中小型规模智慧农业物联网终端节点设计   总被引:2,自引:2,他引:0  
为了能够向中小规模农业生产经营者提供深度定制的农业物联网技术,该研究研发了一种可用于农业设备信息化的智慧农业物联网终端节点。通过该终端节点将农业设备柔性接入物联网体系,并依托管理服务层App实现应用层App功能开发。系统硬件利用可编程片上系统的IP核重用技术实现对各种农业设备的接入,实现各农业场景中根据设备具体情况进行定制化应用。系统传输层采用LoRa广域网与蓝牙技术,支撑集中式与分布式农业管理服务体系。管理服务层App对底层节点设备操作与Android功能操作进行封装,实现应用层与底层功能结构的解耦,避免了应用层App开发时结构复杂、对底层功能结构变化适应性差、开发周期长等问题。实践应用结果表明,该农业物联网终端节点可有效实现对农业设备的接入,具有1500VDC的电磁隔离能力;节点的LoRa无线数据通道在无严重降雨的天气中数据包传输成功率接近100%,蓝牙可支持周围3m范围内的移动设备现场接入;管理服务层App可有效支撑应用层功能快速开发;在直连上位机模式下,应用层App到节点设备间的功能延时分别小于400与1 700 ms,系统运行稳定,功能支撑可靠。该方法可为国内中小规模农业经营者的物联网信息化建设提供支持与参考。  相似文献   

13.
基于物联网的内河小型渔船动态信息监控系统设计   总被引:1,自引:2,他引:1  
为规范内河流域渔业生产秩序,保障渔船作业安全,该文设计了基于物联网的内河小型渔船动态信息监控系统。该系统集成了无线传感器网络、远程信息传输、远端后台监控等多种技术方法。其中,无线传感器网络主要用于获取包括渔船位置、电捕鱼违法监测信息和渔船超载检测信息等渔业现场数据。依靠Zig Bee技术,该网络实现了对不同类别传感器数据的汇聚、判断以及远程播发。远程信息传输是利用GPRS/GSM移动通信网络与互联网传输技术,实现了多渔船作业信息向后台监控中心的实时传输。后台渔政监控中心,具有渔船在电子地图上的识别与定位,渔业生产的实时监控以及渔政执法的决策辅助等功能。该系统经测试,可满足内河流域作业渔船在实时监管和安全保障等方面的需求,提高了农业渔政管理的水平。  相似文献   

14.
集成GPRS、GPS、ZigBee的土壤水分移动监测系统   总被引:7,自引:5,他引:2  
为了实现土壤水分数据的实时采集、处理、可视化与上传,开发了移动式土壤水分监测系统。系统由集成ZigBee协调器、GPS模块、GPRS模块的PDA和基于ZigBee的土壤水分传感器移动节点组成。ZigBee模块主要用于PDA和移动传感器节点间的无线通信,使PDA能无线获取土壤水分传感器信息,并能控制传感器供电电源的通断。GPS模块用来实时获取传感器的位置信息,为绘制土壤水分时间和空间分布图以及为精细灌溉决策系统提供支持。GPRS模块用来将绑定的节点号、经纬度信息、土壤水分信息通过TCP/IP协议上传至互联网远程上位机,以实现土壤水分时空变异的远程监测。系统既能在PDA内存储信息又能上传互联网,具有良好的便携性和可视性。性能试验结果表明,系统可实时准确远程传输测量数据,内嵌软件根据测量结果绘制的土壤水分空间变异分布图可有效指导精细灌溉。  相似文献   

15.
稻田水分监测无线传感器网络优化设计与试验   总被引:4,自引:4,他引:0  
传感器网络技术为大范围稻田水分信息采集提供了一种新技术手段。利用测量稻田水分含量和水层深度测量的无线传感器WFDMS,探讨了构建稻田水分传感器网络PMSN的关键技术:设计了大面积、大范围应用体系结构模型;提出了一种满足稻田水分采样频率和数据业务需求的低功耗传输控制协议LPTP-PMSN;开发了水分信息监测信息管理系统,实现了完整运行的稻田水分传感器网络整套系统。试验表明,PMSN网络在稻田中的可靠通信距离达60 m,在 3.6 V/2 100 mAh电池供电下,4 h周期采样试验中,在传输协议LPTP-PMSN控制下,传感器、簇首、基站、短信网关、计算机间能够协同工作,整个稻田水分传感器网络可以较可靠运行,节点生命期超过190 d。该研究可为农用信息监控无线传输网络的其他应用提供参考。  相似文献   

16.
基于无线传感器网络的水产养殖水质监测系统开发与试验   总被引:17,自引:9,他引:8  
为解决目前水产养殖水质自动监测系统存在布线困难、灵活性差和成本高等问题,该文构建了基于无线传感器网络的水产养殖水质监测系统。该系统的传感器节点负责水质数据采集功能,并通过无线传感器网络将数据发送给汇聚节点,汇聚节点通过RS232串口将数据传送给监测中心。传感器节点的处理器模块采用MSP430F149单片机,无线通信模块由nRF905射频芯片及其外围电路组成,传感器模块以PHG-96FS型pH复合电极和DOG-96DS型溶解氧电极为感知元件,电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5V。设计了传感器输出信号的调理电路,将测量电极输出的微弱信号放大,满足A/D转换的要求。节点软件以IAR Embedded Workbench为开发环境,采用单片机C语言开发,实现节点数据采集与处理、无线传输和串口通信等功能。监测中心软件采用VB6.0开发,为用户提供形象直观的实时数据监测平台。对系统的性能进行了测试,网络平均丢包率为0.77%,pH值、温度和溶解氧的平均相对误差分别为1.40%、0.27%和1.69%,满足水产养殖水质监测的应用要求,并可对大范围水域实现水质环境参数的实时监测。  相似文献   

17.
温室动态星型无线传感器网络通信方法研究   总被引:8,自引:2,他引:6  
针对温室测控系统信息传输技术存在的一些问题,根据温室结构特征提出一种动态星型无线传感器网络的框架,从低成本低功耗角度出发,移动的汇聚节点采用定时跳频方法与子节点形成子网,以尽量缩短点对点之间的通信距离。利用帧扩展的方法实现了以低功耗芯片nRF2401A构成复杂的通信网络,并给出了传感器节点、控制节点和汇聚节点的通信算法。在汇聚节点不同的工作状态下,对网络子节点进行能耗分析,结果表明,动态星型无线传感器网络的通信方法具有很好的节能效果,对温室中数据的传输是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号