首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
该文以河套灌区永济灌域为研究对象,建立考虑冻融影响的分段式水均衡模型,预报12种井渠结合节水情景的地下水动态响应。结果表明:冻融期间气温对地下水埋深的影响在时间上滞后46.5 d,两者相关关系明显;地下水开发利用越多、秋浇采用黄河水的比例越小,节水规模越大,同时地下水位下降越明显。12种节水情景中,节水规模占现状引水量的5.7%~15.5%,全灌域平均地下水埋深增加0.05~0.24 m,井渠结合区地下水埋深增加0.16~0.38 m;灌域引黄水量与地下水埋深关系用二次函数进行拟合,决定系数R~2达到0.88以上;灌溉水利用效率的提高以及地下水位下降引起潜水蒸发的减小是井渠结合节水的实质。分析结果表明,考虑冻融影响的水均衡模型简单实用,可为中国西北干旱半干旱地区开展井渠结合地下水响应预报提供参考。  相似文献   

2.
考虑季节性冻融的井渠结合灌区地下水位动态模拟及预测   总被引:1,自引:1,他引:0  
该文以季节性冻融灌区内蒙古河套灌区为研究对象,建立灌区冻融期地下水补排模型,与三维地下水数值模型相结合,构建适用于季节性冻融灌区的生育期-冻融期全周年地下水动态模拟模型。采用河套灌区2006—2013年灌区实测地下水埋深对模型进行了率定和验证,并针对河套灌区不同地下水矿化度可开采区(分别为2.0、2.5及3.0g/L)、不同渠井结合比设置了18种井渠结合节水情景,对其地下水动态进行了预测。结果表明,该文构建的冻融期模型能准确反映其地下水动态过程;井渠结合后地下水埋深变化与井渠结合区地下水开采利用的矿化度上限和渠井结合比有关,井渠结合区地下水矿化度上限越大,渠井结合比越小,地下水埋深增加越多;实施井渠结合后,灌区生育期平均地下水埋深增加0.103~0.445 m,秋浇期增加0.076~0.243 m,冻融期增加0.096~0.216 m;从空间上看,全灌区年均地下水埋深增加0.096~0.316 m,井渠结合区增加0.346~0.635 m,非井渠结合区变化较少,一般不足7 cm。该文为季节性冻融灌区开展大规模井渠结合灌溉提供参考。  相似文献   

3.
内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数   总被引:13,自引:8,他引:5  
为准确估计内蒙河套灌区灌溉水入渗补给地下水量,采用试验研究与数值模拟相结合的方法,分别根据灌水前后地下水位变化和土壤含水率变化计算了灌溉水入渗补给地下水系数,并依据土壤水动力学原理,采用数值模拟验证,得到作物生育期灌溉补给地下水系数为0.15,秋浇灌溉补给地下水系数为0.3。河套灌区地下水位埋深相对较浅,通过灌水前后的土壤含水率变化情况和数值模拟结果显示,灌水2~4 d补给地下水量达到最大,8~10 d后即完成对地下水的入渗补给,不同灌水量灌溉水入渗规律基本一致,入渗补给量和入渗时间与灌溉水量直接相关。研究结果将为确定维持灌区生态环境良性发展的引水量阈值提供参考。  相似文献   

4.
基于SWAP和MODFLOW模型的引黄灌区用水管理策略   总被引:7,自引:4,他引:3  
大部分引黄灌区并没有实现地表水和地下水的合理利用,存在着水源浪费和地下水过度开采等问题。为了合理调配水资源,该文以河南柳园口灌区为背景,运用SWAP和Visual-MODFLOW分别建立了土壤水分运动模型和地下水三维非稳定流模型,用实测资料进行了率定和验证。利用SWAP模型模拟了2006年至2007年不同灌溉标准条件下的灌溉制度,提出了适宜的灌水控制标准,并且根据提出的灌水控制标准对多年的灌溉制度及不同地下水埋深下的灌水量及产量状况进行了模拟,得到了地下水埋深适宜范围。由SWAP模拟的灌溉制度确定地下水开采并且根据不同的种植结构和井渠灌溉比拟定了7个方案,利用MODFLOW模型对灌区地下水系统对各方案的响应进行模拟。结果表明,北部引黄量的30%采用抽取地下水并把节省的引黄量输送到南部,可以使地下水埋深基本控制在适宜的范围之内,并能有效地减少潜水蒸发。  相似文献   

5.
土壤水盐与玉米产量对地下水埋深及灌溉响应模拟   总被引:8,自引:4,他引:4  
引黄水量的削减将进一步加剧宁夏银北灌区农业用水短缺问题,合理应用地下水进行灌溉对保障作物产量具有重要意义。为探究地下水灌溉条件下土壤水盐与作物生长的互馈机制,该研究修正了HYDRUS-1D的土壤蒸发模块,并嵌入可模拟作物生长与产量的EPIC模块,以此提高该模型在农田水文过程模拟中的适用性。采用2008年银北灌区不同水质灌水处理的玉米田间试验数据对模型进行了率定与验证。进一步应用该模型探寻地下水灌溉条件下,土壤水盐动态及玉米产量对地下水埋深变动及灌溉的响应规律。结果表明,玉米产量随地下水埋深增大呈现先增后减趋势,为保障玉米产量应将地下水适宜埋深控制在140~155 cm,且灌水量不宜低于现状灌水量,即玉米生育期内灌3水,每次900 m3/hm2。该研究对干旱银北灌区农业生产具有重要意义。  相似文献   

6.
太行山前平原农田高效用水模式研究   总被引:7,自引:0,他引:7  
实现地下水采补平衡是维持太行山前平原区农业持续发展的重要基础。根据多年的田间试验结果研究探讨了减少农田非生产耗水,水肥耦合提高水分利用效率,节水高效灌溉制度,根系调控与提高土壤水利用率实现地下水采补平衡的途径和措施。实施大面积秸秆覆盖可减少农田耗水量约40mm;优化灌溉制度可减少冬小麦生育期1次灌水60mm。  相似文献   

7.
实现地下水采补平衡是维持太行山前平原区农业持续发展的重要基础。根据多年的田间试验结果 研究探讨了减少农田非生产性耗水、水肥耦合提高水分利用效率、节水高效灌溉制度、根系调控与提高土壤水利用率实现地下水采补平衡的途径和措施。实施大面积秸秆覆盖可减少农田耗水量约40mm;优化灌溉制度可减少冬小麦生育期1次灌水60mm。  相似文献   

8.
青铜峡银北灌区井灌井排水盐运动数值模拟   总被引:7,自引:2,他引:7  
为了配合全国大型灌区的节水改造,给不同优化灌溉模式的推广提供科学依据,运用HYDRUS程序,对青铜峡银北灌区小麦套种玉米地的灌溉进行了多方案的一维水盐运动数值模拟。针对灌区土壤地下水位高、地下水矿化度高、潜水排泄以蒸发为主等原因,研究了基本灌溉模式、井渠结合灌溉模式的改变对不同程度盐碱地改良的效果,提出适合银北灌区不同盐碱地的灌溉制度。  相似文献   

9.
关于发展农业节水灌溉的建议   总被引:1,自引:0,他引:1  
方生  陈秀玲 《土壤通报》2001,32(Z1):88-90
本文提出了农业节水的关键是:节水的主要潜力在河水灌 区,要按农业用水需要量控制灌溉水量,要在河水灌区积极开发利用浅层地下水和微咸水, 发展井渠结合灌溉的统一管理并改革水价.  相似文献   

10.
基于改进SWAT模型的南方多水源灌区灌溉用水量模拟分析   总被引:5,自引:4,他引:1  
为提出一种合理有效的南方多水源灌区灌溉用水量模拟统计方法,该文针对南方多水源灌区水循环及灌溉取水特点对SWAT模型进行改进,尤其添加了多水源自动灌溉模块用于模拟作物不同水源类型的灌水量,并统计推求灌区灌溉用水量。以浙江省浦江县通济桥水库灌区为例,应用改进SWAT构建灌区水循环模型,利用灌区出口实测月径流数据及4条干渠渠首监测的灌水量数据校正及验证模型,其中月径流在验证期的Nash-Suttclife效率系数为0.89,干渠灌溉用水量模拟值与观测值相对误差的绝对值最大不超过20%,表明改进SWAT模型具有良好的模拟效果。利用所建模型模拟分析通济桥水库灌区长系列灌溉用水量,结果显示灌区灌溉用水量呈现丰水年小、干旱年大的变化规律;除监测的骨干水源通济桥水库及浦阳江取水以外,灌溉用水量的41.40%来源于灌区内部的河道、塘堰及小型水库,说明只监测干渠渠首灌水量无法统计整个灌区灌溉用水量;随着灌区节水改造投入,灌区灌溉水利用系数提高,其灌溉用水量减少。基于改进SWAT模型进行多水源灌区灌溉用水量模拟为灌区灌溉用水量统计分析提供了一种有效的方法。  相似文献   

11.
基于遥感蒸散发的河套灌区旱排作用分析   总被引:2,自引:2,他引:0  
干旱区灌区大量引水灌溉造成灌溉地地下水位明显高于非灌溉地,进而导致地下水、盐从灌溉地向非灌溉地的迁移(内排水)及盐分在非灌溉地的积累(旱排)。为分析灌溉地与非灌溉地间的水、盐迁移,拟建立基于遥感蒸散发的灌溉地-非灌溉地水、盐平衡模型,应用于内蒙古河套灌区中西部4县(旗、区)。结果表明,研究区年均内排水量为3.55亿m3,与排水沟排水量相当;灌溉地向非灌溉地的年均迁移盐量为151.7万t,其中灌溉地年均脱盐0.4 t/hm2,非灌溉地年均积盐2.7 t/hm2。可见,内排水和旱排对于灌溉地土壤盐渍化控制具有重要作用,在灌区排水、排盐规划中应综合考虑排水工程系统与内排水、旱排的作用。  相似文献   

12.
大型灌区节水水平评价指标体系构建与实证   总被引:2,自引:2,他引:0  
灌区是中国农业节水的主战场,对灌区节水水平进行评价可为灌区现代化改造提供借鉴与指导,合理适用的评价指标体系是进行灌区节水水平评价的核心内容。针对当前灌区评价指标选取存在的冗余、不完备的问题,为构建满足简洁性与完备性的反映灌区节水水平的评价指标体系,该研究从工程节水、田间节水、用水管理、水资源保护及用水效益5个方面初步建立了大型灌区节水水平评价指标体系,利用筛选模型从70个指标中优选出了23个灌区节水评价指标,表达了86.42%的信息,使最终的指标体系兼具简洁性与完备性,并对河南省沿黄渠村灌区、彭楼灌区、广利灌区、大功灌区4处大型灌区进行了节水水平实证研究。结果表明,4处灌区相应的节水评价指数分别为0.666、0.730、0.657、0.616,其中彭楼灌区由于具有较高的骨干渠系配套程度和明显的工程节水优势使其整体节水水平较高,渠村灌区和广利灌区的节水水平次之,大功灌区的节水水平相对较低;受益于大型灌区续建配套与节水改造项目4处灌区在工程节水方面表现相对较好,评价结果与实际情况相符,表明该研究构建的节水水平评价指标体系科学合理;为进一步提升灌区的节水水平,4处灌区需加强用水管理水平、增加用水效益以及注重水资源保护建设。研究成果为科学评估大型灌区节水建设提供了一种有效的方法,并对推进农业节水化进程具有积极的指导作用。  相似文献   

13.
为了探究河套灌区解放闸灌域土壤盐分的综合调控措施,以河套灌区解放闸灌域为例,基于SaltMod模型研究了灌溉水矿化度、咸淡水混合比例、排水沟深度以及渠道衬砌水平对作物根层土壤盐分的影响。结果表明:根层土壤盐分随着灌溉水矿化度的增大而增加,1.0 g/L的地表微咸水较适合本研究区灌溉;淡水(黄河水)和地下微咸水(矿化度为2.2 g/L)混合灌溉比为1∶1时,既增加了地下微咸水的利用且地下水埋深下降到2 m左右的相对稳定平衡状态;当排水深度在1.5~2.0 m,渠系利用系数达到0.7时,根层盐分显著降低,适当提高排水深度和渠系水利用系数可以有效减少高矿化度灌溉水对土壤盐分累积的影响。研究结果为河套灌区解放闸灌域制定合理的土壤盐分综合调控措施提供了科学的理论依据。  相似文献   

14.
灌溉节水潜力是指导和评价灌区节水改造的重要参数,其分析需要考虑尺度效应。该研究以湖北漳河灌区杨树垱流域为背景,采用改进SWAT(Soil and Water Assessment Tool)模型构建灌区分布式水文模型,并利用实测径流、蒸发蒸腾量及灌溉用水量校正及验证模型。以子流域嵌套方式将研究区划分为6个尺度,基于现状情景,设置增加塘堰汇流面积、提高渠系水利用系数及采用水稻节水灌溉模式3种节水情景。基于改进SWAT模型不同情景的模拟结果,定义并计算分析不同节水情景下传统的及考虑回归水重复利用的2种节水潜力及其随尺度变化规律。结果表明,改进SWAT模型具有良好的模拟效果(R20.80,纳什效果系数大于0.80)。在增加塘堰汇流面积情景下,由于不同尺度塘堰供水比例的变化,2种节水潜力均随着尺度的增大呈现先增加再降低继而趋于稳定的规律;在提高渠系水利用系数情景下,由于漳河水库在不同尺度的供水比例的变化,2种节水潜力均随尺度增大逐渐降低并趋于稳定;在水稻节水灌溉模式情景下,由于不同尺度水稻节水灌溉面积占比的变化,2种节水潜力均随尺度增大呈现先减小再增大继而趋于稳定的规律。3种节水情景下的2种节水潜力的大小关系,主要由节水措施实施前后不同尺度灌溉用水量变化及灌溉回归水重复利用量变化共同决定。研究可为灌区水管理及节水改造工程布局提供决策依据和指导方向。  相似文献   

15.
为探究内蒙古河套灌区真实节水潜力,该研究构建河套灌区分布式水循环模型与基于机器学习的盐分模型,设置节水方案集,定量分析各方案下的灌区引、耗水量、地下水埋深、积盐量变化等。结果表明:1)水面蒸发的纳什系数均不低于0.654,相对误差绝对值不高于分别为4.82%,相关关系为0.88,排水过程纳什系数均不低于0.600,相对误差绝对值不高于分别为5.11%,相关关系为0.82,地下水埋深的纳什系数均不低于0.628,相对误差绝对值不高于分别为5.12%,相关关系为0.86,满足灌区水循环满足精度要求。本文选择采用土壤盐分模型,得到土壤积盐量与实测值的纳什系数均不低于0.76,满足精度要求。2)渠道砌衬方案S1、田间节水调控方案S2、种植结构调整方案S3的耗水节水量分别为2.93亿、3.02亿和2.54亿m3。S1+S2+S3组合方案灌区耗水节水量最多,为9.11亿m3,S2+S3方案组合次之。3)渠系水利用系数提高,将引起地下水水位下降,不利于排盐,S1方案下地下水埋深大于3 m的面积比例较基准方案增加了7.59%,不利于灌区排盐。田间工程措施使得相应的农田入渗量减少,地下水位下降,有利于灌区脱盐,S2方案下地下水入渗补给量较基准方案减少2.57亿m3,灌区地下水位下降较为明显,S2方案有利于灌区脱盐。S3方案下地下水入渗补给量略微减少,地下水位变化不大,有利于灌区脱盐。不同方案组合,S1+S2、S1+S2+S3方案下对地下水埋深影响较大,尤其是S1+S2+S3方案在灌区西北部、山前、乌拉特前旗、乌梁素海东部的形成连片埋深高值区,影响区域生育期农田作物与林草地植被生长。S1S2方案下不利于灌区脱盐,自然植被生育期平均埋深超过2.5 m的比例较基准方案增加了5.46%。在综合考虑生态环境的约束下,推荐耗水节水量最大的方案S2+S3,即灌区适宜的耗水节水潜力为5.69亿m3。该方案下虽然也会引起地下水位略有下降、进乌梁素海排入水量略微减少,但最有有利于灌区排盐。研究可为引黄灌区节水方案制定与灌溉管理提供技术支撑。  相似文献   

16.
排水循环灌溉驱动的稻区水循环模型与评价   总被引:4,自引:4,他引:0  
排水循环灌溉可补充灌溉和减少涝水排放,具有缓解南方稻区旱涝急转和农业面源污染危害的潜力,但仍无有效的模型来模拟排水循环灌溉驱动下的水文过程。为此采用penman-monteith公式和作物系数法并考虑稻田渗漏与降雨有效性条件下应用水量平衡估算水稻灌溉需水量,改进SCS(soil conservation service)模型估算排水量,再以塘堰为对象建立调蓄排水和灌溉需水的水平衡演算模型。在漳河水库灌区应用该模型发现,水稻种植区存在大量的排水可供灌溉利用,而排水循环灌溉利用量受灌排面积比、塘堰容积率和塘堰初始蓄水率的影响;提高灌排面积比和塘堰容积率能明显提高补充灌溉率和排水再利用率,当两者达到一定值时补充灌溉率和排水再利用率便稳定在最高值,补充灌溉率高达20%;补充灌溉率随塘堰初始蓄水率的增加而缓慢增至20%,排水再利用率先随初始蓄水率的增加而稳定不变,随后逐渐降低。排水循环灌溉驱动的水循环模型为合理匹配排水循环灌溉的塘堰或排灌规模提供有效方法。  相似文献   

17.
考虑盐分累积及冬小麦产量品质的井渠结合灌溉模式优选   总被引:1,自引:0,他引:1  
为探究井渠结合灌区地表水与地下水适时适量灌溉模式,以田间小区为研究尺度,探索不同渠井灌水比例(0、33%、67%、100%)、不同灌水定额(600、900、1 200 m3/hm2)对2013-2016年冬小麦产量、品质及根层土壤盐分动态变化特征的影响。结果表明:1)不同灌溉定额对纯渠水灌溉模式下冬小麦产量的影响较纯井水灌溉模式大。高定额纯渠水(灌水定额为1 200 m3/hm2,渠井灌水比例为100%)灌溉模式下的冬小麦产量最大,2015年为9 195 kg/hm2。2)增大灌水定额有利于冬小麦容重、湿面筋和稳定时间的增加,而对蛋白质含量的影响不明显。井水有利于蛋白质含量、湿面筋和稳定时间的增加,有利于弱化度的降低。在地表水资源相对充足且追求产量最大化的情况下,可选择高定额纯渠水灌溉模式;在地表水资源不充足的情况下,可选择中、高定额"井水+渠水+渠水"灌溉模式。3)连续4 a年灌溉后冬小麦根层土壤盐分有小幅增加趋势,纯渠水灌溉模式下冬小麦根层土壤盐分增量最小,其次是井水+渠水+渠水灌溉模式,纯井水灌溉模式下冬小麦根层土壤盐分增量最大。在地表水量相对充足且以产量最大化为目标的情况下,可选取高定额纯渠水灌溉模式。地表水资源不充足的地区,可选择高定额"井水+渠水+渠水"灌溉模式,而在水资源紧缺地区,可选择中定额"井水+渠水+渠水"灌溉模式。  相似文献   

18.
渠井结合灌区适宜渠井用水比例关系灌区地下水环境和区域农业可持续发展。该文以人民胜利渠灌区为例,集合了灌区1954-2014年农业用水量及降水量、研究区域2008-2014年渠井用水比、地下水埋深、地下水水化学特征数据,分析了降雨量、地下水动态特征与渠井用水比例的相关性,以期探明渠井结合灌区渠井用水比对降雨的响应及其对土壤和地下水环境的影响。结果表明,典型渠井结合灌区渠井用水比与年降水量呈线性正相关;渠系上游地下水水位变化较下游更为剧烈,在用水水平、用水方式一致条件下,渠井用水比例越大,地下水埋深超过11 m区域增幅越小,较大的渠井用水比例对于上游地下水位下降减缓效果明显;平水期、枯水期,由于渠井用水比例不合理,地下水无序开采且超采严重,区域地下水碱化趋势明显;受气候变化影响,近5 a渠灌水量仅为多年均值的75.52%,未来区域降水量具有减小趋势,这势必进一步加剧农业水资源紧缺的形式。为了满足农业的正常生产,增加灌区地下水开采成为唯一解决途径,这势必加剧地下水的碱化趋势及地下水超采区的扩大。因此,确定灌区适宜的渠井用水比例对于灌区水资源的科学利用与农业的可持续发展具有重要意义。  相似文献   

19.
葛倚汀  王俊  范莉 《水土保持研究》2007,14(4):223-225,229
在干旱内陆河灌区,地下水比较活跃,与非灌区存在着交换,同时也与土壤水存在着交换.在灌溉前后地下水水位变化幅度较大.了解和掌握地下水的运动规律,对于促进农业节水灌溉有重大的现实意义.以塔里木盆地西北缘阿瓦提县为例,通过实验对干旱内陆河灌区的地下水变化规律进行研究,得出在干旱内陆河灌区,地下水位动态随地表来水入渗补给而上升,随农作物蒸腾、潜水蒸发消耗而消退,在灌溉过程中,地下水位浮动比较大,易引起耕地盐碱化,并提出了有效的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号