首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用温室砂培试验研究了不同氮素水平(5.0、7.5、10.01、5.01、7.5.mmol/L)对二年生库拉索芦荟生长和蒽醌、芦荟甙等次生代谢产物及硝酸盐含量的影响。结果表明,供氮水平由5.0.mmol/L增加到10.0.mmol/L,库拉索芦荟地上部产量和总生物量显著增加,继续提高氮水平芦荟地上部产量和总生物量没有显著增加;芦荟根干重及其根冠比则随着氮水平的增加而下降;叶片和根系的硝酸盐含量则随施氮浓度的提高呈增加趋势。供氮浓度从5.0mmol/L增加到10.0.mmol/L时,叶片的维生素C(Vc)含量显著增加,继续提高供氮水平,叶片Vc含量则明显下降;蒽醌含量则随施氮水平的上升而不断增大,但施氮10.0、15.0、17.5.mmol/L的处理间没有显著性差异。芦荟甙含量变化趋势和Vc含量相似,以施氮10.0.mmol/L为最高,其含量分别是其它处理的1.4、1.2、1.4、1.3倍。由此可见,芦荟在供氮10.0.mmol/L时能够获得较高的产量和蒽醌含量,较低的硝酸盐含量和高的Vc和芦荟甙含量,表明适宜的供氮水平是芦荟高产优质的保证。  相似文献   

2.
饱和D-最优设计在高蛋白大豆施肥优化中的应用   总被引:2,自引:0,他引:2  
【目的】高蛋白大豆生产是我国农业供给侧改革发展的一个重点产业,合理施肥是实现高蛋白大豆生产的一个必要环节。利用饱和D-最优设计对黄淮海地区高蛋白大豆氮、磷、钾肥施用量进行研究,旨在为高蛋白大豆生产中的肥料配施提供理论依据和参考。【方法】以高蛋白大豆冀豆21为试验材料,采用氮、磷、钾三因素二次饱和D-最优设计,每个因素分别设10个处理,每个处理3次重复,共计30个小区,随机区组排列。各处理肥料均在大豆开花期分批次施用,成熟后测定大豆产量及籽粒蛋白质含量。【结果】建立了以氮、磷、钾施用量编码值为变量因子,高蛋白大豆产量和蛋白质含量为目标函数的三元二次多项式数学模式。通过对模型解析寻优表明,氮、磷、钾肥对高蛋白大豆和蛋白质含量均有显著影响,且氮肥>钾肥>磷肥;当氮、磷、钾肥用量分别为95.46、183.8和128.7 kg/hm^2时,边际产量效应值为0,当氮、磷、钾肥分别为120.8、178.4和141.3 kg/hm^2时,边际蛋白质含量效应值为0。氮磷、氮钾、磷钾对高蛋白大豆产量和蛋白质含量存在明显的交互作用。本试验条件下,大豆产量超过3104 kg/hm^2,籽粒蛋白质含量46.04%以上的施肥方案为施氮量76.13~101.1 kg/hm^2,施磷量131.1~168.5 kg/hm^2,施钾量104.9~134.8 kg/hm^2。【结论】利用饱和D建立的肥料函数模型可以很好的说明氮、磷、钾施肥与大豆产量、蛋白质含量的连续变化关系和氮、磷、钾间的互作效应,适量的氮肥、磷肥、钾肥可有效提高高蛋白大豆产量和蛋白质含量。供试条件下,最佳肥料配比是N76.1~101.1 kg/hm^2、P 131.1~168.5 kg/hm^2、K 104.9~134.8 kg/hm^2。  相似文献   

3.
玉米减量施肥研究   总被引:5,自引:0,他引:5  
在吉林通化市长年高施肥量(N180kg/hm^2,P2O5 70kg/hm^2)的玉米栽培区,实行减量施肥效果明显。1999年在暗棕壤上试验,用氮量降低23kg/hm^2(实际用氮量150kg/hm^2),比高施氮量的增产10%左右,2001~2002年分别在冲积土和白浆土上试验,用氮量降低36kg/hm^2(实际用氮量144kg/hm^2),比高施氮量的分别增产5.65%、2.56%。1995年在白浆土和暗棕壤上试验,施P205量在36.6~91.8kg/hm^2间,形成的玉米产量没有本质上的差异,即多施磷和少施磷的效果是一样的。据此,吉林省东部地区玉米施氮量应由目前180kg/hm^2,减为140~150kg/hm^2,施P2O5量由目前70kg/hm^2,减为35~45kg/hm^2。  相似文献   

4.
不同土壤肥力水平下元白菜施氮、磷、钾和锌的效应   总被引:2,自引:0,他引:2  
对不同土壤肥力水平下元白菜施氮、磷、钾和锌肥的效应研究表明,不同土壤肥力水平下,元白菜施氮、磷、钾和锌均能显著增加产量,分别增产12.0%~35.8%(平均24.5%)、5.3%-14.1%(平均9.7%)、11.2%.15.3%(平均12.9%)和7.5%~11.3%(平均9.1%)。在较高、中等和较低土壤肥力水平下,元白菜经济最佳施氮(N)量分别为310.5、326.1~336.6和378.9kg/hm^2,适宜磷(P2O5)用量依次为60、60-90和90~120kg/hm^2。不同土壤肥力水平地块元白菜适宜施氮时,氮肥(N)利用率在15%~20%,适宜施磷时磷肥(P2O5)利用率在9.3%~11.0%;元白菜上钾肥利用率随土壤钾素水平的降低而呈增加的趋势,不同土壤肥力地块元白菜施K2O120kg/hm^2时钾肥(K2O)利用率平均为20.4%。  相似文献   

5.
库拉索芦荟施肥模型的建立与解析   总被引:1,自引:0,他引:1  
在云南元江干热河谷气候条件下,采用二次正交旋转组合设计田间小区试验,建立了回归方程并分析了N、P、K、有机肥对库拉索芦荟鲜叶产量、芦荟甙含量和芦荟甙产量的影响。结果表明:P、K肥对提高库拉索芦荟甙含量和芦荟甙产量有显著效果,以K肥的影响最为显著,N肥和有机肥的影响不明显;N、P、K肥施用量与芦荟鲜叶产量的关系符合米氏曲线,有机肥对芦荟鲜叶产量的影响不显著。芦荟鲜叶产量最高时的施肥量为N198kghm-2、P2O5198kghm-2、K2O264kghm-2、鸡粪4125kghm-2。芦荟甙含量和芦荟甙产量最高时的施肥量为N396kghm-2、P2O5396kghm-2、K2O528kghm-2、鸡粪20625kghm-2。  相似文献   

6.
对1984年建立的长期试验田,分析了2005年小麦产量、养分吸收及土壤养分变化。结果表明,单施磷肥增产25.6%,单施氮肥增产48.1%,其吸氮、磷量也相应增加,但收获指数显著低于对照;氮磷配施增产幅度为101.3%3~02.8%,养分吸收量增加显著,最佳施肥量为N2P2(N.90.kg/hm2、P.56.4.kg/hm2)。施肥明显改变了耕层土壤养分的含量,也影响了养分在土壤剖面的分布。氮磷配施是培肥土壤的有效途径,耕层土壤全磷增加了8.3%~45.2%,速效磷增加54.8%9~17.8%。中等施氮(N.90.kg/hm2)水平下,随着磷的增加,耕层土壤全磷累积和施磷量的关系为y=0.002x-0.112。速效磷含量增加和磷肥用量的关系为y=9.6537Ln(x)-35.371,施肥对60.cm以下磷素影响较小。  相似文献   

7.
以矮化苹果砧木M9T337幼苗为试材,设置4个氮水平(N 0,150,300,450 mg/kg,分别以N0、N1、N2、N3表示)和2个磷水平(P_2O_5 100,200 mg/kg,分别以P1、P2表示),研究了氮磷配施对苹果砧木幼苗生长、土壤无机磷形态转化和磷素吸收利用的影响,以期为果园磷肥高效利用提供参考依据。结果表明,不同氮磷配施显著影响M9T337幼苗生物量及根系形态,以N2P2处理效果最佳,其次为N1P2处理。植株磷素积累量及磷肥利用率分别在N2P2、N2P1处理下达到最大值,同一磷水平下适量增氮可促进幼苗对磷素的吸收,有效提高植株磷肥利用率。高氮处理(N3P1、N3P2)显著抑制幼苗对土壤磷素的吸收,不利于砧木幼苗的生长。土壤有效磷(Olsen—P)含量主要受施磷量的影响,在N2P2处理下达到最大,为27.86 mg/kg;土壤碱性磷酸酶活性则在N2P1处理下最大,为2.12 mg/(g·d)。与单施磷肥相比,氮磷配施增加土壤中可供植物吸收利用的Ca_8—P、Al—P所占土壤磷库的比例,降低植物难以吸收利用的Ca_(10)—P比例,Ca_2—P的比例也有所降低;随施氮量的增加,Ca_8—P、Al—P呈现先增加后减小的趋势,均在N2P2处理下达到最大值,Ca_(10)—P随施氮量的增加呈现逐渐降低的趋势,而Fe—P、O—P含量在不同施氮量下则无明显变化趋势。合理的氮磷配施可通过改变土壤无机磷库组成,提高土壤磷素有效性,促进砧木幼苗的生长和对土壤磷素的吸收。  相似文献   

8.
【目的】研究不同磷肥用量对甘薯养分吸收、分配及产量的影响,探究淀粉型甘薯磷肥营养效应,为甘薯高产科学合理施用磷肥提供理论依据。【方法】以淀粉型甘薯渝薯17(淀粉含量24.06%)为材料,设置7个磷肥处理(P2O50、0、37.5、75、112.5、150、300 kg/hm2),田间随机区组排列。其P2O50处理不施任何肥料,其他处理均底施纯氮(N)90 kg/hm2和K2O 150 kg/hm2。甘薯苗移栽后每隔30 d,共计取样5次,对全株样品分叶片、茎蔓和块根测定其鲜重、干重及全氮、磷、钾的含量。收获期测定小区鲜薯产量、茎蔓产量并计算收获指数(HI)及其磷肥农学效率(PAE)、磷肥表观利用率(PAUE)、磷收获指数(PHI)、磷肥生理利用率(PPUE)、磷肥偏生产力(PFPP)和磷肥增产率(PIR);同时计算收获期各器官N、P、K的吸收量,对N、P、K吸收量之间及其与产量之间关系进行相关性分析。【结果】1)适当增施磷肥有利于提高甘薯的经济产量、生物产量和收获指数,且以施P2O5112.5 kg/hm2和150kg/hm2时最优,经济产量增产率分别为19.4%和21.06%。2)不同器官N、P、K最高含量分别出现在栽后60、90、150 d,各处理氮素和磷素含量均为叶片茎蔓块根,而钾素含量为茎蔓叶片块根。栽后60 d后,叶片∶茎蔓∶块根含氮量为4.08∶1.62∶1,栽后90 d后,叶片∶茎蔓∶块根磷含量为2∶1.35∶1,栽后150 d后,茎蔓∶叶片∶块根含钾量为2∶1.8∶1。3)施磷可提高甘薯块根、茎蔓和叶片对N、P、K的吸收,养分总吸收量为钾氮磷;施磷处理中N、P、K的吸收量增幅分别为23.9%66.6%、29.6%58.5%、41.3%73.7%。磷钾吸收量均表现为块根茎蔓叶片,吸氮量表现为块根叶片茎蔓。4)在不同施磷条件下,形成500 kg所吸收的N、P2O5、K2O分别为4.24 6.61 g,1.93 2.84 g和6.94 11.48 g。施P2O5112.5 kg/hm2时,形成500 kg鲜薯吸收的养分最多,N、P2O5、K2O吸收量分别为6.61、2.84和11.08 g。5)磷肥表观利用率、偏生产力在施P2O537.5 kg/hm2时最高,分别为16.6%和343.0 kg/kg P2O5,磷肥农学效率、磷肥生理利用率和磷收获指数在施P2O5112.5 kg/hm2时最高,分别为136.7 kg/kg、777.9 kg/kg和65.9%。6)收获期各器官N、P、K吸收量之间及其与产量之间均呈显著或极显著正相关。【结论】增施磷肥能提高甘薯产量,但其利用效率有下降趋势。本试验中,从甘薯高产高效生产的磷肥管理角度分析,N和K2O施用量分别为90 kg/hm2和150 kg/hm2时,以施P2O5为112.5 kg/hm2为最佳。  相似文献   

9.
氮磷肥配合施用对桑树生长和桑叶产量的影响   总被引:1,自引:0,他引:1  
在大田条件下研究了不同氮、磷肥施用水平对桑树生长和桑叶产量的影响。结果表明,氮磷肥适合用量配比能明显促进桑树生长,桑树每株枝条数、枝条长和枝条基部径围及桑叶百叶重均明显随氮肥和磷肥用量提高而增加。结果显示在氮肥用量为450kg/hm^2时,N:P2O5施用比例为3:1时桑叶产量最高,在各种氮磷肥用量组合中,N450P150处理的桑叶产量比其他处理平均高5139kg/hm^2,增产率达22.4%。试验结果表明,氮、磷肥对桑叶增产效果有互促作用,即高量氮肥施用需要有足够的磷肥施用才能充分发挥其增产效果,反之亦然。  相似文献   

10.
采用三因素五水平最优回归设计,研究了氮、磷、钾肥配施对南板蓝产量及靛玉红含量的影响。结果表明,不同的氮、磷、钾肥配施显著影响南板蓝的产量。N、P、K肥对南板蓝的增产效应为N〉P〉K,氮是主要的限制因子。不同的氮、磷、钾肥配施也显著影响南板蓝的靛玉红含量。施入氮肥明显地增加了南板蓝的靛玉红含量,磷、钾肥的施入在一定程度上降低了靛玉红含量。结合南板蓝的产量及靛玉红含量,确定氮、磷、钾肥适宜的用量组合区间,N为931.96~1035.55kg/hm^2,P2O5为140.80~172.80kg/hm^2,K2O为388.80~432.00kg/hm^2。  相似文献   

11.
设施栽培番茄的氮磷钾肥料效应研究   总被引:8,自引:2,他引:6       下载免费PDF全文
采用"3414"肥料试验设计开展了设施栽培番茄的氮、磷、钾肥料效应研究。结果表明,在高肥力土壤上适量施用氮、磷、钾肥均可增加番茄产量,但过量施用会降低其产量;钾肥的增产作用大于磷肥,氮肥的作用较小;氮、钾肥和磷、钾肥配施可增加番茄产量,而氮、磷肥配施降低产量。氮、磷(P_2O_5)和钾(K_2O)最佳经济施肥量分别为119.0、50.4和375.6 kg/hm~2,施肥比例为1∶0.42∶3.16。不同施氮量对番茄硝酸盐和亚硝酸盐含量的影响不规律,增施磷、钾肥番茄硝酸盐含量呈先增加后减少趋势;氮、磷肥和磷、钾肥配施可降低番茄硝酸盐和亚硝酸盐含量。氮、钾肥和磷、钾肥配施提高了番茄可溶性糖含量,氮、磷肥和磷、钾肥配施降低了番茄总酸含量,氮、钾肥配施则有增加番茄总酸含量的趋势,氮、钾肥和磷、钾肥配施均可提高番茄Vc含量。氮、磷、钾肥料合理配施对番茄产量和品质的提高具有重要作用。  相似文献   

12.
氮磷钾配施对紫云英鲜草产量、养分含量的影响   总被引:2,自引:0,他引:2  
采用部分"3414"肥料效应试验设计方案进行田间试验,研究了氮、磷、钾配施对紫云英性状指标、鲜草产量及植株养分含量的影响,并筛选出适宜的氮、磷、钾肥用量。结果表明,施肥处理比不施肥处理,株高、茎粗、分枝、根瘤数、单株重和鲜草产量最大增幅分别为13.50%、42.34%、18.75%、18.18%、87.07%和33.22%。与不施肥处理相比,9个施肥处理紫云英鲜草产量平均增产9 591.9 kg/hm2,提高了13.50%。处理7(N0P3K2)即高量磷和中量钾配施的鲜草产量最高,达到94 641.6 kg/hm2,与不施肥处理相比,增产了33.22%。处理7对紫云英植株养分含量(N、P、K)的累积最大,与不施肥处理相比,N、P、K养分含量分别提高了16.53%、34.40%、24.47%。可见,增施磷钾肥是提高当前肥力水平下紫云英产量与植株养分累积的有效途径。合理施用N、P、K肥能明显促进紫云英的生长,提高产量和养分积累量,对翻压紫云英作绿肥,减少化肥施用量,有重要的生态环境效益。  相似文献   

13.
长期不同施肥对棕壤微生物量磷及其周转的影响   总被引:6,自引:0,他引:6  
研究棕壤定位试验27年后,长期不同施肥条件下土壤微生物量磷在玉米生长季内的变化及其对植物营养的贡献。结果表明,长期施用化学磷肥或有机肥均能增加土壤微生物磷的含量,尤以有机肥的作用更显著;长期单一的施用氮肥降低了微生物量磷的含量。玉米生长季内土壤微生物量磷的动态变化呈先上升后下降的趋势,其含量最大值出现在玉米生长中后期;一个生长季后,各处理微生物量磷的含量都较施肥前有所下降。长期施肥增加了土壤微生物体的供磷量,微生物体供磷量与玉米产量及吸磷量关系密切,占玉米植株体吸磷量的11.79%~34.46%。不同施肥处理土壤微生物量磷的周转期为0.68~1.61年,施肥延长了微生物量磷的周转期;但单施氮肥加速了其周转。土壤微生物量磷能反映土壤磷素肥力水平。  相似文献   

14.
长期不同施肥措施下黑土作物产量与养分平衡特征   总被引:13,自引:2,他引:13  
为了明确长期不同施肥措施下黑土作物产量及养分平衡特征,利用开始于1979年的哈尔滨黑土肥力长期定位试验,以小麦-大豆-玉米轮作(3a)为一个周期,选取对照(不施肥,记作CK)、常量氮磷钾化肥配施(小麦施N、P2O5量分别为150、75 kg/hm2,大豆施N、P2O5量分别为75、150 kg/hm2,玉米施N、P2O5量分别为150、75 kg/hm2,K2O共施75 kg/hm2,记作NPK)、常量有机肥(施肥18 600 kg/hm2,记作M)、常量化肥有机肥配施(化肥施量同NPK,有机肥施量同M,记作MNPK)和二倍量氮磷化肥有机肥配施(小麦施N、P2O5量分别为300、150 kg/hm2,大豆施N、P2O5量分别为150、300 kg/hm2,、玉米施N、P2O5量分别为300、150 kg/hm2,有机肥共37 200 kg/hm2,记作M2N2P2)5个处理,研究了不同作物的平均产量、产量年际变化和土壤养分表观平衡。结果表明:1)较CK,长期平衡施用化肥或化肥配施有机肥提高了作物产量,多年平均增产率分别在82.5%~91.6%(小麦)和35.6%~40.9%(玉米)之间。长期不同施肥措施增产效果表现为M2N2P2MNPKNPKM,有机无机肥配施与单施化肥处理间作物产量差异不显著。2)长期不施肥处理小麦和玉米产量随试验年限推移呈下降趋势,降幅分别为13.93和42.61 kg/(hm2·a),大豆则以7.409 kg/(hm2·a)的速率增加。施肥处理小麦、大豆和玉米产量随试验年限的增加呈总体上升的趋势。3)在该试验条件下,长期施用常量化肥处理(NPK)和常量化肥有机肥配施处理(MNPK)土壤氮亏缺量分别为29.7和17.5 kg/hm2,磷盈余量分别为33.4和61.2 kg/hm2。各处理土壤中钾素均表现为亏缺,亏缺量在30.4~73.0 kg/hm2之间。MNPK处理氮、钾供应状况有所改善,较NPK处理分别增加12.2和27.6 kg/hm2。4)作物产量与土壤有机质、碱解氮、有效磷、降雨量、生育期日平均气温呈显著正相关关系(P0.05)。5)在黑土小麦-大豆-玉米典型轮作制度下,基于土壤养分平衡特征提出"稳氮、减磷和增钾"的施肥策略。该研究为评价和建立长期施肥模式、促进粮食持续生产提供依据。  相似文献   

15.
Influences of nitrogen (N), phosphorus (P), and potassium (K) fertilizer doses were assessed on iron (Fe) accumulation in leaves and grains of three high-yielding rice cultivars differing in grain Fe concentration. Effects of these treatments were also measured on grain yield, leaf area, and plant biomass of the cultivars. Nitrogen, P, and K applications improved plant biomass and grain yield of all cultivars. Among the nutrients, N was most effective in increasing leaf Fe concentration, followed by P and K in all three rice cultivars. Sharbati accumulated the greatest concentration of leaf Fe followed by IR-64 and Lalat. However, greater doses of these nutrients adversely affected grain yield and Fe content of leaf and grain. Application of excess N, P, and K fertilizers may, thus, sometimes results in lowering of grain Fe content in rice. Judicious application of the elements is recommended for prevention of Fe-induced malnutrition.  相似文献   

16.
This study determined whether the application of nitrogen (N) and phosphorus (P) could ameliorate salt‐induced reduction in wheat production. Saline irrigation water (0.5, 4.0, 8.2, and 12.5 dS/m) and N and P fertilizers (150 kg N/ha and 37.5 kg P2O5/ha) were applied to wheat (Triticum aestivum L. ‘Saka 92') grown on a calcareous soil in a greenhouse experiment. Plants received equal amounts of each fertilizer, but the time and frequency of application differed. All salinity levels reduced straw and grain yields, leaf soluble proteins, nitrate (NO3) content, actual and potential nitrate reductase activity (NRA), and grain protein content. The delay in pollen meiotic cell division increased with salinity. Under saline conditions, applying N and P fertilizers at the end of the grain filling stage improved yield and metabolic performance of the plants compared to other fertilizer treatments.  相似文献   

17.
研究了高寒半干旱区8年肥料定位试验中,磷肥和有机肥在莜麦上的产量效应、土壤磷素的平衡、土壤Olsen-P及各形态无机磷的变化。结果表明,单施磷肥(N0P1)莜麦增产30.8%、单施氮肥(N1P0)增产109.4%、氮肥和磷肥配合(N1P1)施用莜麦增产314.0%;NP间表现出显著正交互作用,NP(N1和P1)交互作用增产86.9%;施用22.5和45.0.t/hm2有机肥分别比N0P0处理增产115.1%和220.1%;施用有机肥基础上增施磷肥无明显增产效应。不同施肥处理土壤Olsen-P和各形态无机磷的增减取决于土壤磷素的积累与消耗量,7年不施磷肥土壤Olsen-P降低3.3mg/kg。施用磷肥和有机肥土壤各形态磷库均有不同程度的积累;土壤磷素积累以无机磷为主,其中Ca2-P和Ca8-P的积累量分别占土壤无机磷变化总量的19.3%和25.4%,Al-P和Fe-P分别占23.8%和14.8%,O-P和Ca10-P共占13.0%。依据土壤磷素收支平衡状况计算出维持土壤磷素平衡的P2O5用量为45.0.kg/hm2。根据肥料效应函数计算出有机肥用量为0、22.5.t/hm2时,P2O5的最高产量用量分别为98.4.kg/hm2和87.4.kg/hm2。  相似文献   

18.
为解决水稻生产过度依赖化肥及其环境和高效利用问题,探讨贵州黄壤稻田科学施用生物炭。在贵州省思南县典型黄壤稻田开展氮肥不减量(T0)和氮肥减10%施2.5 t/hm2(T1),氮肥减20%施5.0 t/hm2(T2),氮肥减30%施7.5 t/hm2(T3),氮肥减40%施10.0 t/hm2生物炭(T4)和不施肥对照(CK)共6个处理3次重复田间小区随机区组试验,研究了氮肥减量施生物炭对水稻产量、产量构成和氮磷钾养分吸收利用的影响。结果表明,氮肥减量施生物炭显著影响贵州黄壤稻田水稻产量、产量构成、地上部氮磷钾积累量和利用效率。水稻产量和氮磷钾积累量随氮肥减量和生物炭用量增加先增大后减小。2019年、2020年和2021年水稻实际产量和理论产量均分别以T2、T3和T2最高,较T0分别显著增产16.04%,17.94%和14.73%以及55.72%,64.08%和118.91%,水稻籽粒N、P2O5和K2O积累量、偏生产力、农学效率、表观利用率和收获指数均较高,是较好的氮肥减量施生物炭处理。产量—施生物炭量回归方程和极值分析表明,2019年、2020年和2021年氮肥分别减量21.76%,24.60%和19.00%(即32.64,36.90,28.50 kg/hm2)施生物炭量5.44,6.15,4.75 t/hm2时水稻产量最高(分别为7.80,8.57,8.03 t/hm2),较T0分别增产22.52%,18.78%和13.74%。氮肥减量施生物炭显著提高氮磷钾化肥利用率,但导致化肥+生物炭磷和钾利用率降低,因此,贵州黄壤稻田施生物炭时应氮磷钾化肥同步减量,降低比例以氮磷钾减量19.00%~24.60%,施生物炭5.00~6.25 t/hm2为宜。研究结果对指导贵州黄壤稻田氮磷钾化肥减量和施生物炭具有重要指导意义。  相似文献   

19.
不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡   总被引:19,自引:7,他引:12  
【目的】为解决东北地区水稻合理施用氮肥问题,系统研究了不同施氮水平条件下,东北水稻产量及构成因素、养分吸收、转运、氮肥利用效率及土壤氮素平衡的变化,并探讨各养分间及其与产量间的关系,为东北地区水稻合理施氮提供理论基础。【方法】于2012~2013年在吉林省松原市前郭县红光农场,选用当地主栽水稻品种富优135和吉粳511为材料,设置施N 0、60、120、180和240 kg/hm25个水平。于水稻返青期、分蘖期、抽穗期、灌浆期及成熟期采集植株样本,分为茎鞘、叶片和籽粒三部分,测定氮、磷、钾含量,计算水稻主要生育期植株养分吸收、转运、氮素利用特性的相关参数及各养分吸收、转运与产量间的关系。水稻移栽前和收获后采集0—100 cm土壤样品,每20 cm为一层(共5层),测定铵态氮、硝态氮含量,并根据各层土壤容重计算0—100 cm土体无机氮积累量,分析土壤氮素平衡状况。【结果】施氮量60~180 kg/hm2范围内,水稻产量随着施氮水平的提高而增加,氮肥用量超过180 kg/hm2水稻产量下降。结合当年水稻和肥料价格,根据水稻产量(y)和施氮量(x)拟合方程,得出最高产量氮肥用量分别为212.8 kg/hm2和220.6 kg/hm2,施氮范围在202.2~231.6 kg/hm2之间,最佳经济产量氮肥用量分别为203.0和209.1 kg/hm2,施氮范围在192.9~219.6 kg/hm2之间。施用氮肥可显著提高水稻主要生育期氮、磷、钾吸收量,且能提高水稻抽穗期氮、磷、钾养分向籽粒的转运,施氮量180 kg/hm2处理抽穗期各养分累积量与籽粒转运量呈正比,当氮肥用量超过180 kg/hm2后,氮、磷、钾养分向籽粒转运出现负效应。氮素农学利用率和偏生产力随着施氮水平的提高而显著下降,氮肥当季回收率以施氮量180 kg/hm2处理最高。相关分析表明,水稻主要生育期氮、磷、钾的吸收、转运与产量间均存在显著或极显著的正相关性,其中灌浆期氮、磷、钾的吸收状况与产量间的相关系数最大。施用氮肥可显著提高收获后0—100 cm土壤中残留无机氮(Nmin),氮素表观损失量随施氮水平的提高而增加。【结论】适宜的氮肥用量可显著提高水稻产量,各生育时期养分吸收总量,提高水稻生育后期秸秆中氮、磷、钾向籽粒的转运量,并能降低土壤氮素表观损失量。综合考虑提高水稻产量、效益、氮肥当季回收率及维持土壤氮素平衡等因素,在本试验条件下,施氮范围在192.9~219.6 kg/hm2。  相似文献   

20.
应用RCSODS模型,根据东南沿海福建稻区8个代表县(市)的土壤理化性状和水稻生长期气温资料,模拟计算了各地稻田的土壤供肥量;结合主栽品种的目标产量和肥料利用率,模拟计算了早晚稻的合理施肥量。结果表明:在研究区域土壤有机质含量与全氮含量适中,磷、钾含量普遍偏低以及土壤偏酸性的情况下,要实现水稻现有水平的目标产量,早稻需施纯氮56.98~231.85kg.hm-2,其中大部分稻田需施133.9~231.85kg.hm-2;需施磷肥(P2O5)73.28~173.57kg.hm-2,其中缺磷稻田需施132.69~173.57kg.hm-2;需施钾肥(K2O)15.41~257.63kg.hm-2。晚稻需施纯氮64.63~237.93kg.hm-2,大部分稻田需施纯氮167.77~237.93kg.hm-2;需施磷肥(P2O5)88.76~176.72kg.hm-2,其中缺磷的稻田应施磷肥(P2O5)155.38~176.72kg.hm-2;需施钾肥(K2O)50.41~315.96kg.hm-2。比较福建稻区的实际施肥量与模拟施肥量,可以看出:目前氮肥施用量总体上比较适宜,而磷肥和钾肥施用量则明显不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号