首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotation of nitrogen-fixing woody legumes with maize has been widely promoted to reduce the loss of soil organic matter and decline in soil biological fertility in maize cropping systems in Africa. The objective of this study was to determine the effect of maize-fallow rotations with pure stands, two-species legume mixtures and mixed vegetation fallows on the richness and abundance of soil macrofauna and mineral nitrogen (N) dynamics. Pure stands of sesbania (Sesbania sesban), pigeon pea (Cajanus cajan), tephrosia (Tephrosia vogelii), 1:1 mixtures of sesbania + pigeon pea and sesbania + tephrosia, and a mixed vegetation fallow were compared with a continuously cropped monoculture maize receiving the recommended fertilizer rate, which was used as the control. The legume mixtures did not differ from the respective pure stands in leaf, litter and recycled biomass, soil Ca, Mg and K. Sesbania + pigeon pea mixtures consistently increased richness in soil macrofauna, and abundance of earthworms and millipedes compared with the maize monoculture (control). The nitrate-N, ammonium-N and total mineral N concentration of the till layer soil (upper 20 cm) of pure stands and mixed-species legume plots were comparable with the control plots. Sesbania + pigeon pea mixtures also gave higher maize grain yield compared with the pure stands of legume species and mixed vegetation fallows. It is concluded that maize-legume rotations increase soil macrofaunal richness and abundance compared with continuously cropped maize, and that further research is needed to better understand the interaction effect of macrofauna and mixtures of organic resources from legumes on soil microbial communities and nutrient fluxes in such agro-ecosystems.  相似文献   

2.
The effect on soil fertility of applying particular organic resources to a humic Nitisol in the central highlands of Kenya was studied. The organic resources (Calliandra calothyrsus, Leucaena trichandra, Tithonia diversifolia, Mucuna pruriens, Crotalaria ochroleuca and cattle manure) were either applied solely or along with inorganic fertilizer in a cropping trial using maize as the experimental crop. After 4 years of continuous cultivation and manuring, soil fertility effects varied among treatments. Cattle manure proved to be the most effective and improved soil fertility by increasing pH, cations (Ca, K and Mg), and C. Calliandra, Leucaena, Tithonia and herbaceous legumes generally reduced soil pH, C and N but increased Ca, K and Mg. Cattle manure is therefore an important resource for maintaining soil organic matter (SOM) in the area and in other similar areas with arable‐livestock systems. Reduction of soil C and N by the high quality organic materials suggests that their role in maintaining SOM in the long‐term is limited in this area. A sound nutrient management system should strive to make a balance between maximizing crop production and sustaining soil quality.  相似文献   

3.
ABSTRACT

Soil macrofauna is vital for soil functions and soil-mediated processes in all ecosystems. However, environmental perturbations, such as drought, that threaten both the abundance and function of soil macrofauna remain mostly unexplored, particularly in an agroforestry system. We investigated the effects of drought on soil macrofauna abundance and vertical distribution under three different planting systems including two intercropping systems, comprising Chinese prickly ash (Zanthoxylum bungeanum) intercropped with soybean (Glycine max) (Z-G) or bell pepper (Capsicum annuum) (Z-C), and one monoculture system, comprising only Z. bungeanum (Z). Soil samples were collected at depths of 0–10, 10–20, and 20–30 cm, and soil macrofauna and chemical properties were analyzed. Soil dryness negatively affected soil macrofauna in all planting systems. Drought reduced the total macrofauna density, biomass, genera richness, and Pielou’s evenness. Additionally, drought significantly decreased density and biomass of Drawida and Eisenia but had no effect on Carabid beetles. Soil macrofauna density was highest in the Z-G intercropping system and higher at 0–10 cm than at other soil depths. These results indicate that intercropping soybean rather than bell pepper increases the abundance and biomass of soil macrofauna, and drought remarkably impacts the response of soil macrofauna to planting systems.  相似文献   

4.
The importance of secondary tropical forests regarding the maintenance of soil fauna abundance and diversity is poorly known. The aims of this study were (1) to describe soil fauna abundance and diversity and (2) to assess the determinants of soil fauna abundance and diversity in two stands of a tropical semi-evergreen secondary forest. Soil macrofauna and microarthropod abundance and soil macrofauna diversity were described at two sites developed on different soils and with different site histories: (1) a natural secondary stand (natural forest) under two dominant tree species, Pisonia subcordata and Bursera simaruba, and (2) a planted secondary forest (planted forest) under three tree species, B. simaruba, Swietenia macrophylla, and Tabebuia heterophylla. The effects of both soil and main tree species’ litter quality were assessed to explain soil fauna abundance and diversity. The abundance of soil macrofauna was significantly higher in the soil under the planted forest, and soil fauna communities were contrasted between the two sites. In the planted forest, a soil-dwelling macrofauna community developed (mainly consisting of the anecic earthworm Polypheretima elongata). In the natural forest, soil macrofauna and microarthropod communities were located at the soil surface. The effect of plant litter quality varied according to each dominant tree species and was superimposed to soil effect. The lowest macrofauna abundance was associated with B. simaruba in the natural forest. T. heterophylla supported a much greater macrofauna community than the two other tree species studied at the same soil, and it appears likely that this is due to the palatability of its leaves compared with the other trees (low lignin, tannins, soluble phenols).  相似文献   

5.
Abstract

Earthworms influence soil fertility, and their population is known to be influenced by fertilization. The objective of this study is to characterize the abundance of earthworms under three different kinds of rotation-crops (Rotation: cereals–legumes for green manure-cotton), three tillage systems (Conventional Tillage CT, Minimum Tillage MT, & No-Tillage NT) and fertilization (NP: inorganic and FYM: farmyard manure-organic). Significantly higher populations of earthworms were found under the legumes and NT system in contrast to the lowest abundance determined under the cotton and CT system. Earthworm populations benefited more from organic fertilization than from NP. Our study showed that the most important factors for earthworm abundance are the macropores and Corg under Mediterranean conditions. No-till management considerably influenced the improvement of the physical and chemical soil properties and increased the earthworm abundance.  相似文献   

6.
Sanborn Field, an agricultural demonstration field at the University of Missouri-Columbia, has over 100 years of cropping histories and management practices implemented at this site. We examined the effect of these cropping systems and management practices on earthworm populations and microbial activity. A field experiment was conducted to characterize and quantify earthworms and to determine the microbial activity in the same selected plots. We sampled 14 plots at the site, six of which were the original plots established in 1888 with the same cropping histories and management, and eight of which had been modified over the years to accommodate changing farmer needs and scientific questions. Earthworms and soil samples were collected in the spring and fall of 1999. Aporrectodea trapezoides, Aporrectodea caliginosa, and Lumbricus terrestris were the dominant species found in this field. Lumbricus terrestris was commonly associated with the no-tillage plot at Sanborn Field. Due partly to soil moisture conditions, most of the species were found and identified during the spring. Microbial activity, as expected, was greatest during the spring. Manure, no-tillage and crop rotations that include legumes had the greatest earthworm abundance and microbial activity. In general, where no fertility treatments were added to soil or where food sources were lacking, earthworm abundance decreased significantly. The abundance of earthworms found in this field reflected the cropping history and management practices used recently and within the last 100 years. In most cases, microbial activity showed similar trends as earthworm density. However, some dynamic microbial transformations, like nitrification, do not always follow the same trend as potential soil quality biotic indicators. Earthworms, along with microbial activity, may serve as useful soil quality indicators in sustained and short-term field trials.  相似文献   

7.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

8.
9.
The study was conducted to determine the long-term impact of different land uses on carbon sequestration, soil fertility, and microbial indices and to establish their interrelationship in a light-textured hyperthermic Udic Ustochrept. Soil samples were collected from existing land-use systems of (1) Eucalyptus tereticornis, (2) Terminalia chebula, (3) Acacia nilotica, (4) Leucaena leucocephala, (5) Embilica officinalis, (6) Zizyphus spp., and (7) maize–wheat rotation from depths of 0–15, 15–30, and 30–45 cm and examined for pH; organic carbon (OC); electrical conductivity (EC); available nitrogen (N), phosphorus (P), and potassium (K); micronutrients; microbial biomass carbon (MBC); microbial biomass nitrogen (MBN); and microbial biomass phosphorus (MBP). High-density plantations of Eucalyptus teriticornis had a greater potential in sequestering aboveground carbon (472.37 Mg ha?1), compared to widely spaced trees of Acacia nilotica (376.05 Mg ha?1). Eucalyptus teriticornis exhibited the greatest impact in increasing soil OC in all depths, followed by Acaccia nilotica and Terminalia chebula, and the lowest was in agriculture (0.778, 0.749, 0.590, and 0.471%, respectively, in surface soil). Available zinc and iron contents were greatest under Eucalyptus tereticornis, followed by Acacia nilotica, Zizyphus mauritiana, Embilica officinalis, Terminalia chebula, and Leucaena leucocephala. The MBC and MBN were greatest in Eucalyptus tereticornis, followed by Acacia nilotica, and lowest in agriculture. Correlation matrix revealed significant and positive relationships between carbon sequestered with OC, MBC, MBN, and MBP.  相似文献   

10.
Earthworm populations were studied in three tropical agroecosystems of southern Mexico: improved maize with a Mucuna pruriens cover crop (MM), continuous conventional maize (CM) and pastures (P). Three replicates and six monoliths were sampled in each agroecosystem. Three earthworm species were found, two native (Balanteodrilus pearsei, Larsonidrilus orbiculatus) and one exotic (Polypheretima elongata). In all systems, the dominant species was B. pearsei, with negligible presence of the exotic species in MM and P plots. Total abundance was significantly higher in MM than in CM; and earthworm biomass was also higher in MM than in CM and P. Juveniles of both native species dominated, mainly concentrated in the top 20 cm of soil. B. pearsei and L. orbiculatus displayed different preferences (within each agroecosystem) for soil organic matter, N and temperature. Further experiments are required to investigate whether mulching with M. pruriens results in an increased earthworm abundance and biomass through a N-improvement effect or as a result of microclimatic changes and to study the extent to which earthworms and M. pruriens are synergistic in enhancing maize growth.  相似文献   

11.
 Earthworms may alter the physical, chemical, and biological properties of a forest soil ecosystem. Any physical manipulation of the soil ecosystem may, in turn, affect the activities and ecology of earthworms. The effects of removing organic matter (logs and forest litter) and severely compacting the soil on native earthworm species were measured in a central USA hardwood region (oak-hickory) forest in the Missouri Ozarks (USA). Soils in this region are characterized by a cherty residuum that is primarily of the Clarksville series (Loamy-skeletal, mixed, mesic Typic Paledults). Earthworms were collected from 0–15 cm depth each spring and fall for 2 years by handsorting, and densities were determined on a per meter square basis. Two native earthworm species, Diplocardia ornata and Diplocardia smithii, were dominant on this site. Organic matter removal decreased the average individual biomass of both species. However, both species responded differently to soil compaction. Soil compaction affected D. ornata adversely and D. smithii favorably. This suggested that the degree of soil compaction was not as restrictive with respect to D. smithii (2 mm diameter) as to D. ornata (5 mm diameter). Moreover, the apparently improved soil environmental conditions resulting from the remaining organic matter in compacted soil enhanced the population and growth of D. smithii. Sampling position on the landscape affected D. ornata but not D. smithii. Soil microbial biomass C and soil microbial biomass N were decreased under soil compaction when the organic matter was removed. Other factors influencing the ecology and activity of these two species will require further study. Received: 6 January 1999  相似文献   

12.
 Kinetic parameters (V max and K m) of dehydrogenase activity were determined in order to assess the metabolic response of a soil about 1 year after organic and mineral treatments. The soil was planted with maize (Zea mays) and treated with the following fertilisers: organic (vermicompost; VC), mineral (ammonium phosphate and urea), and an organo-mineral mixture. V max, which represents a measurement of the quantity of enzyme, markedly increased in organic and organo-mineral treatments, indicating that the addition of organic matter caused an increase in dehydrogenase in the active microbial biomass. K m, representing enzyme-substrate affinity and/or different sources of the enzymes, was similar in VC-treated soil and control soil, while it doubled in organo-mineral and mineral treatments. These results suggest that the use of VC did not alter the enzyme-substrate affinity, while mineral fertiliser reduced this affinity or changed the composition and activity of soil microbiota. A positive correlation was found between V max, the metabolic index (dehydrogenase/water-soluble carbon ratio), and the soil organic matter content. The kinetic constants of dehydrogenase activity and the metabolic index may be considered valid parameters to monitor the evolution of microbiological activity in soil. Received: 4 February 2000  相似文献   

13.
The population dynamics of soil organisms under agricultural field conditions are influenced by many factors, such as pedology and climate, but also farming practices such as crop type, tillage and the use of pesticides. To assess the real effects of farming practices on soil organisms it is necessary to rank the influence of all of these parameters. Bt maize (Zea mays L.), as a crop recently introduced into farming practices, is a genetically modified maize with the Cry1Ab gene which produces a protein toxic to specific lepidopteran insect pests. To assess the effects of Bt maize on non-target soil organisms, we conducted research at a field site in Foulum (Denmark) with a loamy sand soil containing 6.4% organic matter. The study focused on populations of springtails (Collembola) and earthworms (Oligochaeta) from samples taken at the beginning and at the end of the maize crop-growing season during 2 consecutive years. Farming practices, soil parameters, the biological structure of soil communities, and the type and age of the crop at the time of sampling, were used as attributes to predict the total abundance of springtails and biomass of earthworms in general and the abundance or biomass for specific functional groups (epigeic, endogeic and anecic groups for earthworms, and eu-, eu to hemi-, hemi-, hemi to epi- and epiedaphic groups for Collembola). Predictive models were built with data mining tools, such as regression trees that predict the value of a dependent variable from a set of independent variables. Regression trees were constructed with the data mining system M5′. The models were evaluated by qualitative and quantitative measures of performance and two models were selected for further interpretation: anecic worms and hemi-epiedaphic Collembola. The anecic worms (r2=0.83) showed preferences for less clay and more silt soil with medium pH but were not influenced directly by farming practices. The biomass of earthworms was greater in early autumn than in spring or late autumn. Biomass of hemi-epiedaphic Collembola (r2=0.59) increased at the end of the maize growing season, while higher organic matter content and pH tended to increase their biomass in spring. Greater abundance of Collembola was also noted in early autumn if the crop was non-Bt maize. The models assessed by this research did not find any effects of the Bt maize cropping system on functional groups of soil fauna.  相似文献   

14.
In this study, the effect of deforestation and cultivation of maize (Zea mays L.) on the physicochemical characteristics and the bacterial community structure in soil were studied at the national park Área de Protección de Flora y Fauna Nevado de Toluca in Mexico. Soil was sampled from three forested areas in the national park, from three deforested areas grazed by animals and from three areas cultivated with maize. The soil was characterized chemically and biologically, whilst the bacterial community structure was investigated through 454 pyrosequencing of the 16S rRNA gene. The pH in the forest soil decreased from 6·1 to 5·3 in the maize‐cultivated soil, whilst the soil organic C content decreased 1·4 times in the arable soil compared with the forest soil. The microbial biomass C decreased 2·9 times in the arable soil compared with the forest soil, but the metabolic quotient qCO2 (ratio basal respiration to microbial biomass C) nearly doubled. Deforestation and maize cultivation reduced the abundance of Proteobacteria, Actinobacteria and Bacteroidetes, whereas Acidobacteria, Chloroflexi, Gemmatimonadetes and Firmicutes were resistant to these changes. It was found that soil characteristics were affected negatively by deforestation and nearly half of the organic matter was lost, and on these sloped fields, erosion will be high, further decreasing soil fertility. Although the relative abundance of a number of bacterial groups was reduced by deforestation, others were not affected by land‐use change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Earthworms and mulch can have positive or negative effects on mycorrhizae (fungus-roots) and N uptake by plants. In the present experiment, maize plants were grown under greenhouse conditions with or without tropical earthworms (Balanteodrilus pearsei) and mulch of velvetbean (Mucuna pruriens var. utilis). The formation of vesicles and hyphae of arbuscular-mycorrhizal (AM) fungi in roots and N uptake by maize plants was measured at harvest. The addition of earthworms and velvetbean reduced AM root colonization. Earthworms had no effect on plant root or shoot biomass. In the absence of velvetbean, earthworms reduced AM colonization, but when velvetbean was present, this effect disappeared. The addition of velvetbean mulch, on the other hand, had an effect on plant biomass (above- and belowground) and a positive effect on AM fungal colonization of roots in presence of worms, but a negative effect when worms were absent. When both M. pruriens and B. pearsei were added, shoot and root biomass and N concentrations increased. Vesicle formation was related to velvetbean mulch decomposition as well as the higher N concentration in maize roots. Management of mulch–earthworm interactions may be of value, particularly in low-input and organic agricultural systems, and deserves further investigation.  相似文献   

16.
Immigration to and colonisation of recultivated opencast coal mining areas by soil organisms were investigated in eastern Germany during the period 1996–1998 in freshly exposed substrates (immigration test) and two up to 46-year-old afforested mine soils (stage-dependent succession). The results indicate that immigration by air is characteristic for protists, soil microarthropods and spiders, while active locomotion is more important for the soil macrofauna. Testate amoebae assemblages showed no evident differences between 30–37-year-old Tertiary afforestations (ash-ameliorated, pyrite-rich, low soil pH) and 46-year-old Pleistocene sites (liming, low pyrite content, moderate soil pH), while comparisons in soil animals revealed pronounced differences in abundance, biomass and species composition. Earthworms, for example, reached a mean biomass up to 108 g m–2 in the Pleistocene deciduous afforestation. The Tertiary site had only 7–12 g m–2. Generally, all investigated soil animal groups indicated taxon-specific immigration and colonisation strategies with pronounced site preferences, dependent on substrate quality, age and afforestation. Within 40 years, a consistent trend is visible from an open pioneer to a woodland community. Furthermore, it was demonstrated that long-term investigations as well as numerous taxa of different trophic levels are essential for a comprehensive evaluation of recultivated mine dumps.  相似文献   

17.
 Populations of plant parasitic nematodes and their effects on symbiotic nitrogen (N) fixation in herbaceous legumes and on some selected characteristics of other plant species associated with such cover crops were studied. Two legume species [mucuna, Mucuna pruriens (L) DC. var. utilis (Wright) Bruck and lablab, Lablab purpureus L. Sweet], one grass/weed species [imperata, Imperata cylindrica (L.) Rauschel] and a cereal (maize, Zea mays L.) were used. There were three soil treatments (fumigation, fumigation plus inoculation with Meloidogyne species, and an untreated control). Plant parasitic nematode populations in soil, roots and nodules were determined at 4, 8 and 12 weeks after planting. The response of the phytoparasitic nematodes to soil treatments varied according to the plant species present. The predominant nematodes in soils, roots and nodules of legumes were of the genus Meloidogyne, whereas other genera of parasitic nematodes dominated the fauna in soils and roots of maize and imperata. Biomass yield of mucuna was not significantly affected by either Meloidogyne spp. or the other genera of phytoparasitic nematodes. In contrast, the dry matter yield of lablab measured at 12 weeks was reduced by 16% in inoculated compared with fumigated soils. Similarly, the biomass yields of maize and imperata were reduced by 10% and 29%, respectively, in unfumigated rather than fumigated soils. The amounts of N accumulated in mucuna, maize and imperata were not significantly affected by the two groups of plant parasitic nematodes. However, at 12 weeks, lablab grown on inoculated soils accumulated only 69% of the N found in plants grown on fumigated soils. Inoculation of soil with Meloidogyne spp. significantly increased the number of nodules on lablab roots compared with the non-inoculated treatments, whereas nodulation in mucuna was not affected by soil treatment. After 12 weeks, the quantity of N2 derived from symbiotic fixation in mucuna was not significantly affected by soil treatments whereas the amount of fixed N in lablab was 32% lower in inoculated than in fumigated soils. Possible mechanisms for the non-suppressive effect of plant parasitic nematodes on mucuna are discussed. Received: 12 March 1999  相似文献   

18.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

19.
Soil macroinvertebrates were studied in a Mediterranean-type forest on brown-pebble forest soils in southern Russia. At the site, 144 intact soil cores (76 cm2 each) forming a grid of 24 × 6 units were taken in order to determine animal spatial distribution. Abundance of isopods was 166.3 ± 16.0 indiv. m–2 and they constituted about 12% of the total macrofaunal abundance. Biomass of isopods was 3.5 g m–2, or about 21% of the total biomass of macrofauna. Three woodlice genera (Armadillidium, Cylisticus, and Trachelipus) were found at the site. The two latter genera formed almost all (93%) of the isopod population. We found that spatial distribution of woodlice was heterogeneous: areas with 4–5 individuals per sample were neighboring those without animals. In order to study soil factors influencing isopod distribution in the brown-pebble forest soil, the size of a sample was artificially increased by combining adjacent sample units. Litter mass (r = 0.41) and loss on ignition (LOI) (r = –0.55) significantly influenced isopod distribution. Soil pH was near neutral (6.79), LOI was 8.39, and the water holding capacity was 70.9%. Pebbles comprised up to 84% of the sample's mass. Ca. 40 samples are recommended for estimation of isopod abundance in brown forest soil.  相似文献   

20.
This study was conducted to improve our understanding of how earthworms and microorganisms interact in the decomposition of litter of low quality (high C : N ratio) grown under elevated atmospheric [CO2]. A microcosm approach was used to investigate the influence of endogeic earthworm (Aporrectodea caliginosa Savigny) activity on the decomposition of senescent Charlock mustard (Sinapis arvensis L.) litter produced under ambient and elevated [CO2]. Earthworms and microorganisms were exposed to litter which had changed in quality (C : N ratio) while growing under elevated [CO2]. After 50 d of incubation in microcosms, C mineralization (CO2 production) in the treatment with elevated‐[CO2] litter was significantly lower in comparison to the ambient‐[CO2] litter treatment. The input of Charlock mustard litter into the soil generally induced N immobilization and reduced N2O‐emission rates from soil. Earthworm activity enhanced CO2 production, but there was no relationship to litter quality. Although earthworm biomass was not affected by the lower quality of the elevated‐[CO2] litter, soil microbial biomass (Cmic, Nmic) was significantly decreased. Earthworms reduced Cmic and fungal biomass, the latter only in treatments without litter. Our study clearly showed that A. caliginosa used the litter grown under different [CO2] independent of its quality and that their effect on the litter‐decomposition process was also independent of litter quality. Soil microorganisms were shown to negatively react to small changes in Charlock mustard litter quality; therefore we expect that microbially mediated C and N cycling may change under future atmospheric [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号