首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biomass phosphorus (MBP) and its relationships with other biological and chemical properties were studied on loess soil with an 11-year long-term fertilization experiment. The results indicated that inorganic fertilizers (F) improved soil microbial biomass carbon (MBC), nitrogen (MBN), and MBP levels and F plus maize stalk (SNPK) improved MBC and MBN. Manuring markedly increased soil MBC, MBN, and MBP levels. Fertilization decreased the ratios of MBC/MBN, MBC/MBP, and MBN/MBP. Microbial biomass phosphorus was positively and linearly correlated with MBC, MBN, organic carbon (SOC), total phosphorus (TP), water-soluble P, and Olsen P but negatively correlated with soil pH. Microbial biomass phosphorus constituted 2% of TP on control (CK) and inorganic fertilizer treatments and 12% on manure plots. Microbial biomass phosphorus to Olsen P ratios were 50% on CK, F, and SNPK and 80% on manure treatments. Measurements of MBP in soil containing high Olsen P were subject to analytical problems of unknown reasons.  相似文献   

2.
  目的  探讨桂西北喀斯特峰丛洼地不同植被类型的土壤理化性质和微生物碳(MBC)、微生物氮(MBN)、微生物磷(MBP)含量的变化特征及它们之间的关系。  方法  利用生态化学计量方法和Pearson相关性分析方法研究不同植被类型和土层深度对土壤MBC、MBN、MBP含量和土壤养分含量分布特征的影响。  结果  (1)不同植被类型土壤养分含量和MBC、MBN、MBP含量依次为次生林 > 灌木 > 灌草 > 草地 > 耕地;土壤养分垂直分布表现为随着土层深度加深而下降,不同土层间土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量差异显著,土壤MBC、MBN和MBP含量在不同植被类型和不同土层间差异显著,均表现为MBC > MBN > MBP。(2)不同植被类型土壤MBC/SOC和MBP/TP的值较小,MBN/TN的差异较大。不同植被类型的土壤MBC/MBN差异显著,MBC/MBP变化范围较大,MBN/MBP表现为次生林 > 灌草 > 灌木 > 草地 > 耕地。(3)土壤MBC和MBN与SOC、TN、速效氮和速效钾呈显著或极显著正相关,与土壤容重、pH值表现出不同程度的负相关,表明植被恢复过程中土壤MBC和MBN可作为衡量土壤养分的敏感性指标。  结论  不同植被类型的土壤微生物生物量碳氮磷、养分含量和化学计量特征有明显的表聚效应,随着植被的正向演替,土壤结构、养分和微生物群落功能得到显著提高。  相似文献   

3.
The leguminous cover crops Atylosia scarabaeoides (L.) Benth., Centrosema pubescens Benth., and Pueraria phaseoloides (Roxb.) Benth., were grown in the interspaces of a 19 y–old coconut plantation and incorporated into the soil at the end of the monsoon season every year. At the end of the 12th year, soils from different depths were collected and analyzed for various microbial indices and their interrelationships. The objectives were to assess the effects of long‐term cover cropping on microbial biomass and microbial‐community structure successively down the soil profile. In general, total N (TN), organic C (OC), inorganic N, extractable P, and the levels of biological substrates viz., dissolved organic C (DOC) and N (DON), labile organic N (LON), and light‐fraction organic matter (LFOM) C and N decreased with depth at all the sites. Among sites, the cover‐cropped (CC) sites possessed significantly greater levels of TN, OC, DOC, DON, and LON compared to the control. Consequently, microbial biomass C (MBC), N (MBN), and P (MBP), CO2 evolution, and ATP levels, in general, decreased with depth at all sites and were also significantly higher in the CC sites. Among the ratios of various microbial indices, the ratio of MBC to OC and metabolic quotient (qCO2) declined with depth. Higher MBC‐to‐OC ratios and large qCO2 levels in the surface soils could be ascribed to greater levels of readily degradable C content and indicated short turnover times of the microbial biomass. In contrast, the ratios of MBC to MBN and MBC to MBP increased with depth due to low N/P availability and relatively higher C availability in the subsoils. Cover cropping tended to enhance the ratios of MBC to OC, MBC to MBN, MBC to MBP, and ergosterol to MBC and decreased the ATP‐to‐MBC ratio at all depths. The relatively lower ATP‐to‐MBC ratios in the CC site, especially in the subsoil indicated microbial‐community structure possibly dominated by fungi. By converting the ergosterol content to fungal biomass, it was observed that fungi constituted 52%–63% of total biomass C at the CC site, but only 33%–40% of total biomass C at the control site. Overall, the study indicated that leguminous cover crops like P. phaseoloides or A. scarabaeoides significantly enhanced the levels of OC, N and microbial activity in the soils, even down to 50 cm soil depth.  相似文献   

4.
Caragana korshinskii K. is a shrub species which is adapted to arid and semi-arid environments and plays an important role in soil protection. The objective of this study was to determine the influence of this shrub plantation on the soil ecosystem functions driven by microorganisms in the long-term. The changes in the size and activity of soil microbial biomass and the relationship between soil microbial biomass and chemical properties were investigated under shrub plantations aged 6, 18 and 26 years. The results showed that the pH value in the soil decreased gradually, while soil organic carbon (OC) and total nitrogen (TN) significantly increased with the age of C. korshinskii. Although microbial biomass carbon (MBC) and MBC/OC ratio gradually increased, the ratio of basal respiration to MBC (qCO2) decreased with the age of C. korshinskii. The microbial biomass nitrogen (MBN) and MBC had a positive relationship with soil TN and OC, respectively. The flux of CO2 decreased with the age of C. korshinskii which had a significant negative relationship with soil OC, TN, MBN and MBC. The results indicate that C. korshinskii plantations may help to improve microbially driven ecosystem functioning through long-term creation of resource-island.  相似文献   

5.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

6.
为探究侵蚀退化红壤马尾松林恢复过程中林下芒萁对土壤微生物生物量碳氮月动态及其周转的影响,以不同恢复年限的马尾松林为研究对象,对比分析马尾松林恢复过程中林下保留芒萁、去除芒萁处理和林下裸地土壤中12个月的土壤微生物生物量碳(MBC)和微生物量氮(MBN)含量及其周转速率、周转时间和流通量,并分析其与土壤理化性状的关系。结果表明:(1)保留芒萁覆盖处理的MBC和MBN平均含量分布比林下裸地提高26.99%~277.31%和13.54%~173.39%,而去除芒萁处理分布比保留芒萁处理降低12.29%~27.01%和5.02%~28.45%,差异均随恢复年限呈先降低后增加的趋势。(2)所有处理的土壤微生物量碳氮季节动态均表现为春夏季较高,秋冬季较低的趋势,进入生长季前的土壤微生物量碳氮含量更能反映该地区的平均水平。(3)在退化马尾松林恢复过程中,芒萁覆盖降低土壤微生物生物量碳氮周转速率,增加周转时间,提高土壤微生物生物量碳氮含量和流通量,促进土壤有机质的积累和养分释放。相关分析和逐步回归分析表明,MBC、MBN流通量分别与DOC、DON呈显著正相关,周转速率分别与铵态氮(NH4+-N)和TN呈显著负相关,表明土壤碳和氮及其有效性是影响土壤微生物量周转的关键因素。  相似文献   

7.
The objective of this study was to evaluate the effect of Conilon coffee (Coffea canephora) cultivated under conventional and organic management systems on the chemical and microbiological characteristics of the soil, as compared to an Atlantic forest. Chemical soil properties, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial activity (MA), and metabolic quotient (qCO2) were determined at depths of 0–10 cm and 10–20 cm in two seasons (summer and winter). Although microbiological attributes varied according to the season and soil depth, MBC provided 54.15% of relative contribution to distinguish the treatments, followed by MBN and MA. Results indicate that the cultivation of coffee under organic management is more sustainable than under conventional system. Carbon from microbial biomass was the most important soil microbiological attribute in the clustering of the different management methods. Atlantic forest soil followed by organic coffee cultivation soil showed the best soil-quality indices.  相似文献   

8.
山核桃集约经营过程中土壤微生物量碳氮的变化   总被引:1,自引:1,他引:1  
[目的]研究不同集约经营历史山核桃林的土壤微生物量碳氮的演变规律,为山核桃林地土壤管理提供科学依据。[方法]在浙江省临安市分别采集并分析了经营历史为5,10,15,20a的山核桃林土壤样品,并与天然混交林(0a)进行比较。[结果]天然混交林改造为山核桃纯林并经集约经营后,林地土壤微生物量碳(MBC)、微生物量氮(MBN)、MBC/MBN,MBC/SOC均表现出先下降而后上升的趋势,经过10a经营后降到最低水平,与0a相比,0—10cm土层MBC,MBN和MBC/SOC分别降低了52.1%,32.0%和31.0%。经营10a的林地土壤MBC/MBN显著低于前期经营林地,而MBN/TN在经营过程中的差异并不显著。[结论]山核桃集约经营后,林地土壤微生物量碳氮含量显著下降。  相似文献   

9.
The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.  相似文献   

10.
A study was conducted to examine the impact of land use on soil fertility in an Entisol in the Jalpaiguri District of humid subtropical India. The natural forest served as a control against which changes in soil properties were compared. Soil samples were collected from four different depths (0–25, 25–50, 50–75, and 75–100 cm) of soil from four land uses (viz. forest, home garden, arecanut plantation, and agriculture) and examined for pH, organic carbon (OC), electrical conductivity (EC), cation exchange capacity, available nitrogen (N), phosphorus (P), exchangeable calcium (Ca), magnesium (Mg), potassium (K), aluminum (Al), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and dehydrogenase activity (DHA). Soil pH (5.7), OC (2.29%), N (386 kg ha?1), and P (22.54 kg ha?1) were greatest in forest soil, followed by soil from arecanut plantation, agriculture, and home garden. The greatest Ca (0.892 cmol kg?1), Mg (0.527 cmol kg?1), and Al (1.86 cmol kg?1) were found in the arecanut plantation, whereas K (0.211 cmol kg?1) was greatest in forest. The greatest content of diethylenetriaminepentaacetic acid–extractable copper, zinc, manganese, and iron (2.25, 1.66, 4.86, and 7.65 ppm, respectively) were found in forest. MBC (558 mg kg?1), MBN (26.67 mg kg?1), and DHA (33.03 μg TPF 24 h?1 g?1) was greatest in forest soil. Soil fertility index varied from 13.13 in arecanut plantation to 18.49 in forest. The soil evaluation factor ranged from 5.32 in agriculture to 6.56 in forest. Pearson's correlation matrix revealed strongly significant positive correlation of soil fertility index and soil evaluation factor with soil properties.  相似文献   

11.
为了探讨黑河流域保护性耕作对土壤生产力的影响,设计20cm留茬(NS20),20cm留茬压倒(NPS20),40cm留茬(NS40),40cm留茬压倒(NPS40)和传统耕作(CT)5个处理,研究了黑河流域保护性耕作对农田土壤有机质、土壤微生物量C、土壤微生物量N以及作物产量和水分利用效率的影响。结果表明,保护性耕作农田0—20cm土层土壤有机质、土壤微生物量C和N的含量均高于传统耕作,且其在剖面中的变化趋势基本一致,即随土层深度增加下降;土壤微生物量N有明显的"表聚现象";相关分析表明土壤有机质和土壤微生物量C之间显著正相关(r=0.85,p0.05),与土壤微生物量N之间无明显的相关关系(r=0.47,p0.05);保护性耕作提高了春小麦的产量,NPS20和NPS40增产效果最好,较CT分别增产53.08%和46.59%,与CT之间差异达到极显著水平;保护性耕作提高了春小麦的水分利用效率(WUE),NPS20,NS40,NPS40,NS20分别较CT的WUE提高了58.02%,43.40%,47.27%,23.78%。  相似文献   

12.
为了研究引入秸秆碳源对根结线虫(Meloidogyne spp.)病害严重土壤中微生物生物量和原生动物的影响, 以番茄为供试作物, 设置4个梯度的小麦秸秆添加量[CK(0 g·kg-1), 1N(2.08 g·kg-1)、2N(4.16 g·kg-1)和4N(8.32 g·kg-1)], 研究不同种植时间(6个月和4个月)下土壤微生物生物量碳、氮和原生动物丰度的变化。研究结果表明: 添加秸秆对微生物生物量碳、氮和原生动物丰富度有明显促进作用, 添加的秸秆量越多, 这种促进作用越明显。不同秸秆添加量处理中, 微生物生物量碳、氮和原生动物丰度为: 4N>2N>1N>CK。秸秆对原生动物的群落结构也有显著影响, 在各处理中, 鞭毛虫和肉足虫占有绝大比例, 分别占总丰度的29.44%和66.19%, 纤毛虫仅占4.37%。在相同添加秸秆量条件下, 土壤原生动物丰度随种植时间的延长而提高, 而微生物生物量碳、氮量随种植时间的延长而降低。而在种植时间相同条件下, 随着秸秆量的增加土壤微生物生物量碳、氮量和微生物生物量碳氮比和原生动物总丰度相应增加。  相似文献   

13.
Temporal dynamics of microbial biomass and respiration of soil and their responses to topography, burning, N fertilization, and their interactions were determined in a temperate steppe in northern China. Soil microbial indices showed strong temporal variability over the growing season. Soil microbial biomass C (MBC) and N (MBN) were 14.8 and 11.5% greater in the lower than upper slope, respectively. However, the percentage of organic C present as MBC and the percentage of total N present as MBN were 16.9 and 26.2% higher in the upper than lower slope, respectively. Neither microbial respiration (MR) nor metabolic quotient (qCO2) was affected by topography. Both MBC and MBN were increased by burning, on average, by 29.8 and 14.2% over the growing season, and MR and qCO2 tended to reduce depending on the sampling date, especially in August. Burning stimulated the percentage of organic C present as MBC and the percentage of total N present as MBN in the upper slope, but did not change these two parameters in the lower slope. No effects of N fertilization on soil microbial indices were observed in the first growing season after the treatment. Further research is needed to study the long-term relationships between changes in soil microbial diversity and activity and plant community in response to burning and N fertilization.  相似文献   

14.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

15.
Microbial nitrogen (N) transformations play a key role in regulating N cycling in grassland ecosystems. However, there is still little information on how management of semi‐arid grassland such as mowing and/or N fertilizer application affects microbial activity and N transformations. In a field experiment in northern China, N was added at a rate of 10 g N m?2 year?1 as NH4NO3 to mown and unmown plots (4 × 4 m2) and in situ rates of net ammonification (Ramm), nitrification (Rnit) and mineralization (Rmin) were followed at monthly intervals for the vegetation growth periods in the years 2006–2009. In addition, we also measured soil microbial biomass carbon (MBC) and nitrogen (MBN), microbial respiration (MR) and peak above‐ground biomass in August of each measurement year. Driven by the pronounced inter‐annual variability of rainfall, all the properties investigated varied markedly across years. Nevertheless, we were able to demonstrate that over the 4 years N addition significantly stimulated Rnit, Rmin and MBN, on average, by 288, 149 and 11.6%, respectively. However, N addition decreased MBC significantly as well as the ratio of MBC:MBN by, on average, 10 and 23%, respectively, whereas an effect of N addition on MR could not be demonstrated. Mowing decreased MBN, MR and qCO2 significantly by 9, 28 and 24%, respectively, but no effects were found on microbial net N transformation rates and MBC. N addition and mowing interactively affected Ramm and Rmin, and MBN, MBC:MBN. In summary, our results indicate a positive effect of N addition but a negative effect of mowing on microbial N transformation in this C4 grassland in northern China.  相似文献   

16.
Soil enzymes are linked to microbial functions and nutrient cycling in forest ecosystems and are considered sensitive to soil disturbances. We investigated the effects of severe soil compaction and whole-tree harvesting plus forest floor removal (referred to as FFR below, compared with stem-only harvesting) on available N, microbial biomass C (MBC), microbial biomass N (MBN), and microbial biomass P (MBP), and dehydrogenase, protease, and phosphatase activities in the forest floor and 0–10 cm mineral soil in a boreal aspen (Populus tremuloides Michx.) forest soil near Dawson Creek, British Columbia, Canada. In the forest floor, no soil compaction effects were observed for any of the soil microbial or enzyme activity parameters measured. In the mineral soil, compaction reduced available N, MBP, and acid phosphatase by 53, 47, and 48%, respectively, when forest floor was intact, and protease and alkaline phosphatase activities by 28 and 27%, respectively, regardless of FFR. Forest floor removal reduced available P, MBC, MBN, and protease and alkaline phosphatase activities by 38, 46, 49, 25, and 45%, respectively, regardless of soil compaction, and available N, MBP, and acid phosphatase activity by 52, 50, and 39%, respectively, in the noncompacted soil. Neither soil compaction nor FFR affected dehydrogenase activities. Reductions in microbial biomass and protease and phosphatase activities after compaction and FFR likely led to the reduced N and P availabilities in the soil. Our results indicate that microbial biomass and enzyme activities were sensitive to soil compaction and FFR and that such disturbances had negative consequences for forest soil N and P cycling and fertility.  相似文献   

17.
The main aim of this research work is to prepare an enriched compost using rice straw mixed with rock phosphate, waste mica and Aspergillus awamori and to study their effect on changes in microbial properties in soils with and without chemical fertilizers under wheat-soybean rotation. Data revealed that significant increase in microbial biomass carbon (MBC), dehydrogenase activity, phosphatase activities, and microbial biomass phosphorus (MBP) in soil were maintained in enriched compost than ordinary compost after both the crops. Significant increase in MBC, dehydrogenase activity, phosphatase activities, and MBP were found in surface soil. The maximum microbial activities were observed in the treatment receiving 50% recommended dose of fertilizer (RDF) + enriched compost at 5 t ha?1 indicating that integrated use of chemical fertilizers and enriched compost significantly improved the biological properties of soil under wheat–soybean rotation thereby enhanced soil fertility and crop production.  相似文献   

18.
Abstract

Carbon and nitrogen levels of microbial biomass were studied in four plots located in Rio de Janeiro State, Brazil. Two samplings were carried out, the first one, on November 1992 when rainfall was high which led the soil to high levels of moisture, and the second one on March 1993 when there was a decrease in rainfall coupled with high temperatures. Microbial carbon (MBC) and microbial nitrogen (MBN) assessments were done by the fumigation‐extraction method. The results showed significant differences for MBC and MBN between the sampling times and between different plots. Moreover, MBN showed differences as a function of sampling depth. In the 1993 sampling, developed under moisture conditions of soil which promoted the mineralization of organic matter, lesser values of MBC and MBN were found, whereas there was no difference in the organic carbon content. This fact shows a major sensitivity of biomass measurements to reflect changes which occur in the soil organic matter content. Significant correlations were obtained between MBC and organic carbon (r = 0.35, P < 0.01, n = 68), MBN and total N (r = 0.62; P < 0.07, n = 47), and MBC with NBM (r 0.74, P < 0.01, n = 54).  相似文献   

19.
Four vineyards from the eastern foot of Helan Mountain within the same climate classification, where the planted grapes were 4-year-old Cabernet Sauvignon, were selected for investigating the difference in grape and wine properties. Results showed that the grapes of Lilan vineyard had a higher sugar content and sugar–acid ratio than Huida, Yuquan and Zhihuiyuanshi vineyards. The grapes of Zhihuiyuanshi vineyard had the highest tannin and total phenols content. Concerning the wines, the wine of Yuquan vineyard had low pH but had a great ageing potential, and wine of Zhihuiyuanshi vineyard had highest tone, chroma, tannins, total phenols and alcohol content than other vineyards. Soil pH was positively correlated with anthocyanins in the grapes and negatively correlated with total acid in wine. The microbial biomass carbon (MBC) was correlated with the anthocyanins in grape. Microbial biomass nitrogen (MBN) was positively correlated with soluble solid in grapes, and positively correlated with tannin and total phenols in the wine. The MBC/MBN ratio was negatively correlated with tone in the wine. Our findings indicate that adjusting soil pH and choosing microbial fertiliser with high soil microbial carbon and nitrogen nutrients are effective ways to improve the quality of regional grapes and wine.  相似文献   

20.
为探究不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响,以福建省三明市官庄国有林场11年生杉木(Cunninghamia lanceolata)人工林为研究对象,采用弱度间伐(LIT)、中度间伐(MIT)、强度间伐(HIT)等3种间伐强度,研究不同间伐强度林分0—10,10—20,20—40,40—60,60—80,80—100 cm土层总有机碳(SOC)、全氮(TN)及易氧化有机碳(ROC)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)、微生物量碳(MBC)、微生物量氮(MBN)、微生物熵碳(qMBC)、微生物熵氮(qMBN)的变化特征,以探讨不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响。结果表明:间伐降低了土壤SOC和TN的含量,降低幅度分别为1.4%~36.9%,3.1%~45.7%。间伐增加了土壤MBC、NO_3~--N的含量,而对ROC、NH_4~+-N和MBN的程度在不同土层有差异,qMBC和qMBN随着间伐强度的增加而增大。相关性分析表明,土壤SOC分别与TN、qMBC、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01);TN与qMBN、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01)。杉木人工林间伐处理降低了土壤表层SOC和TN含量,增加了土壤SMBC和qMBC、qMBN,同时也增加了土壤表层(0—10 cm)SMBN。抚育间伐导致土壤SOC和TN含量降低主要是由于活性碳、氮含量的增加,提高土壤中有机质分解速率,最终导致土壤SOC和TN含量降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号