首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

2.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

3.
We examined the long-term effects of cattle slurry, applied at high rates, on microbial biomass, respiration, the microbial quotient (qCO2) and various soil enzyme activities. In March, June, July, and October 1991, slurry-amended grassland soils (0–10 cm) contained significantly higher levels of microbial biomass, N mineralization and enzyme activities involved in N, P, and C cycling. With microbial biomass as the relative value, the results revealed that the slurry treatment influenced enzyme production by the microbial biomass. High levels of urease activity were the result not only of a larger microbial biomass, but also of higher levels of enzmye production by this microbial biomass. The ratio of alkaline phosphatase and xylanase to microbial biomass was nearly constant in the different treatments. The metabolic quotient (qCO2) declined with increased levels of slurry application. Therefore it appears that microorganisms in slurry-amended soils require less C and energy if there is no competition for nutrients. The results of this study suggest that urease activity, nitrification, and respiration (metabolic quotient) can be used as indicators of environmental stress, produced by heavy applications of cattle slurry.  相似文献   

4.
Understanding the chronological changes in soil microbial properties of turfgrass ecosystems is important from both the ecological and management perspectives. We examined soil microbial biomass, activity and N transformations in a chronosequence of turfgrass systems (i.e. 1, 6, 23 and 95 yr golf courses) and assessed soil microbial properties in turfgrass systems against those in adjacent native pines. We observed age-associated changes in soil microbial biomass, CO2 respiration, net and gross N mineralization, and nitrification potential. Changes were more evident in soil samples collected from 0 to 5 cm than the 5 to 15 cm soil depth. While microbial biomass, activity and N transformations per unit soil weight were similar between the youngest turfgrass system and the adjacent native pines, microbial biomass C and N were approximately six times greater in the oldest turfgrass system compared to the adjacent native pines. Potential C and N mineralization also increased with turfgrass age and were three to four times greater in the oldest vs. the youngest turfgrass system. However, microbial biomass and potential mineralization per unit soil C or N decreased with turfgrass age. These reductions were accompanied by increases in microbial C and N use efficiency, as indicated by the significant reduction in microbial C quotient (qCO2) and N quotient (qN) in older turfgrass systems. Independent of turfgrass age, microbial biomass N turnover was rapid, averaging approximately 3 weeks. Similarly, net N mineralization was ∼12% of gross mineralization regardless of turfgrass age. Our results indicate that soil microbial properties are not negatively affected by long-term management practices in turfgrass systems. A tight coupling between N mineralization and immobilization could be sustained in mature turfgrass systems due to its increased microbial C and N use efficiency.  相似文献   

5.
Grazing animals recycle a large fraction of ingested C and N within a pasture ecosystem, but the redistribution of C and N via animal excreta is often heterogeneous, being highest in stock camping areas, i.e., near shade and watering sources. This non-uniform distribution of animal excreta may modify soil physical and chemical attributes, and likely affect microbial community eco-physiology and soil N cycling. We determined microbial population size, activity, N mineralization, and nitrification in areas of a pasture with different intensity of animal excretal deposits (i.e., stock camping, open grazing and non-grazing areas). The pasture was cropped with coastal bermudagrass (Cynodon dactylon L.) and subjected to grazing by cattle for 4 y. Soil microbial biomass, activity and N transformations were significantly higher at 0-5 cm than at 5-15 cm soil depth, and the impacts of heterogeneous distribution of animal excreta were more pronounced in the uppermost soil layer. Microbial biomass, activity and potential net N mineralization were greater in stock camping areas and were significantly correlated (r2≈0.50, P<0.05) with the associated changes in total soil C and N. However, gross N mineralization and nitrification potential tended to be lower in stock camping areas than in the open grazing areas. The lower gross N mineralization, combined with greater net N mineralization in stock camping areas, implied that microbial N immobilization was lower in those areas than in the other areas. This negative association between microbial N immobilization and soil C is inconsistent with a bulk of publications showing that microbial N immobilization was positively related to the amount of soil C. We hypothesized that the negative correlation was due to microbial direct utilization of soluble organic N and/or changes in microbial community composition towards active fungi dominance in stock camping areas.  相似文献   

6.
连年翻压绿肥对植烟土壤微生物量及酶活性的影响   总被引:15,自引:1,他引:14  
通过3年田间定位试验,研究连年翻压绿肥对植烟土壤微生物量碳、氮及酶活性的影响。结果表明,连年翻压绿肥能提高土壤微生物量碳、氮及土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶的活性,且随翻压年限的增加而增加。整个生育期,翻压3年绿肥的处理与对照相比微生物量碳、氮分别提高31.0%~67.1%、23.0%~145.1%;土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶活性分别提高34.4%~51.9%、11.0%~18.6%、58.0%~172.7%、24.0%~50.0%,表明翻压绿肥后土壤生物过程活跃,利于有机物质的转化和烤烟正常生长所需的营养供应。动态变化特征表明,翻压绿肥1、2、3年的各处理微生物量碳、氮均在团棵期出现峰值,土壤脲酶、酸性磷酸酶、过氧化氢酶均在旺长期出现峰值。在出现峰值时翻压3年的处理与对照相比微生物量碳、氮分别提高67.1%、60.7%;土壤脲酶、酸性磷酸酶、过氧化氢酶活性分别提高51.9%、14.2%、30.6%。此时正值生育旺期,利于烟株生长发育,说明连年翻压绿肥后培肥土壤效果显著。土壤微生物量C、N和酶活性能灵敏反映土壤肥力的变化,可作为评价土壤质量的生物学指标。  相似文献   

7.
土壤酶驱动土壤生态系统养分的循环和控制生态系统的功能。本研究以生长年限为10、20年和30年的柑橘林0~20 cm和20~40 cm土层土壤为研究对象,主要探讨了土壤脲酶、转化酶和过氧化氢酶活性随着柑橘林龄的延长和土壤深度的增加的变化规律。结果表明,随着柑橘林龄的延长,0~20 cm土层土壤过氧化氢酶活性10年和20年样地之间无显著性差异,但都显著大于30年的样地;而0~20 cm土层土壤转化酶和脲酶活性逐渐提高,20年时达到最大值,其后又降低。随着土壤深度的增加,过氧化氢酶、转化酶和脲酶活性在3个林龄的柑橘林中都呈现显著的下降趋势。相关性分析的结果表明,土壤转化酶活性、脲酶活性都与土壤有机碳和微生物量碳氮之间都具有显著的正相关性,而过氧化酶氢活性与土壤理化特性及其微生物量之间都无显著的相关性。主成分分析结果进一步显示,土壤转化酶活性、脲酶活性、有机碳和微生物生物量碳氮均在第一主成分中具有较大的载荷,对第一主成分的贡献最大。以上结果表明脲酶和转化酶活性能够做为柑橘土壤质量变化的敏感指标。  相似文献   

8.
In a field study, long-term application of compost to a tropical Aeric Endoaquept under continuous rice growing in a rice-rice-fallow sequence resulted in the stimulation of microbial biomass and select soil enzyme activities. Mean seasonal soil microbial biomass-C (Cmic) increased by 42%, 39% and 89% in inorganic fertilizer, compost and compost+inorganic fertilizer treatments, respectively, over the unamended control. Cmic content was also influenced by the rice crop growth stage and was highest at maximum tillering stage irrespective of treatments and declined thereafter. Soil organic C (Corg) content showed highly significant positive correlation with dehydrogenase, urease, cellulase, β-glucosidase and fluorescein di-acetate (FDA) hydrolysis activity, and a positive but not significant correlation with invertase and amidase activity. C/N ratio which was lowest in unamended control plots showed a significant positive relationship with only the enzymes involved in C cycle. Stepwise regression analysis revealed that for prediction of both total organic C and total N, FDA hydrolysis activity contributed significantly for the variance and explained up to 85-96% variability. Results demonstrated that microbial biomass and soil enzyme activity is sensitive in discriminating between long-term organic residue amendment practices.  相似文献   

9.
《Applied soil ecology》2010,46(3):144-151
Soil microbial activity plays a crucial role in soil microbiological processes, which can be used as a useful indicator to determine the ecological effects of heavy metal pollution on soils. The objective was to determine the effects of heavy metal pollution on mining soils at the Lawu mine of central Tibet, China on soil enzyme activities (sucrase, urease and acid phosphatase), microbial biomass C, N and P (MBC, MBN, and MBP), basal respiration, metabolic quotients, and N mineralization. Sixteen soil samples around the mine were sampled, and one soil sample, 2 km from the mine center, was taken as the control. Compared to the control, mining soils were polluted by heavy metals, Cu, Zn, Pb and Cd, resulting in decreases of sucrase activities, urease activities, acid phosphatase activities, MBC, MBN, MBP, and N mineralization, and increases of basal respiration and qCO2. Multivariate analysis (cluster analysis [CA], principle component analysis [PCA] and canonical correlation analysis [CCA]) indicated nine microbial variables were only reduced to one principal component explaining 72% of the original variances, and MBC (R2 = 0.93) had the highest positive loadings on the principal component. Mining soils polluted by heavy metals were perfectly clustered into four groups, which were highly distinguished by MBC. There were significant canonical correlations between soil heavy metals and microbial indexes on two canonical variates (R1 = 0.99, p < 0.001; R2 = 0.97, p < 0.01), which further demonstrated significant correlations between soil heavy metal contents and microbial characteristics. Hence, our results suggested that MBC may be used a sensitive indicator for assessing changes in soil environmental quality in metal mine of central Tibet.  相似文献   

10.
Biochemical characterization of urban soil profiles from Stuttgart, Germany   总被引:1,自引:0,他引:1  
The knowledge of biochemical properties of urban soils can help to understand nutrient cycling in urban areas and provide a database for urban soil management. Soil samples were taken from 10 soil profiles in the city of Stuttgart, Germany, differing in land use—from an essentially undisturbed garden area to highly disturbed high-density and railway areas. A variety of soil biotic (microbial biomass, enzyme activities) and abiotic properties (total organic C, elemental C, total N) were measured up to 1.9 m depth. Soil organic matter was frequently enriched in the subsoil. Microbial biomass in the top horizons ranged from 0.17 to 1.64 g C kg−1, and from 0.01 to 0.30 g N kg−1, respectively. The deepest soil horizon at 170-190 cm, however, contained 0.12 g C kg−1 and 0.05 kg N kg−1 in the microbial biomass. In general, arylsulphatase and urease activity decreased with depth but in three profiles potentially mineralizable N in the deepest horizons was higher than in soil layers directly overlying. In deeply modified urban soils, subsoil beside topsoil properties have to be included in the evaluation of soil quality. This knowledge is essential because consumption of natural soils for housing and traffic has to be reduced by promoting inner city densification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号