首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Soil microarthropods are an important component in soil food webs and their responses to climate change could have profound impacts on ecosystem functions. As part of a long-term manipulative experiment, with increased temperature and precipitation in a semiarid temperate steppe in the Mongolian Plateau which started in 2005, this study was conducted to examine effects of climate change on the abundance of soil microarthropods. Experimental warming had slightly negative but insignificant effects on the abundance of mites (−14.6%) and Collembola (−11.7%). Increased precipitation greatly enhanced the abundance of mites and Collembola by 117 and 45.3%, respectively. The response direction and magnitude of mites to warming and increased precipitation varied with suborder, leading to shifts in community structure. The positive relationships of mite abundance with plant cover, plant species richness, and soil microbial biomass nitrogen suggest that the responses of soil microarthropods to climate change are largely regulated by food resource availability. The findings of positive dependence of soil respiration upon mite abundance indicate that the potential contribution of soil fauna to soil CO2 efflux should be considered when assessing carbon cycling of semiarid grassland ecosystems under climate change scenarios.  相似文献   

2.
The net annual exchange of carbon between the atmosphere and terrestrial ecosystems is of prime importance in determining the concentration of CO2 ([CO2]) in the atmosphere and consequently future climate. Carbon loss occurs primarily through soil respiration; it is known that respiration is sensitive to the global changes in [CO2] and temperature, suggesting that the net carbon balance may change in the future. However, field manipulations of temperature and [CO2] alter many important environmental factors so it is unclear how much of the observed alterations in soil respiration is due to changes of microbial function itself instead of changes to the physical and chemical environment. Here we focus on resolving the importance of changes in the microbial community in response to warming and elevated [CO2] on carbon mineralisation, something not possible in field measurements. We took plant material and soil inocula from a long running experiment where native grassland had been exposed to both warming and elevated CO2 and constructed a reciprocal transplant experiment. We found that the rate of decomposition (heterotrophic respiration) was strongly determined by the origin of the microbial community. The combined warming + elevated CO2 treatment produced a soil community that gave respiration rates 30% higher when provided with shoot litter and 70% for root litter than elevated CO2 treatment alone, with the treatment source of the litter being unimportant. Warming, especially in the presence of elevated CO2, increased the size of the apparent labile carbon pool when either C3 or C4 litter was added. Thus, the metabolic activity of the soil community was affected by the combination of warming and elevated CO2 such that it had an increased ability to mineralise added organic matter, regardless of its source. Therefore, soil C efflux may be substantially increased in a warmer, high CO2 world. Current ecosystem models mostly drive heterotrophic respiration from plant litter quality, soil moisture and temperature but our findings suggest equal attention will need to be paid to capturing microbial processes if we are to accurately project the future C balance of terrestrial ecosystems and quantify the feedback effect on atmospheric concentrations of CO2.  相似文献   

3.
The fate of global soil carbon stores in response to predicted climate change is a ‘hotly’ debated topic. Considerable uncertainties remain as to the temperature sensitivity of non-labile soil organic matter (SOM) to decomposition. Currently, models assume that organic matter decomposition is solely controlled by the interaction between climatic conditions and soil mineral characteristics. Consequently, little attention has been paid to adaptive responses of soil decomposer organisms to climate change and their impacts on the turnover of long-standing terrestrial carbon reservoirs. Using a radiocarbon approach we found that warming increased soil invertebrate populations (Enchytraeid worms) leading to a greater turnover of older soil carbon pools. The implication of this finding is that until soil physiology and biology are meaningfully represented in ecosystem carbon models, predictions will underestimate soil carbon turnover.  相似文献   

4.
Soil respiration is one of the major carbon (C) fluxes between terrestrial ecosystems and the atmosphere and plays an important role in regulating the responses of ecosystem and global C cycling to natural and anthropogenic perturbations. A field experiment was conducted between April 2005 and October 2006 in a semiarid grassland in northern China to examine effects of topography, fire, nitrogen (N) fertilization, and their potential interactions on soil respiration. Mean soil respiration was 6.0% higher in the lower than upper slope over the 2 growing seasons. Annual burning in early spring caused constant increases in soil respiration (23.8%) over the two growing seasons. In addition, fire effects on soil respiration varied with both season and topographic position. Soil respiration in the fertilized plots was 11.4% greater than that in the unfertilized plots. Water- and plant-mediation could be primarily responsible for the changes in soil respiration with topography and after fire whereas the positive responses of soil respiration to N fertilization were attributable to stimulated plant growth, root activity and respiration. The different mechanisms by which topography, fire, and N fertilization influence soil respiration identified in this study will facilitate the simulation and projection of ecosystem C cycling in the semiarid grassland in northern China.  相似文献   

5.
Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increased air temperature and decreased precipitation on soil respiration dynamics during dry (2009) and wet (2010) years, and investigated the relative importance of soil temperature and moisture as environmental drivers of soil respiration, in a semiarid grassland from central Spain. Soil respiration rates were significantly lower in the dry than in the wet year, regardless of biocrust cover. Warming increased soil respiration rates, but this response was only significant in biocrust-dominated areas (>50% biocrust cover). Warming also increased the temperature sensitivity (Q10 values) of soil respiration in biocrust-dominated areas, particularly during the wet year. The combination of warming and rainfall exclusion had similar effects in low biocrust cover areas. Our results highlight the importance of biocrusts as a modulator of soil respiration responses to both warming and rainfall exclusion, and indicate that they must be explicitly considered when evaluating soil respiration responses to climate change in drylands.  相似文献   

6.
高寒草原是青藏高原广泛分布的植被类型。本文以贡嘎南山-拉轨岗日山南坡高寒草原生态系统为对象,采用野外调查与室内分析相结合的试验方法,对高寒草原生态系统植被碳密度的分布特征及其影响因素进行了研究。结果表明:贡嘎南山-拉轨岗日山南坡高寒草原生态系统植被碳密度平均为0.8435±0.6048 kg/m2,变异系数71.69%。在海拔4424~4804 m范围内,随着海拔升高,植被碳密度表现出增加→减少的分布特征。影响植被碳密度的关键环境因子是:植被高度、0—10 cm地下生物量、10—20 cm地下生物量、0—40 cm土壤含水量、0—20 cm土壤容重、20—40 cm土壤容重、土壤有机质、土壤速效钾含量和土壤速效氮含量。  相似文献   

7.
Climate warming may promote soil organic carbon(SOC) decomposition and alter SOC stocks in terrestrial ecosystems, which would in turn affect climate warming. We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigê on the eastern Tibetan Plateau, China. Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season, promoted above-and be...  相似文献   

8.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

9.
Functional aspects of soil animal diversity in agricultural grasslands   总被引:19,自引:0,他引:19  
There has been recent interest in the characterization of soil biodiversity and its function in agricultural grasslands. Much of the interest has come from the need to develop grassland management strategies directed at manipulating the soil biota to encourage a greater reliance on ecosystem self-regulation. This review summarises information on selected groups of soil animals in grasslands, the factors influencing their abundance, diversity and community structure and their relationships to the functioning and stability of grassland ecosystems. Observations on the impacts of agricultural managements on populations and communities of soil fauna and their interactions confirm that high input, intensively managed systems tend to promote low diversity while lower input systems conserve diversity. It is also evident that high input systems favour bacterial-pathways of decomposition, dominated by labile substrates and opportunistic, bacterial-feeding fauna. In contrast, low-input systems favour fungal-pathways with a more heterogeneous habitat and resource leading to domination by more persistent fungal-feeding fauna. In view of this, we suggest that low input grassland farming systems are optimal for increasing soil biotic diversity and hence self-regulation of ecosystem function. Research is needed to test the hypothesis that soil biodiversity is positively associated with stability, and to elucidate relationships between productivity, community integrity and functioning of soil biotic communities.  相似文献   

10.
The fate of carbon (C) in grassland soils is of particular interest since the vast majority in grassland ecosystems is stored below ground and respiratory C‐release from soils is a major component of the global C balance. The use of 13C‐depleted CO2 in a 10‐year free‐air carbon dioxide enrichment (FACE) experiment, gave a unique opportunity to study the turnover of the C sequestered during this experiment. Soil organic matter (SOM), soil air and plant material were analysed for δ13C and C contents in the last year of the FACE experiment (2002) and in the two following growing seasons. After 10 years of exposure to CO2 enrichment at 600 ppmv, no significant differences in SOM C content could be detected between fumigated and non‐fumigated plots. A 13C depletion of 3.4‰ was found in SOM (0–12 cm) of the fumigated soils in comparison with the control soils and a rapid decrease of this difference was observed after the end of fumigation. Within 2 years, 49% of the C in this SOM (0–12 cm) was exchanged with fresh C, with the limitation that this exchange cannot be further dissected into respiratory decay of old C and freshly sequestered new C. By analysing the mechanistic effects of a drought on the plant‐soil system it was shown that rhizosphere respiration is the dominant factor in soil respiration. Consideration of ecophysiological factors that drive plant activity is therefore important when soil respiration is to be investigated or modelled.  相似文献   

11.
Abstract

Grassland degradation not only results in soil degradation and severe decreases in land productivity, but also can promote the emission of soil carbon and nitrogen compounds as greenhouse gases into the atmosphere. The primary objective of this study was to characterize the impact of grassland degradation on carbon and nitrogen budgets in Inner Mongolia, China. We investigated the changes of total carbon, organic carbon, inorganic carbon and total nitrogen that occur in a grassland ecosystem (including vegetation and top 30 cm soil layer) in the course of grassland degradation. Total carbon stored in the grassland ecosystem was reduced by up to 14%, depending on the severity of the degradation. Total nitrogen storage was reduced by almost 10% under severe degradation, but was slightly increased at light and intermediate degradation, indicating that grazing exclusion would not lead to an increase in nitrogen storage in the ecosystem. Over 98% of the total carbon and nitrogen stored in the grassland ecosystem was bound in the soil which provides the dominant and most stable carbon and nitrogen pool in the ecosystem. Most of the soil carbon and nitrogen storage was present in soil water-stable aggregates and was released as soil water-stable aggregates break in the course of grassland degradation. In conclusion, the carbon sequestration capacity of the vegetation decreased significantly, and substantial proportions of soil carbon and nitrogen were lost in the course of grassland degradation, resulting in unbalanced carbon and nitrogen budgets. Strategies to restore degraded grassland must be designed to increase the carbon and nitrogen storage potential of grassland ecosystems.  相似文献   

12.
Alpine ecosystems at high altitudes and latitudes are notably sensitive to climatic warming and the Tibetan Plateau is a widely distributed alpine ecosystem. The magnitude of climatic warming on the Tibetan Plateau is expected to be considerably greater than the global average. However, a synthesis of the experimental warming soil carbon and nitrogen data is still lacking and whether forest soils are more sensitive to warming than grassland soils remains unclear. In this study, we used a meta-analysis approach to synthesise 196 observations from 25 published studies on the Tibetan Plateau. Warming significantly increased microbial biomass carbon (MBC) by 14.3% (95% CI: 2.9–24.6%), microbial biomass nitrogen (MBN) by 20.1% (95% CI: 2.0–45.1%), net nitrogen mineralization by 49.2% (95% CI: 38.1–62.3%) and net nitrification by 56.0% (95% CI: 51.4–66.1%), but did not significantly affect soil carbon (95% CI: −13.9 to 2.7%) or nitrogen (95% CI: −12.4 to 2.6%). The mean annual air temperature was negatively correlated with the warming effects on MBC and MBN. Grasslands exhibited significant MBC and MBN responses to warming. Specifically, soil microbial biomass was more responsive to warming in colder environments. Moreover, forest soils are not always more sensitive to warming than grassland soils as previous studies have suggested. These findings indicate that clarifying the effect of warming on alpine soils need consider ecosystem types and their local climate.  相似文献   

13.
ABSTRACT

Conversion of grassland to cropland is widely reported to deplete soil organic carbon (SOC) largely due to tillage effects on the decomposition of SOC. However, most studies report on long-term changes in SOC following the conversion and little is known about the changes in the short term. Net ecosystem carbon budget (NECB) measures the difference between total C input (i.e., manure, above- and below-ground plant residues) and C loss through heterotrophic respiration (RH). However, most studies that report temporal SOC do not report other components of the NECB like RH, total C inputs and often do not include the cumulative annualized change of these components. This review evaluated the change in C input, RH, NECB and SOC after conversion of permanent/continuous grassland to cropland within 5 years after the conversion. We also reviewed and compared no-tillage and conventional tillage on SOC storage and accumulation. Total C input was higher in grassland than cropland largely due to high root biomass, as opposed to aboveground residue, and therefore grassland tended to have higher NECB. Despite higher NECB in grassland, the SOC stocks in cropland (cornfield) converted from grassland were greater than that in continuous grassland within first 2–3 years of conversion. The combination of manure C addition and tillage in cropland showed potential to maintain NECB and increase SOC. Within the continuous grassland C addition alone increased NECB but did not result in a corresponding increase in SOC. Residue retention and manure addition are recognized as good practices for increasing SOC, this study however, shows that combining them with occasional tillage, especially in managed grasslands, could increase the rate of SOC storage in soils.  相似文献   

14.
A radiocarbon approach was used to investigate the roles of temperature and soil fauna activity in the turnover of ‘old’ non-labile carbon in a peatland ecosystem. We investigated the impacts of enchytraeids on carbon turnover in two different soil layers, with different incorporation of the ‘bomb’ peak, when incubated at two different temperatures. Results showed that, in agreement with previous studies, warmer temperatures promoted reproduction rates of enchytraeids, with the top layer supporting higher animal densities and biomass. With independence of the animal treatment, soil respiration in the top 5 cm was four times higher than in the deeper layer suggesting that decomposition was greater in the upper layer, with the response being greater at the highest temperature treatment. Furthermore, independent of temperature, the presence of enchytraeids in the top layer significantly enhanced the release of non-labile C as DOC. Similarly, at the bottom layer, ‘older’ C sources were mobilised in response to warming and a greater amount of pre-bomb carbon was released into the soil solution at 20 °C when the worms were present. A strong positive link between the ages of the C assimilated by the animals and released through mineralization suggests an important role of soil biology in the mobilisation of the older C pools in soils and should be taken into account in developing global C models to predict the response of soil C dynamics to climate change.  相似文献   

15.
色季拉山4种林型土壤呼吸及其影响因子   总被引:3,自引:0,他引:3  
土壤碳是森林生态系统最大的碳库,是其森林生态系统碳循环的极其重要组分。森林土壤呼吸时陆地生态系统土壤呼吸的重要组成部分,其动态变化对全球碳平衡有着重要的影响,然而目前对藏东南地区森林土壤呼吸的研究还比较薄弱。为探讨不同林型土壤呼吸差异及其影响因子,采用Li-8100便携式土壤呼吸测定仪,研究了藏东南色季拉山4种原始森林生态系统(高山灌丛AS、方枝柏SS、杜鹃RF、急尖长苞冷杉AGSF)的土壤碳动态。结果表明:(1)藏东南色季拉山寒温带森林土壤呼吸具有明显的日变化和季节变化。在日变化方面,CO2的排放通量存在明显的日变化规律,排放通量在白天16:00左右最高,最低值出现在凌晨6:00左右,一天内土壤呼吸作用均呈单峰型曲线变化。季节变化方面,CO2排放的通量的季节变化趋势表现为6月份随着天气转暖和植被生长土壤呼吸作用逐渐增大,7月份气温最高时土壤呼吸作用也达到最大值随后,9月份气温逐渐下降,土壤呼吸作用也逐渐降低。(2)4种森林类型的土壤呼吸速率在植物生长季内与土壤表层(10 cm)土壤温度均呈不同程度的正相关,而与土壤含水量的相关性较弱。土壤温度是决定藏东南色季拉山土壤呼季节变化的主要因子。该研究为明确森林生态系统土壤呼吸变化规律及其影响因素的控制提供参考,同时对估算地区碳平衡、评估区域碳源汇具有重要意义。  相似文献   

16.
Journal of Soils and Sediments - The soil is the largest carbon pool in the terrestrial ecosystem. Changes of soil respiration with the climate warming are essential for the carbon cycling between...  相似文献   

17.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

18.
The introduction of N2-fixing white clover (Trifolium repens) in grassland is a management measure that may contribute to sustainable grassland systems by making them less dependent on inorganic fertilizers. However, little is known about the impact of this measure on soil biota and ecosystem services. We investigated earthworms, nematodes, bacteria and fungi in an experiment in which white clover-only and a mixture of grass and white clover without fertilization were compared with grass-only with and without fertilization.In comparison with grass-only, white clover-only had a lower total root biomass and a lower C/N-ratio in the above- and below-ground plant biomass. These plant characteristics resulted in a lower bacterial biomass, a lower fungal biomass, a higher proportion of bacterivorous nematode dauerlarvae, a lesser proportion of herbivorous nematodes and a greater abundance of earthworms in clover-only.The quantity and quality (C/N-ratio) of the above- and below-ground plant biomass in the mixture of grass and white clover (20–30% clover in the DM) was comparable with grass fertilized with 150 kg N ha−1 of inorganic fertilizer. Differences between these treatments might show specific clover effects in the grass–clover mixture on soil biota other than quantity and C/N-ratio of the litter. However, the only differences were a higher proportion of bacterivorous nematode dauerlarvae and a different nematode community composition in grass–clover.The soil structure in white clover-only showed a higher proportion of angular blocky elements, a lower penetration resistance, a higher number of earthworm burrows, a higher potential N-mineralization and respiration than the soil in grass-only. This suggests that clover stimulates the ecosystem services of water infiltration and supply of nutrients, but is less conducive to soil structure maintenance. The grass–clover mixture differed from grass-only in a higher respiration and from clover-only in a higher percentage of soil crumbs. We suggest that when clover is introduced in grassland to reduce the reliance on inorganic fertilizer, the mixture of grass and clover maintains the positive impact of grass roots on soil structure and increases the supply of nutrients via the soil food web. Thus, a grass–clover mixture combines the agronomic benefits of the two plant types.  相似文献   

19.
严珺  吴纪华 《土壤》2018,50(2):231-238
生物多样性与生态系统功能一直是生态学研究的一个热点。近些年来的研究表明,植物多样性除了影响陆地生态系统地上部分的初级生产力等生态系统功能,还会间接影响地下生物多样性及土壤生态系统过程。本文概述了植物多样性对土壤动物的影响及其主要机制,归纳了植物多样性通过改变输入土壤中的资源数量与资源多样性、微生境结构、土壤环境因子等影响土壤动物的途径。目前关于土壤动物群落对植物多样性的响应仍存在很多问题和争议,本文总结了需要进一步深入研究的方向,特别指出了要加强研究影响植物多样性与土壤动物关系的生物与非生物因子、后续的生态效应和反馈、不同机制和途径的贡献定量化等。  相似文献   

20.
Chinese grasslands have undergone great changes in land use in recent decades. Approximately 18.2% of the present arable land in China originated from the cultivation of grassland, but its impact on the carbon cycle has not been fully understood. This study was conducted in situ for 3 years to assess the comprehensive effects of cultivation of temperate steppe on soil organic carbon (SOC) and soil respiration rates as well as ecosystem respiration. As compared with those in the Stipa baicalensis steppe, the SOC concentrations at depths of 0–10 and 10–20 cm in the spring wheat field were found to have decreased by 38.3 and 17.4% respectively from 29.5 and 21.9 g kg−1 to 18.2 and 18.1 g kg−1 after a cultivation period of 30 years. Accordingly, the total amounts of soil respiration through the growing season (from April to September) in 2002, 2003 and 2004 were 265.2, 282.2 and 237.4 g C m−2 respectively in the spring wheat field, which were slightly lower than the values of 342.2, 412.0 and 312.1 g C m−2 in the S. baicalensis steppe, while ecosystem respiration of 690.9, 991.2 and 569.6 g C m−2 respectively in the spring wheat field were markedly higher than those of 447.0, 470.9 and 429.7 g C m−2 in the steppe plot. Similar seasonal variations of ecosystem respiration and soil respiration existed in both sample sites. Respiration rates were higher and greater differences existed in both ecosystem respiration and soil respiration during the exuberant growth stage of plants (from mid-June to mid-August). However, in the slower-growth period of the growing season (before late May and after late August), the CO2 effluxes of the two sample sites were similar and remained at a relatively low level. The results also showed that ecosystem respiration and soil respiration were under similar environmental controls in both sample sites. Soil water content at a depth of 0–10 cm and soil temperatures at 5 and 10 cm were the main factors affecting the variations in ecosystem respiration and soil respiration rates in droughty years of 2002 and 2004 and in the rainy 2003, respectively. This study suggests that the conversion of the grassland to the spring wheat field has increased the carbon loss of the whole ecosystem due to the change of vegetation cover type and significantly reduced the carbon storage of surface soil. In addition, the tillage of grassland had different effects on ecosystem respiration and soil respiration. The effects were also dissimilar in different growth stages, which should be fully considered when assessing and predicting the effects of cultivation on the net CO2 balance of grassland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号