首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于Radarsat-2影像的复杂种植结构下旱地作物识别   总被引:3,自引:5,他引:3  
为提高基于Radarsat-2旱地作物识别的精度,该文研究了一种复杂种植结构背景下具有共同生长期作物的识别方法。研究区为一个12 km×12 km的样方,位于内蒙古上库力农场额很队,以春小麦、油菜2种共同生长期作物为识别对象,利用Spot-6影像和Radarsat-2影像,在数据预处理的基础上分析研究区内典型地物样本的后向散射系数在不同极化波段上的变化特征,根据该变化特征设计图像增强算法,然后基于图像增强后的影像设定合理的阈值实现作物识别提取。结果表明:该方法准确识别并有效提取了共同生长期作物春小麦和油菜的种植面积,总体精度达到97%,Kappa系数为0.96。该方法简便、快捷、可靠,为春小麦、油菜等旱地共同生长期作物种植面积提取提供重要的科学技术支撑。  相似文献   

2.
时空协同的地块尺度作物分布遥感提取   总被引:3,自引:3,他引:0  
地块尺度作物分布信息清晰直观地反映了农田位置、空间形态等空间细节和种植类型信息,对精准农业管理、种植补贴发放和农业资源调查等具有重要价值。虽然遥感时空协同思路为地块尺度作物分布提取提供了解决方案,但在农田地块提取和时序特征构建方面尚存在不足。该研究基于遥感时空协同的思路,以Google Earth高空间分辨率影像为底图,利用擅于学习影像视觉特征的D-LinkNet深度学习模型,快速、精准提取农田地块形态;以地块为观测单元,利用Landsat8和Sentinel-2多源遥感的"碎片化"无云数据构建地块时序数据集,基于加权Double-Logistic函数重建地块归一化植被指数(Normalized Difference Vegetation Index,NDVI)时序曲线;提取地块物候特征和多时相光谱特征,经过特征优选和随机森林分类模型构建,开展地块尺度作物分布制图。以广西扶绥县为研究区开展试验,共提取地块43.7万个,边界准确率为84.54%,相较于常规基于多尺度分割的地块提取,基于D-LinkNet的地块提取方法直接排除了非农田地物的干扰,地块形态与现实情况符合度更高;地块NDVI时间序列重建结果能够较好地捕捉作物开始生长、旺盛期、成熟收获期的动态变化趋势;分类特征重要性评价结果显示,红边特征、与时间相关的物候特征在分类中发挥重要作用,当联合物候特征和光谱特征时分类效果最佳;根据特征重要性分析不同特征数量情况下的分类精度,当特征数量大于40维时,作物分类精度和Kappa系数保持稳定,总体分类精度维持在88%左右;对扶绥县地块尺度作物分布进行制图,提取甘蔗地块277 421个、水稻地块33 747个、香蕉地块4 973个、柑橘地块102 055个,分别占农田地块总数的63.48%、7.72%、1.14%、23.35%,种植面积占比分别为69.78%、7.12%、1.71%、18.06%。该研究在理论上构建了遥感时空协同的地块尺度作物分类模型,为大范围、地块尺度作物分布遥感提取提供了实用化方案。  相似文献   

3.
土壤全氮的无人机高光谱响应特征及估测模型构建   总被引:1,自引:1,他引:0  
为更好地体现出光谱与土壤全氮(soil totalnitrogen,STN)含量之间的响应关系,实现以高光谱快速估测土壤全氮含量,该研究以无人机搭载高光谱传感器获取农田土壤高光谱影像,提取光谱反射率并进行数学变换,基于灰色关联度和皮尔逊相关系数提取各光谱中土壤全氮含量的敏感波段,基于敏感波段采用偏最小二乘回归(partialleastsquares regression,PLSR)、岭回归(ridge regression,RR)和随机森林(random forest,RF)构建土壤全氮的高光谱反演模型,筛选出最优模型并对研究区土壤全氮含量进行反演制图。结果表明:1)反射率的倒数光谱中的敏感波段(996~1 003 nm)集中在近红外长波范围内,反射率的一阶微分(first derivative of reflectance,FDR)光谱中的敏感波段(398~459、469和472~1 003 nm)和反射率对数的一阶微分光谱中的敏感波段(398~459、463~973和978~1 003 nm)在可见光和近红外范围内都有分布,反射率的一阶微分光谱中的敏感波段(615~625、632和...  相似文献   

4.
RapidEye卫星红边波段对农作物面积提取精度的影响   总被引:11,自引:8,他引:3  
在传统的可见光与红外波段基础上增加红边波段(690~730 nm),是当前高分辨卫星传感器研制的明显趋势。德国Rapid Eye卫星携带有红边波段传感器,该文基于黑龙江省北安市东胜乡2014年7月27日的Rapid Eye遥感数据,采用监督分类的方法,通过计算有红边参与条件下、无红边参与条件下,玉米、大豆及其他3种地物类型的可分性测度、分类精度及景观破碎度等指标,比较分析了2种波段组合方式下的红边波段对农作物面积提取精度的影响。其中,监督分类的训练样本是以覆盖研究区的2 km×2 km格网为基本单元,在玉米和大豆面积比例等概率原则下,选取了10个网格作为训练样本,样方内作物的识别采用目视解译的方式完成。精度验证是采用覆盖研究区的农作物面积本底调查结果评价的,本底调查数据是在5 m空间分辨率Rapideye数据初步分类基础上,根据多时相Landsat-8/OLI(Operational Land Imager)数据季节变化规律,结合地面调查,采用目视修正的方法完成。结果表明,有红边参与的玉米、大豆和其他3种地物类型识别的总体精度为88.4%,Kappa系数为0.81,玉米、大豆和其他3种地物类型的制图精度分别为93.1%,86.0%和87.3%;没有红边参与的3种地物识别的总体精度为81.7%,Kappa系数为0.71,玉米、大豆和其他3种地区类型的制图精度分别为83.9%,73.4%和84.6%;通过引入红边波段,3种地物的总体识别精度提高了6.7百分点,玉米、大豆和其他3种地物类型的识别精度分别提高了9.2百分点,12.6百分点和2.7百分点。利用Jeffries-Matusita方法计算了3种地物的可分性测度,玉米-大豆、玉米-其他、大豆-其他的可分性测度分别由0.84变为1.73、1.37变为1.81、1.27变为1.29;采用破碎度指数计算了景观破碎度,地块数量减少了69.2%,平均地块面积增加了2.2倍,平均地块周长增加了60.50%,地块面积与周长比增加了1.0倍。由上述研究结果可以看出,通过红边波段的引入,增加了地物的间的可分性测度,减少了"椒盐"效应造成的景观破碎度的增加,农作物面积识别整体精度得到了提高。目前搭载红边波段的卫星载荷越来越多,即将发射的国产卫星也拟增加红边波段提高作物识别能力,该文研究结果将为国产红边卫星数据在农业上的应用提供参考。  相似文献   

5.
[目的] 研究快速、准确大面积监测农田土壤pH值,为大面积土壤改良和实现农田精细化管理提供科学支持。[方法] 以南疆阿拉尔市十二团棉田为研究区,采用网格采样法采集231个样点的原位高光谱数据,并同步采集其中116个样点的土壤样品;分析了原位高光谱反射率数据经不同预处理模式后的光谱数据与土壤pH值的相关性;采用偏最小二乘回归、支持向量机回归和随机森林3种建模方法分别建立了土壤pH值的高光谱反演模型,根据模型评价指标优选出最优模型对未采集土壤样点的pH值进行反演制图。[结果] 反射率经微分处理后可有效改善其与土壤pH值的相关性;反射率二阶微分的随机森林模型为所有模型中的最优模型,其验证集的R2为0.87,RMSE为0.04,RPD为2.53;最优模型反演的pH值数据插值所得数字图与实测pH值插值图的空间分布特征高度吻合,能客观反映土壤碱化的空间分布状况。[结论] 随机森林模型为原位反演南疆棉田土壤pH值的最优模型,克里金插值能够客观可视化表达研究区土壤pH值的分布状况。  相似文献   

6.
基于高光谱的鲁西北平原土壤有效磷含量快速检测研究   总被引:2,自引:1,他引:1  
土壤有效磷含量是农田土地评价的指标, 也是农作物施肥的基本指标, 快速准确测量土壤有效磷含量是土壤信息化管理和资源评价的前提条件。高光谱技术的发展为快速有效监测土壤有效磷含量提供了新的途径。本文对466个样点的土壤有机质、碱解氮、有效磷和速效钾含量进行了测定, 通过聚类分析和方差分析选取48个有机质、碱解氮、速效钾含量相近而有效磷差别较大的样点作为研究样点, 采用美国ASD Fieldspec3光谱仪, 对不同有效磷含量的土壤样本高光谱反射率进行测量, 并对反射率进行倒数、对数、平方根、对数的倒数、倒数的对数的变换及其各自相应的一阶导数变换, 将每个土样测定的有效磷含量值与350~ 2 500 nm光谱范围的反射率数据及反射率的9种变换形式逐一逐波段地进行单相关分析, 筛选出对有效磷敏感的光谱波段。将所选取的显著相关波段反射率或变换形式作为自变量, 与土壤中有效磷含量进行一元线性回归方程拟合, 对所建立的回归方程进行优选和检验。研究得出: 采用相关分析方法得出土壤有效磷含量的敏感波段为711 nm, 利用一元线性回归方法, 基于该波段的估算模型为最佳估算有效磷含量模型, 该模型的拟合优度R2达0.822 1, 验证决定系数R2达0.959 1。由此说明, 利用单个敏感波段建立土壤有效磷的反演模型, 可作为快速测量土壤有效磷含量的一种简单而可靠的方法。  相似文献   

7.
Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法   总被引:7,自引:6,他引:1  
选用包含红边等多种不同波段信息的多光谱卫星数据,为区域尺度上展开作物病害监测研究提供更加丰富有效的信息,相比于常规的宽波段卫星遥感影像,搭载红边波段的Sentinel-2影像对作物病害胁迫更加敏感,能显著提高模型精度。该文以陕西省宁强县小麦条锈病为研究对象,基于Sentinel-2影像共提取了26个初选特征因子:3个可见光波段反射率(红、绿、蓝)、1个近红外波段反射率、3个红边波段反射率、14个对病害敏感的宽波段植被指数和5个红边植被指数。结合K-Means和ReliefF算法筛选病害敏感特征,最终筛选出3个宽波段植被指数,包括:增强型植被指数(enhanced vegetation index,EVI)、结构加强色素指数(structure intensive pigment index,SIPI)、简单比值植被指数(simple ratio index,SR),2个红边波段植被指数:归一化红边2植被指数(normalized red-edge2 index,NREDI2)、归一化红边3植被指数(normalized red-edge3 index,NREDI3)。利用BP神经网络方法(back propagation neural network,BPNN),分别以宽波段植被指数和宽波段植被指数结合红边波段指数作为输入变量构建小麦条锈病严重度监测模型,对比2种模型的监测精度。结果显示,基于宽波段植被指数结合红边波段植被指数的监测模型的总体精度达到83.3%,Kappa系数0.73,优于仅基于宽波段植被指数特征所建监测模型的精度73.3%,Kappa系数0.58。说明红边波段能够为病害监测提供有效信息,采用宽波段植被指数和红边波段植被指数相结合的方法能够有效提高作物病虫害监测模型精度。  相似文献   

8.
基于无人机影像的可见光波段植被信息识别   总被引:4,自引:0,他引:4  
该文通过对6种典型地物在无人机影像可见光波段的光谱特性分析,提出一种基于红、绿、蓝波段的可见光植被指数—超绿红蓝差分指数EGRBDI(excess green-red-blue difference index),并运用该植被指数与18种基于可见光波段的植被指数进行精度比较研究。研究表明,在利用均值和1倍标准差获得的区间范围内,EGRBDI各地类之间的信息无重叠交叉现象;该指数能对植被覆盖相对稀疏区域进行植被信息识别,其总体精度为97.67%,Kappa系数为0.9415,较其他18种指数具有更好的植被信息识别能力。利用不同地物覆盖情况的3幅无人机影像作为数据源,对EGRBDI适用性和稳定性进行研究,结果表明,在3个研究区中,基于EGRBDI的植被信息识别总精度均高于93%,Kappa系数均大于0.85,提取精度受地物类型差异影响的波动性较小,能较好地削弱影像中阴影等因素的影响,具有较好的适用性、可靠性和提取精度。  相似文献   

9.
基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值   总被引:1,自引:0,他引:1  
于雷  章涛  朱亚星  周勇  夏天  聂艳 《农业工程学报》2018,34(16):148-154
在植物叶绿素特征波长变量筛选过程中,与叶绿素关系较弱的波长变量极易被忽略,导致这些弱信息变量包含叶绿素的有效信息丢失,因此,确定叶片光谱中弱信息变量对揭示叶绿素高光谱响应规律具有重要意义。该研究以江汉平原大豆鼓粒期的叶片为研究对象,采集80组大豆叶片高光谱和SPAD(soil and plant analyzer development)值,分析SPAD值与大豆叶片反射率相关关系和光谱波长变量自相关关系,基于迭代和保留信息变量法(iteratively retains informative variables,IRIV)筛选大豆叶片的特征波长变量,建立偏最小二乘回归(partial least squares regression,PLSR)和支持向量机(support vector machine,SVM)模型估测SPAD值。结果表明,大豆叶片SPAD值与光谱反射率在可见光波段具有极显著负相关,在近红外波段存在不显著的正相关性(P0.01);可见光、近红外2波段的波长变量之间相关性较弱,但2波段内变量之间的相关性较强;基于IRIV算法确定了大豆叶绿素的特征波长变量,利用特征波长变量建立的估测模型的估测能力高于仅利用强信息波长变量建立的估测模型,表明弱信息变量对估测叶片SPAD值具有重要意义;IRIV-SVM模型估测能力最优,验证集R2和相对分析误差(RPD)分别为0.73、1.82。该文尝试证明了光谱中弱信息变量的重要性,为揭示叶片高光谱响应机理提供了理论依据。  相似文献   

10.
倒伏水稻的识别对灾后农业生产管理、灾害保险、补贴等工作有重要意义。为应用高分辨率遥感影像准确提取倒伏水稻面积,本文利用2019年9月27日获取的哨兵2号多光谱遥感影像,研究黑龙江省同江市倒伏水稻的光谱、纹理特征,并基于光谱与纹理特征建立倒伏水稻的遥感提取模型。研究结果表明水稻倒伏后可见光-近红外-短波红外等8个波段的反射率均升高,其中短波红外、红光和红边1等3个波段的反射率上升大于0.06。倒伏水稻的典型植被指数中,归一化植被指数、比值植被指数、增强植被指数和红边位置指数均降低,但差值植被指数升高。倒伏与正常水稻在红光、红边1和短波红外等3个波段的均值纹理数值差距明显,红光波段的纹理均值差异最大。利用归一化植被指数、地表水分指数、比值植被指数和差值植被指数以及红光波段的纹理均值构建决策树分类模型,监测结果表明农场内倒伏水稻分布较散,其西部和南部水稻受灾面积较大,北部受灾面积较小,中部偏北和东部基本未倒伏。将本文模型所提取的结果与实测面积对比,正常与倒伏水稻的面积识别误差分别为3.33%和2.23%。利用随机验证样本与模型验证结果进行混淆矩阵分析,倒伏水稻的用户精度和制图精度均为92.0%,Kappa系数为0.93。该方法能够适用于大区域倒伏水稻提取,可为高分辨率多光谱遥感数据调查水稻倒伏面积提供相关依据。  相似文献   

11.
该研究旨在准确把握耕地“非农化”的时空格局,为制定合理的土地利用和耕地保护政策提供重要依据。随着特征提取技术和分类算法的进步,利用遥感影像进行大规模耕地动态监测变得更加准确和高效。该研究选用Sentinel-2卫星影像,探讨了不同算法和特征变量在耕地非农化监测中的优势。研究首先提取了4类特征共计31个指标,并通过主成分分析(principipal component analysis, PCA)和相关系数矩阵进行特征优选,获得了12个关键指标,并设计了5种特征组合方案。随后,采用7种基础算法执行影像分类,并通过“单阶段”和“二阶段”两种分类策略,提取耕地“非农化”信息。研究结果表明,有效选择多种特征变量和算法对于提高监测精度至关重要。在所有测试的模型中,采用Softmax构建的二阶段模型精度最高,最优特征组合为光谱特征+光谱指数特征+纹理特征,特征变量维度减少至12个。总体精度、平均用户精度、平均生产者精度和Kappa系数分别达到94.92%、95.16%、93.15%和0.88。对比2020年和2022年研究区数据,发现耕地转变为非农化用地的面积为146.153 km2,而非农化用地转变为耕地的面积为123.074 km2,导致耕地净减少23.079 km2。综上所述,该研究提出的耕地“非农化”监测方法可以为相关的地物信息提取和耕地资源保护与可持续利用等研究提供技术支持和方法参考。  相似文献   

12.
基于Sentinel-2多光谱数据的棉花叶面积指数估算   总被引:2,自引:2,他引:0  
易秋香 《农业工程学报》2019,35(16):189-197
棉花叶面积指数(leaf are index, LAI)的快速、准确获取对棉花长势监测、发育期诊断、面积提取以及产量估算等遥感监测具有重要意义。该研究利用2017年和2018年的Sentinel-2多光谱卫星数据及大面积田间试验观测获取的棉花不同发育期LAI实测数据,构建了基于单波段反射率及各类植被指数的棉花不同发育期及全发育期LAI估算模型,并采用留一验证(LOOCV, leave-one-out cross validation)和交叉验证对模型精度进行了检验。结果表明:1)对于单波段反射率,基于中心波长为842 nm波宽为145 nm的B8近红外波段对不同发育期LAI估算精度最优均方根误差(RMSE, root mean square error, RMSE=0.378);2)对于各类植被指数,花蕾期(20170616)和花铃期(20170802)时增强植被指数(EVI, enhanced vegetation index,)表现最佳(RMSE分别为0.352和0.367),开花期(20180623)时校正土壤调节植被指数(MSAVI2, modified soil adjusted vegetation index 2,)估算精度最高(RMSE=0.323);3)单波段反射率和各类植被指数对全发育期LAI的估算均要优于对单个发育期LAI的估算,其中基于IRECI指数的(invertedred-edge chlorophyllindex)全发育期LAI估算模型精度最佳,LOOCV检验RMSE=0.425,交叉检验RMSE=0.368;将基于IRECI的全发育期LAI估算模型应用到单个发育期LAI估算并与各单个发育期LAI估算模型精度对比,发现交叉验证RMSE平均值仅比LOOCV验证RMSE平均值高0.07,反映了全发育期LAI估算模型良好的普适性。该研究为农作物LAI估算提供了新的数据选择,完善了Sentinel-2卫星数据在LAI估算中的应用领域。  相似文献   

13.
基于GF-6卫星影像多特征优选的酿酒葡萄精准识别   总被引:2,自引:2,他引:0  
多源遥感信息和特征优选是提高农作物识别精度的重要支撑,高分六号(GF-6)卫星作为首次引入红边波段的国产卫星,其丰富的光谱信息为作物识别提供了新的思路和解决途径。该研究基于宁夏回族自治区银川市永宁县2018年6月-2019年3月的GF-6数据,充分利用红边优势提取光谱特征、纹理特征和植被指数特征,构建多种特征组合方案,并根据随机森林算法对特征重要性进行度量,选取最优特征组合对酿酒葡萄进行精准识别。结果表明,与单一特征相比,多源遥感特征的增加显著改善了酿酒葡萄分类效果,其中,植被指数贡献程度最大,光谱特征次之;基于随机森林的优选特征组合分类效果最佳,其中,总体分类精度为94.15%,酿酒葡萄用户精度为94.23%,制图精度为92.59%;以实地调查的4个酒庄为验证区,将酿酒葡萄提取结果与统计数据进行对比,面积相对精度均在70%以上,其中优选特征结果相对精度在90%以上,研究结果将为国产卫星红边波段在植被分类和识别方面的应用提供数据参考。  相似文献   

14.
基于多时相GF-6遥感影像的水稻种植面积提取   总被引:2,自引:1,他引:1  
为获取高精度水稻种植面积提取方法和分析红边信息在作物识别能力上的优越性,该研究选取辽宁省盘锦市为研究区域,利用2020年水稻关键物候期的多时相高分6号宽幅相机(GF-6 WFV)遥感影像,构建归一化植被指数(Normalized Difference Vegetation Index,NDVI)、归一化水体指数(Normalized Difference Water Index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)和归一化差异红边1指数(Normalized Difference Red-Edge 1 Index,NDRE1),根据各地物类型进行时序分析,在获得水稻面积粗提取结果的基础上对其他地类进行掩膜,准确提取水稻种植面积。对2020年盘锦市水稻提取结果进行精度分析,结果表明,基于实测数据进行精度验证的总体精度为94.44%,基于目视解译数据进行精度验证的总体精度和Kappa系数分别为95.60%和0.91。根据目视解译数据对有无红边波段参与的水稻提取结果进行对比分析可知,红边波段的引入使总体分类精度、水稻制图精度和Kappa系数分别提高了3.20个百分点、6.00个百分点和0.06。该研究证明红边波段可以有效降低作物的错分、漏分情况,对水稻精准估产和丰富农作物遥感监测方法具有重要作用,显示出国产红边卫星数据在作物分类、面积提取方面具有巨大应用潜力。  相似文献   

15.
当前面对紧迫的自然资源管理压力和生态环境监测需求,针对国产遥感卫星大数据应用能力的挖掘将面临很大的挑战。GF-6卫星具有大角度、高频次和新谱段的特点,该文基于GF-6卫星数据,测试新增的红边、黄光和紫光波段响应能力。利用具有物理意义的全约束线性光谱混合分解模型,根据研究区物候特征确定四端元包括植被(GV),裸地和建设用地等基质(SU),山体植被阴影(DA)以及水(WA),通过对比保留红边、黄光波段、紫光波段和去除红边、黄光、紫光波段后的分解结果,对各新增波段和GV端元、SU端元、差均方根(RMSE)进行相关性分析;最后对比光谱混合分解结果和基于专家知识决策树分类结果。通过对比丰度值估计参数和决策树分类结果发现红边波段对植被较为敏感,对光谱混合分解模型的适用性、稳健性以及丰度值估计精度有着很大贡献,黄光波段和紫光波段经过数据降维后对植被和裸地、建设用地有少量贡献。通过相关性分析发现红边2波段、近红外波段与GV端元丰度图有最大的相关性,紫光波段、黄光波段和红边1波段与GV端元反向相关;红边1波段、紫光波段和黄光波段与SU端元丰度图显著相关;红边1波段和黄光波段对丰度值计算误差有主要贡献,是主要的噪音来源,紫光波段次之。通过对比GF-6数据和OLI、Sentinel-2数据丰度值估计结果发现GF-6丰度值估计的均方根误差以及除了WA端元的各端元丰度值估计变异系数均小于OLI和Sentinel-2载荷,体现出CF-6卫星在地表信息识别上较高的精度和稳健性。  相似文献   

16.
青海诺木洪地区多源遥感及多特征组合地物分类   总被引:1,自引:1,他引:0       下载免费PDF全文
遥感技术是研究土地覆盖类型的重要手段,但大部分研究仅采用单一数据源、少特征,该研究基于GEE环境对多源遥感数据、多特征协同进行地物类型分类研究。采用哨兵一号(Sentinel-1)合成孔径雷达数据、哨兵二号(Sentinel-2)多光谱数据和国产高分二号(GF-2)多光谱数据,构建了青海省诺木洪地区地表8类地物的波段特征、植被指数特征、纹理特征和极化特征空间,利用特征优化算法和RF算法实现了研究区域地物的有监督分类,以此评估构建的多特征空间性能及多源数据协同分类的能力。结果表明,基于Sentinel-1与Sentinel-2数据源,使用多特征空间协同分类时的总体精度和Kappa系数可达到97.62%和0.971 6,精度均高于使用单一数据或部分特征的分类精度(总体精度为95.91%,Kappa系数为0.951 1)。而基于Sentinel-1、Sentinel-2与GF-2数据提取的波段、植被指数、纹理特征和极化特征进行的协同地物分类结果总体精度达到了96.67%,Kappa系数达到了0.960 2。总体上,基于多数据源、多特征协同分类结果精度要优于单一数据源或少特征分类结果,而不同空间分辨率图像提取的纹理特征对分类结果有着不同影响,在适宜的分辨率下提取纹理特征参与分类才能达到更好的效果。  相似文献   

17.
基于特征优选随机森林算法的农耕区土地利用分类   总被引:1,自引:11,他引:1  
为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案,基于随机森林算法和支持向量机对农耕区土地利用信息进行提取并对比验证分类精度。研究结果表明:通过特征优选的随机森林算法进行土地利用信息提取效果最佳,总体精度达到88.24%,Kappa系数为0.84,精度优于相同特征变量下的支持向量机分类方法。该方法能够有效提高农耕区土地利用分类精度,可为土地资源监测、管理提供技术支持和理论参考。  相似文献   

18.
基于主被动遥感数据和面向对象的大蒜识别   总被引:1,自引:0,他引:1  
针对开封市大蒜种植破碎化程度高,光学数据难以高精度、快速提取问题。该研究基于谷歌地球引擎(Google Earth Engine,GEE)云平台、随机森林算法(Random Forest,RF)和面向对象方法,选择融合Sentinel-1卫星的后向散射系数与Sentinel-2卫星的光谱、光谱指数及纹理特征,分别应用10 m与加入植被红边波段的20 m空间分辨率遥感数据,探究不同特征组合对改善大蒜识别精度的性能。试验结果表明:应用10 m空间分辨率的Sentinel主被动遥感数据,在简单非迭代聚类(Simple Non-iterative Clustering,SNIC)分割尺度为5,灰度共生矩阵(Gray-level Co-occurrence Matrix,GLCM)邻域值为4,7个纹理特征选择第一、二主成分时,分类总体精度和Kappa系数最高,为94.54%、0.93,大蒜的制图精度和用户精度为97.83%、96.38%。应用加入植被红边波段的20m空间分辨率Sentinel主被动遥感数据,在SNIC分割尺度为3,GLCM邻域值为4,7个纹理特征选择第一、二主成分时,分类总体精度和Kappa系数最高,为94.14%、0.92,大蒜的制图精度和用户精度为95.72%、98.81%。单独使用Sentinel-2光学数据,加入植被红边波段的20m分辨率数据相对10 m分辨率数据,大蒜制图精度和用户精度分别提高0.49%和4.38%。单独使用时序Sentinel-1 SAR数据,10 m空间分辨率数据的大蒜制图精度和用户精度优于20 m分辨率数据0.66%和2.07%。本研究为遥感数据识别生长周期相同或重叠的大宗、小宗经济作物提供技术参考。  相似文献   

19.
融合光谱混合分解与面向对象的土地利用/覆被分类   总被引:2,自引:2,他引:0  
错综复杂的土地利用模式和破碎的地物斑块制约了土地利用/覆被分类的精度和效率。一方面,混合像元模糊了地物的光谱信息,影响了分类精度。另一方面,如何高效利用地物的光谱、形状和纹理特征是当前土地利用/覆被分类的研究热点。为了提高基于遥感技术的土地利用/覆被分类精度,该研究基于Sentinel-2A遥感影像,开展融合光谱混合分解与面向对象的土地利用/覆被分类研究。首先,基于地物的光谱、形状和纹理特征,在3个分割尺度通过NDWI(Normalized Difference Water Index)、NDVI(Normalized Difference Vegetation Index)、SBL(Soil Background Level)等8个特征参数构建了不同地物信息的提取规则。其次,利用光谱混合分解模型提取研究区基质(SL;岩石和土壤)、植被(GV;光合作用叶片)和暗色物质(DA;阴影和水)3类通用端元。最后,尝试融合3端元光谱特征优化地物信息提取规则。研究结果表明:1)基于构建的光谱、形状和纹理的地物信息提取规则,使用模糊函数、阈值法进行土地利用/覆被分类,获得了较高的分类精度,总体精度为80.83%,Kappa系数为0.76。2)融合3端元的光谱特征的提取规则将分类精度提升至90.00%,Kappa系数提升至0.88。3)具有明确物理意义的3端元的融入增强了像元内各组分信息的差异性,弥补了传统光谱指数对植被与土壤间的亮度信息解析度不足的缺陷。该方法能充分利用影像的光谱信息,是一种由易到难、对不确定因素进行逐层剥离的土地利用/覆被信息提取技术。因此,对中高分辨率的多光谱遥感影像十分友好,在土地利用/覆被的精细化分类中有较大应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号