首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
随着油茶产业不断壮大,市场上也出现了油茶幼苗品系混乱、以假乱真、以次充好的现象,因此急需开发一种专门的分类识别算法实现不同油茶品种的准确识别。农业领域常用VGG、ResNet网络模型进行分类工作,但存在权重空间过大和准确率不高等问题。该研究对VGG16网络模型进行层间删减以及结构调整,提出了Enhanced VGG16网络模型,在油茶叶数据集上完成模型训练与测试,并与现有经典卷积神经网络(AlexNet、VGG16、Resnet50、InceptionV3、Xception)进行对比。结果表明,Enhanced VGG16网络模型的训练集准确率和测试集准确率分别为98.98%和98.44%,权重空间为90.6 MB。与原始VGG16模型相比,训练集准确率和测试集准确率分别提高3.08和2.05个百分点,权重空间下降165.4 MB,模型性能显著提升。Enhanced VGG16网络模型与经典卷积神经网络相对比,模型综合性能更优。该研究为通过油茶叶进行品种分类识别提供了依据,同时可为其他农作物品种识别提供参考。  相似文献   

2.
【目的】为实现水稻氮素营养状况的快速、准确诊断,提出了基于集成卷积神经网络的水稻氮素营养诊断模型,为建立高性能的氮素营养诊断模型提供思路和方法。【方法】水稻田间试验以超级杂交水稻‘两优培九’为材料,设置4个施氮水平(0、210、300、390 kg/hm2)。扫描获取水稻幼穗分化期顶部3片完全展开叶的叶片图像,将图像裁剪至只包含叶尖片段的图像,进行水稻叶片图像数据采集。分别以单一卷积神经网络模型DenseNet121、ResNet50、InceptionResNet V2为基学习器,多层感知机(MLP)为元学习器,集成卷积神经网络模型,比较了集成模型与单一卷积神经网络模型以及不同基学习器组成的集成模型的氮素营养诊断结果。【结果】4个单一模型中,DenseNet121的氮素诊断准确率最高,为96.41%。二元集成模型和三元集成模型的准确率均高于任意一个单一模型的准确率,由3个基学习器组成的集成模型的准确率最高,达到98.10%,相比准确率最高的单一模型准确率提高了1.69个百分点。【结论】采用DenseNet、ResNet50、InceptionResNet V2集...  相似文献   

3.
基于轻量型残差网络的自然场景水稻害虫识别   总被引:4,自引:3,他引:1  
准确识别水稻害虫对水稻及时采取防护和治理措施具有重要意义,该研究以自然场景中水稻害虫图像为研究对象,针对水稻害虫图像的颜色纹理与背景相近以及同类害虫形态差异较大等特点,设计了一个由特征提取、全局优化以及局部优化模块构成的轻量型残差网络(Light Weight Residual Network,LW-ResNet)用于水稻害虫识别。在特征提取模块通过增加卷积层数以及分支数对残差块进行改进,有效提取自然场景中水稻害虫图像的深层全局特征并使用全局优化模块进行优化;局部优化模块通过设计轻量型注意力子模块关注害虫的局部判别性特征。LW-ResNet网络在特征提取模块减少了残差块的数量,在注意力子模块中采用深度可分离卷积减少了浮点运算量,从而实现了模型的轻量化。试验结果表明,所设计的LW-ResNet网络在13类水稻害虫图像的测试数据集上达到了92.5%的识别准确率,高于VGG16、ResNet、AlexNet等经典卷积神经网络模型,并且LW-ResNet网络的参数量仅为1.62×106个,浮点运算量仅为0.34×109次,低于MobileNetV3轻量级卷积神经网络模型。该研究成果可用于移动端水稻害虫的自动识别。  相似文献   

4.
基于迁移学习和改进CNN的葡萄叶部病害检测系统   总被引:9,自引:9,他引:0  
为建立高效、准确的葡萄叶部病害检测系统,引入迁移学习机制,利用大型公开数据集对VGG16模型预训练,保持模型前端13个层的参数和权重不变,对全连接层和分类层改进后利用新数据集微调训练模型,包括对训练优化器、学习率和中心损失函数平衡参数的优选试验,最后将模型部署在Android手机端。试验表明,在微调训练阶段选择Adam优化器、初始学习率设为0.001、中心损失函数平衡参数设为0.12时,改进的VGG16模型性能最优,对葡萄6类叶部图像的分类平均准确率为98.02%,单幅图像平均检测耗时为0.327s。与未改进的VGG16模型相比,平均准确率提高了2.82%,平均检测耗时下降了66.8%,权重参数数量减少了83.4%。改进后的模型综合性能优于AlexNet、ResNet50和Inceptionv3等模型。将模型跨平台部署在Android手机端,自然环境下验证的平均准确率为95.67%,平均检测耗时为0.357 s。该研究建立的基于迁移学习和改进卷积神经网络的病害检测系统可实现对葡萄叶部病害的快速、智能诊断,为葡萄病害的及时防控提供依据。  相似文献   

5.
改进ResNet18网络模型的羊肉部位分类与移动端应用   总被引:1,自引:1,他引:0  
针对传统图像分类模型泛化性不强、准确率不高以及耗时等问题,该研究构建了一种用于识别不同部位羊肉的改进ResNet18网络模型,并基于智能手机开发了一款可快速识别不同部位羊肉的应用软件。首先,使用数据增强方式对采集到的羊背脊、羊前腿和羊后腿肉的原始手机图像进行数据扩充;其次,在ResNet18网络结构中引入附加角裕度损失函数(ArcFace)作为特征优化层参与训练,通过优化类别的特征以增强不同部位羊肉之间的类内紧度和类间差异,同时将ResNet18网络残差结构中的传统卷积用深度可分离卷积替换以减少网络参数量,提高网络运行速度;再次,探究了不同优化器、学习率和权重衰减系数对网络收敛速度和准确率的影响并确定模型参数;最后,将该网络模型移植到安卓(Android)手机以实现不同部位羊肉的移动端检测。研究结果表明,改进ResNet18网络模型测试集的准确率高达97.92%,相比ResNet18网络模型提高了5.92%;把改进ResNet18网络模型部署到移动端后,每张图片的检测时间约为0.3 s。该研究利用改进ResNet18网络模型结合智能手机图像实现了不同部位羊肉的移动端快速准确分类,为促进羊肉的智能化检测及羊肉市场按质论价提供了技术支持。  相似文献   

6.
为了进一步提升油茶果壳籽分选效率,该研究采集油茶果脱壳后经过初步筛分的果壳与茶籽图像,构建壳籽分类图像数据集,以VGG16为基础网络,通过深度可分离卷积模块和全连接层神经元数目优选等方式缩小模型规模,采用跨层特征融合机制与引入指数线性单元(exponential linear units, ELU)激活函数优化网络结构,提出一种适用于油茶果壳籽分选的卷积神经网络模型。结果表明,跨层特征融合机制加强了深层网络特征的有效信息表达能力,相比于未融合时的模型精度得到了明显提升,并且三次跨层特征融合总体优于一次与二次融合方式。ELU激活函数加快了模型收敛速度,同时缓解了梯度爆炸,提高了模型鲁棒性。当全连接层神经元个数减少为128时模型得到进一步压缩,并且拟合程度较好。改进模型在油茶果壳籽图像分类上的验证集准确率为98.78%,模型的占存仅需8.41MB,与未改进的VGG16模型相比,准确率提高了0.84个百分点,模型占存减少了519.38MB,并且改进模型的性能相比于AlexNet、ResNet50与MobileNet_V2等其他网络更具优势,同时在测试试验中该模型分选准确率达到了98.28%,...  相似文献   

7.
基于深度学习与图像处理的哈密瓜表面缺陷检测   总被引:9,自引:8,他引:1  
针对传统人工检测哈密瓜表面缺陷效率低等问题,提出利用卷积神经网络(Convolutional Neural Networks, CNN)对哈密瓜表面缺陷进行快速检测。对原始图像进行主成分分析(Principal Components Analysis,PCA)、奇异值分解(Singular Value Decomposition, SVD)和二值化等预处理操作,通过数据扩充得到正常、霉菌、晒伤和裂纹的哈密瓜图像各2 500幅。构建一种改进的类似VGG卷积神经网络模型,将预处理后的图像输入模型,并使用随机梯度下降(StochasticGradient Descent,SGD)优化器进行算法优化,为探究CNN模型的特征提取原理,将改进的类似VGG模型每层卷积的特征进行可视化,最后利用开发的哈密瓜表面缺陷检测软件对模型进行试验验证。研究结果表明:图像预处理算法提高了模型的鲁棒性和泛化能力,改进的类似VGG模型优于Alex Net和VGG-16模型,其训练集和测试集准确率分别为100.00%和97.14%;对比预处理前后4类哈密瓜卷积特征可视化结果表明,随着卷积层层数的增加,哈密瓜表面缺陷特征越来越明显,图像预处理后卷积层特征提取效果优于原始图像提取效果。软件测试结果表明:静态下哈密瓜缺陷检测速率达到0.7 s/幅,识别准确率达到93.50%。研究结果可为哈密瓜表面缺陷在线检测技术提供理论依据和技术参考。  相似文献   

8.
基于改进ResNet50模型的大宗淡水鱼种类识别方法   总被引:4,自引:4,他引:0  
针对传统鱼类识别方法存在特征提取复杂、算法可移植性差等不足,该研究提出了一种基于改进ResNet50模型的淡水鱼种类识别方法。研究以鳙鱼、鳊鱼、鲤鱼、鲫鱼、草鱼、白鲢6种大宗淡水鱼为对象,通过搭建淡水鱼图像采集系统获取具有单一背景的淡水鱼图像,同时通过互联网搜索具有干扰背景的淡水鱼图像,共同构建淡水鱼图像数据集;再对淡水鱼图像进行预处理,以增加样本多样性;构建改进ResNet50模型,增加全连接层Fc1以及Dropout,引入迁移学习机制训练模型,同时选择CELU作为激活函数提高神经网络表达能力,通过Adam优化算法更新梯度,并嵌入余弦退火方法衰减学习率。为验证改进ResNet50模型的准确率等性能,对6种淡水鱼进行种类识别,结果表明:在单次验证方法下,选用包含单一背景图像和干扰背景图像构成的淡水鱼图像数据集训练模型,识别准确率为96.94%,比经典模型提高1.22%,单张淡水鱼图像样本的平均检测时间为0.234 5 s;在四折交叉验证下,选用具有单一背景的图像数据集,模型的识别准确率为100%,选用包含单一背景图像和干扰背景图像的淡水鱼图像数据集,模型的识别准确率为96.20%,说明模型具有较好的泛化性能和鲁棒性。针对混淆矩阵的可视化结果表明:改进的ResNet50模型具有通用的结构和训练方式,对不同背景下的淡水鱼进行种类识别具有较高的准确率,可为淡水鱼种类识别提供技术借鉴。  相似文献   

9.
基于声振信号对称极坐标图像的苹果霉心病早期检测   总被引:1,自引:1,他引:0  
赵康  查志华  李贺  吴杰 《农业工程学报》2021,37(18):290-298
为实现苹果早期霉心病较高精度的检测,该研究采用对称极坐标法(Symmetrized Dot Pattern,SDP)将苹果声振信号变换为雪花图,然后采用AlexNet、VGG16和ResNet50卷积神经网络以迁移学习方式深度挖掘SDP雪花图像的特征信息,将其输入到支持向量机(Support Vector Machine,SVM)分类器,对霉心程度≤7%的苹果进行检测。研究结果表明,当时间间隔系数为25和角度放大因子为50°时,健康果与早期霉心果声振信号的SDP图形状特征差异最大,在此条件下获取的SDP图经卷积神经网络AlexNet、VGG16和ResNet50提取特征并构建了不同核函数的SVM霉心果检测模型,在各类SVM模型中,ResNet50-SVM-gaus(高斯基)模型用相对较少的训练时间和参数量可取得训练集霉心果较高分类准确率,经超参数优化训练该模型对健康果和早期霉心果测试集不平衡样本(10∶1)的总体分类准确率达到96.97%,平均查准率、平均查全率、平均加权调和均值、Kappa系数和马修斯相关系数值分别为80.19%、90.36%、86.21%,82.54%和82.68%,该模型不仅对多数类的健康果保持较高分类准确率,而且对少数类的早期霉心果也具有较高判别能力。这些研究结果为声振法应用于果蔬内部病害的早期在线检测系统研发提供了技术支撑。  相似文献   

10.
基于改进DenseNet的茶叶病害小样本识别方法   总被引:1,自引:1,他引:0  
李子茂  徐杰  郑禄  帖军  于舒 《农业工程学报》2022,38(10):182-190
针对茶叶病害识别的传统方法费工费时,同时由于茶叶病害样本小且分布不均导致传统卷积神经网络不能准确快速识别的问题,提出一种基于迁移学习的SE-DenseNet-FL茶叶病害识别方法。SE-DenseNet-FL以DenseNet模型为基础,首先在DenseNet网络结构中融入SENet(Squeeze-and-Excitation Networks)模块,以加强重要特征传播实现特征重标定;其次引入Focal Loss函数替换原DenseNet中的损失函数,使模型在训练时专注于难分类的样本,以缓解样本分布不均给模型带来的性能影响;最后利用PlantVillage数据集预训练取得预训练模型,通过迁移学习在预训练模型上使用自建茶叶病害数据集进行参数微调,以缓解样本数据过少带来的过拟合影响。通过与原模型DenseNet以及其他经典分类模型(AlexNet、VGG16、ResNet101)进行试验对比,结果表明基于迁移学习的SE-DenseNet-FL在小样本及样本分布不均情景下对茶叶病害的识别准确率达到92.66%。该模型具有较高的识别准确率与较强的鲁棒性,可为茶叶病害智能诊断提供参考。  相似文献   

11.
基于改进卷积神经网络模型的玉米叶部病害识别(英文稿)   总被引:3,自引:2,他引:1  
准确识别玉米病害有助于对病害进行及时有效的防治。针对传统方法对于玉米叶片病害识别精度低和模型泛化能力弱等问题,该研究提出了一种基于改进卷积神经网络模型的玉米叶片病害识别方法。改进后的模型由大小为3×3的卷积层堆栈和Inception模块与ResNet 模块组成的特征融合网络两部分组成,其中3×3卷积层的堆栈用于增加特征映射的区域大小,Inception模块和ResNet 模块的结合用于提取出玉米叶片病害的可区分特征。同时模型通过对批处理大小、学习率和 dropout参数进行优化选择,确定了试验的最佳参数值。试验结果表明,与经典机器学习模型如最近邻节点算法(K- Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)和反向传播神经网络(Back Propagation Neural Networks,BPNN)以及深度学习模型如AlexNet、VGG16、ResNet 和Inception-v3相比,经典机器学习模型的识别率最高为77%,该研究中改进后的卷积神经网络模型的识别率为98.73%,进一步提高了模型的稳定性,为玉米病害检测与识别的进一步研究提供了参考。  相似文献   

12.
改进RetinaNet的水稻冠层害虫为害状自动检测模型   总被引:1,自引:4,他引:1  
中国现行的水稻冠层害虫为害状田间调查方法需要测报人员下田目测为害状发生情况,此种人工调查方法存在客观性差、效率低与劳动强度大等问题。近几年,诸多学者开始利用深度学习方法来识别植物病虫为害状,但大多针对单株或单个叶片上病虫害种类进行识别研究。该研究采集了水稻冠层多丛植株上稻纵卷叶螟和二化螟为害状图像,提出一种改进RetinaNet的水稻冠层害虫为害状自动检测模型。模型中采用ResNeXt101作为特征提取网络,组归一化(Group Normalization,GN)作为归一化方法,改进了特征金字塔网络(Feature Pyramid Network,FPN)结构。改进后的RetinaNet模型对2种害虫为害状区域检测的平均精度均值达到93.76%,为实现水稻害虫为害状智能监测提供了理论依据和技术支持。  相似文献   

13.
基于Swin Transformer模型的玉米生长期分类   总被引:1,自引:1,他引:0  
快速准确识别玉米生长的不同阶段,对于玉米种植周期的高效精准管理具有重要意义。针对大田环境下玉米生长阶段分类辨识易受复杂背景、户外光照等因素影响的问题,该研究采用无人机获取玉米不同生长阶段的图像信息,以苗期、拔节期、小喇叭口期、大喇叭口期4个生长阶段为对象,利用Swin Transformer模型引入迁移学习实现玉米不同生长阶段的快速识别。首先结合玉米垄面走向特性,将训练集旋转8次用以扩充数据集;为探究各模型在非清晰数据集上的表现,采用高斯模糊方法将测试集转换6次;最后以AlexNet,VGG16,GoogLeNet做为对比,评估Swin-T模型性能。试验结果表明,Swin-T模型在原始测试集的总体准确率为98.7%,相比于AlexNet,VGG16,GoogLeNet模型分别高出6.9、2.7和2.0个百分点;在错误分类中,大喇叭口期和小喇叭口期由于冠层特征相似,造成识别错误的概率最大;在非清晰数据集下,AlexNet,VGG16,GoogLeNet模型精度总体退化指数分别为12.4%、10.4%和15.0%,Swin-T模型总体退化指数为8.31%,并且退化均衡度、平均退化指数、最大退化准确率均表现最佳。研究结果表明:在分类精度、模糊图像输入等方面,Swin-T模型能够较好地满足实际生产中,玉米不同生长阶段分类识别的实际需求,可为玉米生长阶段的智能化监测提供技术支撑。  相似文献   

14.
在蝴蝶兰(Phalaenopsis aphrodite)产业中,种苗在达到最短营养栽培时长时的生长势在其后续的栽培链和最终的经济利润中起着重要的作用。当前在商业大型温室中主要采取人工方式对每株种苗进行评估,既费时又费力。基于RGB图像进行植物生长评估的相关研究依赖于从图像中手动提取人工定义的特征,从而影响了机器学习模型的有效性和泛化能力。本研究使用卷积神经网络(Convolutional Neural Network,CNN)来探讨其以端对端方式评估温室中蝴蝶兰种苗生长势的可行性。对在温室中采集的图像数据集,采用不同的CNN架构(VGG、ResNet和Inception-v3)结合不同的训练机制(从头训练、微调、特征提取)建立基准模型,其中微调取得了最佳的分类结果。考虑到本研究的目标任务是对具有复杂图像背景的单个温室种苗的形态分类,为进一步提高模型性能,在可控的实验室条件下采集了更多的种苗图像。实验室图像进行背景分割后,用于协助模型更好地学习植株的形态,即建立增强模型。与基准模型相比,2种增强方式总体上在温室测试集的F1-score取得了0.03~0.05的提升。采用增强方式II的VGG模型取得了最高的性能(温室测试集上的F1-score为0.997),并对该模型的特征图进行可视化。在高层特征图中,目标种苗区域被激活,同时滤除了大部分背景(包括相邻种苗的叶片),进一步证明了能够采用CNN对温室种苗进行有效的形态学习和刻画。总体结果表明,深度学习模型可用于基于图像的蝴蝶兰种苗生长势评估,并且可扩展用于温室下其他植物类型的生长评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号