首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
土壤中磺胺类抗生素的检测方法优化及残留、降解研究   总被引:3,自引:0,他引:3  
优化了磺胺甲基嘧啶(SM1)、磺胺二甲嘧啶(SM2)、磺胺对甲氧嘧啶(SMT)、磺胺甲噁唑(SMZ)4种磺胺类抗生素的高效液相色谱(H PLC)检测方法,分析了广州市养殖场周边土壤中磺胺类抗生素的残留特征,并进行了2种磺胺类抗生素的土壤降解试验。结果表明,4种磺胺类抗生素分别在0.10~10μg ml-1范围内线性良好,相关系数R>0.99。确定了最佳提取液为甲醇:含EDTA的Mcllvain缓冲液=1∶1(V/V),4种磺胺类药物的检测限与回收率分别为2.9~4.7μg kg-1、83.6%~90.1%。广州市18个规模化养殖场周边土壤中磺胺类抗生素污染以SM2为主,含量为1.75μgkg-1,其它3种均未被检出。土壤中磺胺类抗生素的含量总体呈随培养时间而不断下降的趋势,SMZ的降解速率大于SM2。  相似文献   

2.
Multicompound allelochemical interactions were studied using Centaurea maculosa as a model source to understand how the bioavailability of complex allelochemical mixtures is modified in soil-microbial systems. Litter decomposition of C. maculosa in sandy loam soil yielded five phenolic acids, namely, hydroxybenzoic, vanillic, protocatechuic, p-coumaric, and ferulic acids. The degradation studies were conducted by exogenous application of catechin, the primary allelochemical exuded by C. maculosa, and the phenolic acid cosolutes in a sandy loam and silt loam soil. Compared to a single-solute system, in a multisolute system the persistence of individual allelochemicals was significantly increased in both soils. Oxidation and sorption were primarily involved in the disappearance of allelochemicals. Mass spectrometric data showed that catechin rapidly underwent polymerization to form procyanidin dimer both in soil and in bioassay medium, resulting in reduced persistence and phytotoxicity. Hence, catechin phytotoxicity could occur only under conditions that would inhibit these condensation reactions. This study clearly demonstrates that various soil mechanisms including competitive sorption and preferential degradation would increase the persistence of allelochemical mixtures in a soil matrix.  相似文献   

3.
Sorption of sulfamethazine (SMN) and sulfathiazole (STZ) was investigated in three soils, a North Carolina loamy sand, an Iowa sandy loam, and a Missouri loam, under various pH conditions. A significant increase in the sorption coefficient (KD) was observed in all three soils, as the sulfonamides converted from an anionic form at higher pH to a neutral/cationic form at lower pH. Above pH 7.5, sulfonamides exist primarily in anionic form and have higher aqueous solubility and no cationic character, thereby consequently leading to lower sorption to soils. The effect of speciation on sorption is not the same for all sulfonamides; it is a function of the pH of the soil and the pKa of the sulfonamides. The results indicate that, for the soils under investigation, SMN has comparatively lower KD values than STZ. The pH-dependent sorption of sulfonamides was observed to be consistent in all three soils investigated. The KD values for each speciated form-cationic, neutral, and anionic-were calculated using an empirical model in which the species-specific sorption coefficients (KD0, KD1, and KD2) were weighted with their respective fractions present at any given pH.  相似文献   

4.
In Wisconsin, motor vehicle waste fluids (MVWF) enter catch basins along with rinse waters and are discharged to drainfields (soil absorption systems) after mixing with domestic wastewater in a septic tank (systems installed prior to 1992). The purpose of this study was to determine if removal/treatment of heavy metals and volatile organic chemicals (VOCs) found in spent oils, greases, and solvents occurs in drainfields that receive MVWFs. Soil samples were collected beneath and soil gas samples were collected above three gravel beds in drainfields installed in loamy sand or silt loam soils. Cadmium, chromium, and lead concentrations in soil 15 cm and greater beneath beds in loamy sand and silt loam soils were similar to background concentrations. Heavy metals in drainfields would most likely be found in the clogging layer at the infiltrative surface of gravel and soil. The VOCs 1,3,5-trimethylbenzene and m- and p-xylenes were found beneath beds in loamy sand soils; concentrations of detected VOCs ranged from 20–270 mg kg?1. Volatile organic chemicals were not detected beneath the bed in silt loam soils. Drainfields in loamy sand soil appear to provide less treatment of VOCs compared to drainfields in silt loam soils. Volatile organic chemicals were found in soil gas above drainfields in both soil types. Thus, some VOCs diffuse from the drainfield to the soil surface.  相似文献   

5.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

6.
Sulfonamide antibiotics can enter agricultural soils by fertilisation with contaminated manure. While only rough estimations on the extent of such applications exist, this pathway results in trace level contamination of groundwater. Therefore, we studied the transport of three sulfonamides in leachates from field lysimeters after application of a sulfonamide-contaminated liquid manure. In a 3-year period, the sulfonamides were determined in 64% to 70% of all leachate samples at concentrations between 0.08 to 56.7 µg L?1. Furthermore, sulfonamides were determined in leachates up to 23 months after application, which indicated a medium- to long-term leaching risk. Extreme dry weather conditions resulted in highest dislocated amounts of sulfonamides in two of the three treatments. Furthermore, soil management such as tillage and cropping affected the time between application and breakthrough of sulfonamides and the intra-annual distribution of sulfonamide loads in leachates. Although the total sulfonamide leaching loads were low, the concentrations exceeded the limit value of the European Commission of 0.1 µg biocide L?1 in drinking water in more than 50% of all samples. Furthermore, the medium-term mean concentration of the sulfonamides ranged from 0.08 and 4.00 µg L?1, which was above the limit value of the European Commission in 91 out of 158 samples. Therefore, sulfonamides applied to soils in liquid manure under common agricultural practice may cause environmental and health risks which call for a setting up of more long-term studies on the fate of antibiotics.  相似文献   

7.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   

8.
Organic matter (OM) is the most critical factor in controlling the sorption-desorption of SMZ in soil, however, few studies have explored the effects of OM removal on these important behaviors among different soils. Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils: fluvo-aquic soil (FS), paddy soil (PS), and red soil (RS). The SMZ sorption in the evaluated soils was dominated by physisorption. The SMZ sorption capacities of FS and PS, which had a relatively higher OM content than RS, were higher than that of RS. The SMZ sorption in FS was dominated by linear partitioning. In contrast, the SMZ sorption in PS and RS was mainly nonlinear surface adsorption. After OM removal, the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS. Furthermore, OM removal restrained the sorption intensity of SMZ in soils. Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS. The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution, thereby posing a risk to humans. Taken together, the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil.  相似文献   

9.
Soil sorption and dissipation of fluometuron (FLM) and three metabolites, desmethyl fluometuron (DMF), trifluoromethyl phenyl urea (TFMPU), and trifluoromethyl aniline (TFMA), were assessed in conservation tillage soils. In study I, surface Dundee silt loam soils from no-tillage (NT) and reduced-tillage (RT) areas were treated with 14C ring-labeled FLM or TFMA or unlabeled DMF, incubated for 34-42 days, extracted, and analyzed. Mineralization and volatilization of 14C-labeled FLM or TFMA were monitored. In study II, batch sorption assays (solute concentrations 2-50 micromol L-1; 2:1 solution:soil; 18 h) were conducted using various soils from reduced- (RT) and conventional-tillage (CT) areas to determine the relative affinity of FLM and metabolites for soils with differing characteristics. Mineralization of FLM (3%, day 42) or TFMA (4%, day 34) and FLM volatilization (approximately 2%) were low for both soils. FLM and DMF dissipated more rapidly in RT soil than in NT soil. In FLM-treated RT soil, DMF and TFMPU accumulated more rapidly than in NT as FLM degraded. TFMA dissipated rapidly, primarily as nonextractable residues (approximately 70%, day 42) and volatilization (approximately 16%). For all respective soils in study II, sorption of all four compounds was higher for organic C-enriched RT soils than for CT soils, indicating strong relationships between organic C and FLM and metabolite sorption. For either tillage treatment, the percentage sorption was greater for metabolites (e.g., at lowest initial dosing concentration, TFMPU range, 45-91%; DMF range, 45-90%; and TFMA range, 45-98%) than for FLM (RT soils range, 19-65%). Nonsubstituted amino groups likely facilitated sorption to organic C, with nonsubstituted aniline in TFMA having the greatest affinity. NMR spectra of humic acid extracts from NT and CT Dundee soils indicated similar patterns of humic acid functional groups, but the potential capacity for sorption was greater in NT than in CT. The greater capacity for FLM and metabolite sorption in NT soil helps explain their longer persistence.  相似文献   

10.
Sorption of Cd at low concentrations onto two Danish soils (loamy sand, sandy loam) was examined in terms of kinetics and governing factors. From an environmental point of view soil sorption of Cd is a fast process: More than 95% of the sorption takes place within 10 min, equilibrium is reached in 1 hr, and exposures up to 67 wk did not reveal any long term changes in Cd sorption capacities. The soils have very high affinity for Cd at pH = 6.00 (10?3 M CaCl2) exhibiting distribution coefficients in the order of 200 to 250 (soil Cd concentration/solute Cd concentration). However, the sorption isotherms describing the distribution of Cd between soil and solute are slightly curvelinear. In the pH-interval 4 to 7.7, the sorption capacity of the soil approximately increases 3 times for a pH increase of one unit. Increasing the Ca concentration from 10?3 to 10?2 M reduces the sorption capacity of the sandy loam to one third.  相似文献   

11.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

12.
Two enzyme-linked immunosorbent assays (ELISAs) were tested for their suitability for detecting sulfonamides in wastewater from various stages in wastewater treatment plants (WWTPs), the river into which the wastewater is discharged, and two swine-rearing facilities. The sulfamethoxazole ELISA cross-reacts with several compounds, achieving detection limits of <0.04 microg/L for sulfamethoxazole (SMX), sulfamethoxypyridine, sulfachloropyridine, and sulfamethoxine, whereas the sulfamethazine (SMZ) ELISA is more compound specific, with a detection limit of <0.03 microg/L. Samples from various stages of wastewater purifications gave 0.6-3.1 microg/L by SMX-ELISA, whereas river samples were approximately 10-fold lower, ranging from below detection to 0.09 microg/L. Swine wastewater samples analyzed by the SMX-ELISA were either at or near detectable limits from one facility, whereas the other facility had concentrations of approximately 0.5 microg/L, although LC-MS/MS did not confirm the presence of SMX. Sulfamethazine ELISA detected no SMZ in either WWTP or river samples. In contrast, wastewater samples from swine facilities analyzed by SMZ-ELISA were found to contain approximately 30 microg/L [piglet (50-100 lb) wastewater] and approximately 7 microg/L (market-weight hog wastewater). Sulfamethazine ELISA analyses of wastewater from another swine facility found concentrations to be near or below detection limits. A solid phase extraction method was used to isolate and concentrate sulfonamides from water samples prior to LC-MS/MS multiresidue confirmatory analysis. The recoveries at 1 microg/L fortification ranged from 42 +/- 4% for SMZ to 88 +/- 4% for SMX ( n = 6). The ELISA results in the WWTPs were confirmed by LC-MS/MS, as sulfonamide multiresidue confirmatory analysis identified SMX, sulfapyridine, and sulfasalazine to be present in the wastewater. Sulfamethazine presence at one swine-rearing facility was also confirmed by LC-MS/MS, demonstrating the usefulness of the ELISA technique as a rapid and high-throughput screening method.  相似文献   

13.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   

14.
Soil tillage along with the application of organic waste probably affects the concentrations of organic carbon and the enrichment of introduced polychlorinated biphenyls (PCBs). In a three‐year experiment the PCB status of soils from three different field sites (silty clay loam, silt loam, sandy loam) which were long‐term differently tilled (NT = no‐tillage, CT = conventional plough tillage) and amended with two different organic wastes such as sewage sludge and compost (biosolids) was examined. No significant alteration in soil‐PCB quality and quantity with biosolid application could be proven within the course of the experiments. This indicates soil‐air exchange of PCBs dominates their concentrations in soil. Organic carbon in soil was significantly tillage‐dependent and determined the fate of PCBs resulting in a generally elevated PCB‐level in the non tilled soils. Linear regression of PCB load and organic matter content of all investigated untreated soils was highly significant (R2 = 0.73). Due to already elevated PCB levels in non tilled soils with a maximum of 65 μg kg—1 in the superficial layer of the silt loam control plot, any additional potential input, i. e. through the amendment with organic wastes, should therefore be avoided.  相似文献   

15.
The efficacy of nitrification inhibitors depends on soil properties and environmental conditions. The nitrification inhibitor 3.4-dimethylpyrazole phosphate (DMPP) was investigated in a sandy loam and a loamy soil to study its effectiveness as influenced by inhibitor concentration, application form, and soil matric potential. DMPP was applied with concentrations up to 34.6 mg DMPP kg^-1 soil as solution or as ammonium-sulfate/ammonium-nitrate granules formulated with DMPP. DMPP inhibited the oxidation of ammonium in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. When applied as solution, increasing DMPP concentrations up to 7 mg DMPP kg^-1 soil had no influence on the inhibition. The effectiveness of DMPP formulated as fertilizer granules was superior to the liquid application of DMPP and NH4^+, particularly in the loamy soil. Without DMPP, a decline in soil matric potential down to -600 kPa decreased nitrification in both soils, but this effect was more pronounced in the sandy loam than in the loamy soil. DMPP was most effective in the sandy loam particularly under conditions of higher soil moisture, i.e., under conditions favorable for nitrate leaching.  相似文献   

16.
王荣萍  李淑仪  蓝佩玲  廖新荣 《土壤》2007,39(6):928-931
通过田间试验,比较研究了在细砂土和粉壤土两种质地的土壤上,cu、Mo、Si营养对苦瓜产量和品质的影响.结果表明,与对照相比,在细砂土上施Cu能显著提高苦瓜产量,而施Mo、Si未表现出明显的增产作用;在粉壤土上施Si极显著提高了苦瓜产量,而施Cu、Mo未表现出明显的增产效果.在细砂土上施Cu、Mo极显著降低了苦瓜硝酸盐含量,而施Si未降低硝酸盐含量;在粉壤土上施Cu、Mo、Si均使苦瓜硝酸盐含量显著或极显著降低.在两种质地的土壤上施Cu、Mo、Si对Vc含量没有明显的影响;在细砂土上施Cu、Mo、Si极显著提高了可溶性糖含量,在粉壤土上施Cu、Mo亦极显著提高了可溶性糖含量.本试验结果表明在不同的土壤质地上Cu、Mo、Si营养对苦瓜的增产效应和品质改善效应不同.  相似文献   

17.
周志强  刘琛  杨红薇  鲜青松  唐翔宇 《土壤》2018,50(2):353-360
吸附-解吸是影响抗生素类污染物在土壤中迁移转化及生物有效性的重要过程,本文以川中丘陵区坡耕地紫色土为研究对象,通过批量平衡实验和柱实验研究生物炭施用(投加量0(B0)、39.75 (B1)t/hm2和198.75 (B2) t/hm2)及田间老化作用(夏季干湿交替)对三种典型磺胺类抗生素(磺胺嘧啶(SD)、磺胺二甲基嘧啶(SM2)及磺胺甲恶唑(SMZ))在紫色土中的吸附-解吸和淋溶行为的影响。结果表明:在几种处理中,三种磺胺类抗生素吸附强弱的顺序都表现为SD>SMZ>SM2;与B0处理相比,添加生物炭能增加土壤对三种抗生素的吸附能力,其中SM2的吸附显著增加(P<0.05),但这种促进作用在经过老化过程后有所减弱。在解吸过程中,三种抗生素的Freundlich常数Kf大小顺序为SD>SMZ>SM2,表明SD在土壤中吸附容量最大且不易解吸,其次是SMZ和SM2;相应的迟滞系数H大小顺序为SD相似文献   

18.
The herbicide glyphosate, supplied as Roundup (Monsanto Canada Inc.), was tested for effects on nitrification in four soils from Atlantic Canada. These included a sandy loam (pH 6.8), two silt loam (pH 6.4 and 5.8) agricultural soils and a clay loam forest soil (pH 3.5). Glyphosate was tested at normal field exposure rates (FR) and levels up to 200 times higher. FR values ranged from 19.83 to 29.26 ppm (jig glyphosate g?1 soil). Glyphosate had no deleterious effects on nitrification in any soil when tested at FR concentrations. In the sandy loam soil nitrification was significantly stimulated at a glyphosate level 50 times higher than FR. With this soil and one of the silt loam soils (pH 6.4) glyphosate levels of 100 times FR and higher were required for a significant inhibition of nitrification. With the other silt loam soil (pH 5.8) glyphosate significantly inhibited nitrification at concentrations 10 times FR and higher. Nitrification in the acidic forest soil was very low and accurate toxicity data could not be obtained. The EC50 of glyphosate towards nitrification in soil ranged from 1435 to 2920 ppm, which corresponds to exposure levels from 67 to 150 times higher than recommended field application rates. The use of glyphosate in agriculture and forestry should have no toxic effects on nitrification in soil.  相似文献   

19.
Abstract: Petroleum coke circulating fluidized bed (CFB) combustion product is created when petroleum coke is combusted with limestone in a circulating fluidized bed boiler. The CFB product contains high concentrations of sulfur (S), nickel (Ni), and vanadium (V). Using it as a S source is encouraged, but little information is available related to plant responses and environmental impact. The CFB product was applied at rates of 0, 11, 33, and 110 kg S ha?1 to two agricultural soils (Canfield silt loam and Wooster silt loam). Dry weight of alfalfa (Medicago sativa L.) and S in plant tissue was increased by the S treatments. Concentrations in alfalfa of V were increased but did not reach environmental concern levels. Concentrations in alfalfa of Ni were not increased. In the soils, only total S and plant available S were increased by these materials. No soil contamination problems were observed when CFB product was used as an S source.  相似文献   

20.
In the densely populated state of North Rhine‐Westphalia, soil erosion by water causes substantial on‐site degradation and off‐site damages. The implementation of soil‐conservation measures is improved, if soil erodibilities and erosion processes are known. In a state‐wide investigation, we aimed to representatively assess soil‐erosion processes and erodibilities of cultivated soils. For this purpose, we measured surface runoff and soil‐loss rates of 28 cultivated soils with field plots under artificial rain. In the field experiments, surface runoff and soil loss indicated high sealing susceptibilities and high erodibilities on soils of quite different textures including a clay silt, a loam silt, a loam sand, a sand loam, and two standard loams. Rill formation causing high soil‐loss rates was observed on a clay silt (soil BM) and on a loam silt (soil RB), the latter yielding an empirical K‐factor of 1.66 t ha–1 h N–1. K‐factors of other silty soils ranged from 0.04 to 0.48, whereas sandy soils and clayey soils had K‐factors ranging from 0.00 to 0.32, and 0.00 to 0.12, respectively. Comparatively high erodibilities of two silt clays were due to saturation overland flow. Erosion processes and erodibilities of soils with similar texture varied to a large extent, possibly caused in part by seasonal differences in the timing of erosion tests. Surface runoff was different in field experiments compared with laboratory experiments (companion paper) conducted with topsoil material taken from the field plots. In addition, higher concentrations of suspended sediment were recorded on average in the field than in the laboratory. These differences might reflect the influence of the subsoil and are due to higher transport capacities on longer plots in the field. Thus, laboratory experiments can complement but not replace costly field trials for K‐factor determination. Empirical K‐factors derived from field and laboratory experiments are in general lower than K‐factors of other soils in Germany or calculated K‐factors derived from pedotransfer functions, which might be attributed to a more maritime‐type climate in North Rhine‐Westphalia. Since the temporal variability of erodibility was not assessed, the reported K‐factors should be regarded as preliminary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号