首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T.Z. Dawes 《Pedobiologia》2010,53(4):241-246
This study examines changes in the abundance and diversity of soil macroinvertebrate taxa and soil water storage across different disturbance treatments in a tropical savanna woodland in northern Australia. Nine plots representing three habitat disturbance treatments (uncleared savanna woodland; 25-year-old regrowth following past clearing; cleared areas) were sampled for macrofauna using soil pits in April 2003. Sub-surface soil moisture (0-0.4 m) was measured at 0.1 m intervals over the 2002/2003 wet season. Termites represented 55% of total individuals sampled. Abundance of soil macrofauna was greatest in uncleared plots and lowest in cleared plots, with the latter treatment also having the lowest taxon diversity. Mean abundances of termites, earthworms and ants were greatest in uncleared treatment plots. Five termite species from four genera were present, with Microcerotermes nervosus constituting 47% of termite species identified. Of the wood-, grass- and polyphagous-feeding termites present, wood-feeding species were restricted to uncleared treatment plots and grass-feeders to regrowth treatment plots. A shift in termite nesting habits from epigeal to hypogeal was observed from uncleared to cleared treatments. Soil water storage was lowest in the dry season and highest during the monsoon, and varied significantly across habitat disturbance treatments at the start and end of the wet season. Cleared plots were least effective in the capture of the first wet season rains, and uncleared treatment plots showed the greatest capacity to retain soil water during the transition from wet to dry season. The negative effects of habitat disturbance on soil water storage may have been partially mediated by the observed changes in soil macrofauna, especially termites.  相似文献   

2.
The termite Nasutitermes exitiosus (Hill) was fed natural and synthetic [14C]labelled lignins and related compounds, and the respired CO2 collected. All the compounds were partially degraded to CO2, from an average of 7% of the added 14C for ring-labelled phenate to 63% for methoxyl-labelled maize lignin and 64% for ring-labelled ferulic acid, during periods of 6–69 days. The breakdown commenced immediately and was linear until the food was consumed. Thereafter a slow release continued for some time. Termite bodies assayed at the end of the experiments contained only a small proportion of the added radioactivity. When live termites were separated from their faeces, it became apparent that most of the decomposition of lignin had taken place in the termites and not externally in the voided faeces. An estimate of respiration rates of N. exitiosus indicates a significant release of C as respired CO2, and this species of termite would appear to return a considerable proportion of the C in litter lignin directly to the atmosphere.  相似文献   

3.
 We performed feeding trials with the soil-feeding termite Cubitermes orthognathus using soil spiked by uniformly 14C-labeled preparations of cellulose, peptidoglycan, protein, and bacterial cells (Bacillus megaterium and Escherichia coli). When incubated in soil for 8 days in the absence of termites, cellulose and peptidoglycan showed low mineralization rates (0.5% and 0.2%, respectively). However, when termites were present, their mineralization rates strongly increased (21.6% and 30.6%, respectively). The mineralization rate of protein was 12.4% in the control soils and increased to 36.2% in the presence of termites. Mineralization of bacterial cells in control soils occurred in two phases (rapid mineralization during the first 4–5 days and stabilization thereafter). When termites were present, the rates of mineralization of bacterial cells increased and the stabilization phase was abolished. In all cases, radiolabel accumulated in the termites and the solubility of the labeled compounds located in the gut increased strongly. Mineralization was accompanied by transformation of residual carbon from the humic acid fraction to the fulvic acid fraction during gut passage. High-performance gel permeation chromatography demonstrated a strong shift in the size distribution of the residual carbon from high-molecular-weight towards low-molecular-weight molecules in the gut of termites and an accumulation of small molecules in the termite bodies. The present study provides strong evidence that structural polysaccharides of plants and bacteria and microbial biomass are carbon and energy sources for soil-feeding termites. Received: 29 May 2000  相似文献   

4.
Spiders are major predators in forest-floor leaf litter, yet little is known about their impact on prey populations and on forest-floor processes such as litter decomposition. This experiment investigated the effect of removing spiders on Collembola densities. We also examined the potential indirect effect of spider removal on rate of litter disappearance. Twenty-eight 1-m2 plots were randomly assigned to one of four treatments: O – open, no manipulations; F – fenced, no litter sifted, no spiders removed; FS – fenced, litter sifted, no spiders removed; and FSR – fenced, litter sifted, spiders removed. In early August, we sifted the litter in the FS and FSR plots, removing all encountered spiders from the FSR treatment. A month later, we placed into each plot one 15 × 15-cm litterbag filled with a known amount (ca. 3 g) of dried straw. After six weeks, litterbags were collected and fauna were extracted in a Kempson-McFadyen apparatus. Decreasing spider predation increased densities of Collembola, and increased the rate at which straw disappeared from litterbags. These results indicate that spider predation may reduce Collembola densities enough to lower rates of litter disappearance on the forest floor.  相似文献   

5.
 Populations of soil-dwelling mites were monitored in monoculture plots of four agroforestry tree species, Gliricidia sepium, Leucaena leucocephala, Dactyladenia barteri and Treculia africana, and compared to those in grass and secondary forest plots in the dry season (December 1993 to January 1994) and in the wet season (April to June 1994) in southwest Nigeria. Mite populations were very low in all plots during the dry season (500–3000 m–2), compared to those during the wet season (10 000–30 000 m–2). The highest mite population was observed in Gliricidia plots (3 044 m–2) for the dry season and Leucaena plots (30 240 m–2) for the wet season. Mite genera that were dominant in all the experimental plots were Annectacarus, Haplozetes, Machadobelba, Scheloribates and members of the Galumnidae, Dermanyssidae and Parasitidae. The community structure of mites was similar in the soil for Treculia and Gliricidia plots and for Leucaena and Dactyladenia plots. There were more taxonomic groups of mites under Leucaena than in the other agroforestry plots. Based on the density, diversity and complexity of the mite communities, Leucaena was considered to be better than other agroforestry species in encouraging the growth of mite populations. Received: 28 April 1998  相似文献   

6.
 To ascertain the cause of the decrease in pH with depth through the surface 15 cm of moderately acidic soils, pH was monitored in layers of an initially mixed surface soil (to a nominal depth of 10 cm) during two consecutive seasons under fallow, wheat, and subterranean-clover plots. Variation of pH-influencing processes within soil layers to 15 cm depth was measured during the first season. Initially, soil pH was relatively uniform within the surface 7.5 cm, although there was an average 0.53 unit decrease of pH from 0–2.5 cm to 10–15 cm depth. Under all plots, residual lime reaction, net organic anion association and oxidation, net manganese oxidation and reduction, and particularly net N mineralisation and subsequent nitrification, tended to decrease with depth through the surface 15 cm of soil. In wheat and subterranean-clover plots, the alkalinity added with the return of 3.9–4.7 t ha–1 of plant residue dry matter was predominantly released within the surface 2.5 cm of soil. The dominant pH-influencing processes were net N mineralisation and subsequent nitrification, and the return of alkaline plant residues. In the fallow plots, the surface 10 cm of soil tended to acidify due to nitrification. However in wheat and clover plots, alkalinity added to the surface 2.5 cm of soil from plant residues exceeded acidification resulting from nitrification at this depth. The magnitude of the pH gradient through 0–15 cm depth was therefore maintained under wheat, increased under clover, and decreased under fallow. Received: 11 October 1999  相似文献   

7.
Termites are estimated to contribute between <5 and 19% of the global methane (CH4) emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diurnal and seasonal variations. We measured CH4 fluxes from four common mound-building termite species (Microcerotermes nervosus, M. serratus, Tumulitermes pastinator and Amitermes darwini) diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of CH4 emissions from termite mounds and we observed large species specific differences. On a diurnal basis, CH4 fluxes were least at the coolest time of the day (∼07.00 h) and greatest at the warmest (∼15.00 h) for all species for both wet and dry seasons. We observed a strong and significant positive correlation between CH4 flux and mound temperature for all species. A mound excavation experiment demonstrated that the positive temperature effect on CH4 emissions was not related to termite movement in and out of a mound but probably a direct effect of temperature on methanogenesis in the termite gut. Fluxes in the wet season were 5-26-fold greater than those in the dry season. A multiple stepwise regression model including mound temperature and mound water content described 70-99% of the seasonal variations in CH4 fluxes for different species. CH4 fluxes from M. nervosus, which was the most abundant mound-building termite species at our sites, had significantly lower fluxes than the other three species measured. Our data demonstrate that CH4 flux estimates could result in large under- or over-estimation of CH4 emissions from termites if the diurnal, seasonal and species specific variations are not accounted for, especially when flux data are extrapolated to landscape scales.  相似文献   

8.
We present results from one of the first in situ soil termite exclusion experiments using translocated soil that was not colonised by termites prior to the experiment. Macrofauna were excluded or included using fine (0.3 mm) and coarse (5 mm) mesh, respectively. We found that termites were the most dominant macrofauna in the macrofauna-included samples throughout the sampling period. Additionally, C and N depletion rates were consistently higher in samples with macrofauna than without macrofauna despite the seasonal decline of termites at the start of the wet season. This suggests that the presence of termites in soil promotes C and N depletion that may be linked to the passage of soil through the termite gut and the affect termites have on bioturbation and nutrient distribution.  相似文献   

9.
The harvester termite, Anacanthotermes ubachi Navas (Hodotermitidea) occurs throughout the desert regions of Israel. This species nests in subsurface galleries where dead plant material, the termite's main food source, and feces are stored. We measured potential net nitrogen (N) mineralization and nitrification and soil respiration in 7-day laboratory incubations of plant litter at different stages of termite processing, termite feces and termite gallery soil (carton) following wetting. Our objectives were (1) to characterize the amount of potential N release from termite-affected plant and soil materials, (2) to evaluate the potential for leaching of N from the galleries and (3) to make a preliminary evaluation of the importance of termites to the carbon (C) and N cycles of the Negev desert. Two distinct phases were seen in the dynamics of inorganic N during the 7 day incubations: (1) release of N following wetting and (2) immobilization of N from day 1 to day 7 of the incubation. The percent of inorganic N produced in 1 day that disappeared by day 7 was significantly higher in the surface and gallery litter in comparison to the feces and the carton. High levels of nitrate (NO3: 87.5 g N kg−1) compared to ammonium (NH4+: 4.5 g N kg−1) release from the surface and gallery litter samples suggest that there is a potential for leaching of NO3 from the galleries to surrounding environments. Gallery litter, i.e. litter that had been processed by termites, released significantly less inorganic N and had a higher C:N ratio than surface litter that had not been affected by termite activity. These results suggest that termites actively remove N for their own nutrition, leaving behind litter of lower quality than was produced by plants. Comparison of the C:N ratios of litter and feces suggest that approximately 80% of the C and 65% of the N in the surface and the gallery litter was decomposed and released in the transformation to feces. Given mean annual biomass production in the study site (740 kg ha−1 with 296 kg C ha−1 and 6.6 kg N ha−1), this decomposition represents a release of 237 kg C ha−1 and 4.3 kg N ha−1, supporting the idea that termites function as keystone species in desert ecosystems.  相似文献   

10.
《Applied soil ecology》2007,35(3):523-534
Climate-change models predict a more intense hydrological cycle, with both increased and decreased amounts of rainfall in areas covered with temperate deciduous forests. These changes could alter rates of litter decomposition, with consequences for rates of nutrient cycling in the forest ecosystem. To examine impacts of predicted changes in precipitation on the rate of decay of canopy leaves, we placed litterbags in replicated, fenced 14 m2 low-rainfall and high-rainfall plots located under individual rainout shelters. Unfenced, open plots served as an ambient treatment. Litter in the high-rainfall and ambient plots decayed 50% and 78% faster, respectively, than litter in the low-rainfall plots. Litter in the ambient plots disappeared 20% faster than in the high-rainfall treatment, perhaps via greater leaching during heavy rainfall events. Ambient rainfall during the experiment was similar in total amount to the high-rainfall treatment, but was more variable in intensity and timing. We used litterbags of different mesh sizes to examine whether changes in rainfall might alter the impacts of major categories of the fauna on litter decay. However, we found no consistent evidence that excluding arthropods of different sizes affected litter decay rate within any of the three rainfall treatments. This research reveals that changes in rainfall predicted to occur with global climate change will likely strongly alter rates of litter decay in deciduous forests.  相似文献   

11.
ABSTRACT

Water and rice straw (RS) management practices can potentially affect the accumulation of soil organic carbon (SOC) in agricultural soils. Field experiments were conducted in two consecutive rice-growing seasons (wet and dry) to evaluate SOC stocks under different water (continuous flooding [CF], alternate wetting and drying [AWD]) and RS management practices (RS incorporation [RS-I], RS burning [RS-B], without RS incorporation and burning [WRS]) in a double-cropped paddy field. RS-I under AWD had higher volumetric water content than the same RS management under CF at tillering in both growing seasons. Total SOC was significantly higher under AWD at tillering in both wet and dry seasons and after harvesting in the dry season compared with CF. The same trend was also observed for C:N ratio at tillering and after harvesting in the dry season. RS-B plots had lower SOC stocks than RS-I and WRS plots across most of the measuring periods regardless of the growing seasons. SOC stocks were 33.09 and 39.31 Mg/ha at RS-B and RS-I plots, respectively, in the wet season, whereas the respective values were 21.45 and 24.55 Mg/ha in the dry season. Incorporation of RS enhanced SOC stocks under AWD irrigation, especially in the dry season before planting. Soil incorporation of RS in combination with AWD could be a viable option to increase SOC stocks in the double-cropped rice production region as it is strongly linked with soil fertility and productivity. However, the environmental consequences of RS incorporation in irrigated lowland rice production system should be taken into consideration before its recommendation for paddy field on a large scale.  相似文献   

12.
Little is known about the effects of neotropical mound-building termites in soil chemical and physical properties. The influence of soil termite activity on soil characteristics was studied by assessing chemical, physical and micromorphological properties of a toposequence of Latosols (Oxisols). Soil samples were collected from the walls and inner parts of termite mounds and also from adjacent soil. A high diversity of termite genera was found in the mounds along the toposequence, together with the inquiline termites and other soil-dwelling arthropods. Chemical analyses showed that pH and the contents of organic C and N, P, Ca and Mg were significantly higher in termite mounds compared with adjacent areas, with an inverse trend for Al content. Significant differences in pH and exchangeable Al were observed between soil and mound across the slopes. The mound density across the landscape was higher at the upper slope segment, followed by the hill top, middle slope and lower slope segments. Considering a lifespan of 30 years and dimensions of termite mounds found in the toposequence we conclude that the textural and chemical uniformity of Latosols may be increased, following the pedobiological turnover during mound building, with local rates varying from 2.1 to 7.5 m3 ha− 1.  相似文献   

13.
为探究干热河谷冲沟沟床土壤水分时空分异特征,选取了元谋干热河谷1条典型冲沟,对其不同分段(沟头、上游、中游、下游)下10,20,30,40,60,100 cm土层的土壤水分开展定位监测。结果表明:(1)沟床不同分段各土层(除100 cm土层外)含水量整体变化趋势一致,均表现为明显的干湿季特征;湿季(5—10月)土壤水分相对较高(7.64%~28.91%),受降雨影响大;干季(11—次年4月)则长期处于较低水平(6.11%~11.97%)。(2)沟床土壤水分从沟头至下游沿程变化在干湿季有明显差异,湿季表现为先减小后增加,下游(17.36%)显著高于沟头(15.46%)和上游(12.19%);干季则是先减小后增加再减小,沟头(10.64%)显著高于上游(6.74%)和下游(9.10%)。不同土层深度上,浅层(10—20 cm)和深层(60—100 cm)土壤水分含量在干湿季均较高,水分最小值出现在30—60 cm土层,其中干季30 cm土层水分亏缺严重。(3)沟床土壤水分最高日期通常出现在7日内累积降雨达76.1 mm以上的年最大降雨月当月;最低日期通常出现在持续无降雨条件下,如干季末期,...  相似文献   

14.
稻草覆盖对红壤旱坡地水力性质及水分状况的影响   总被引:1,自引:0,他引:1  
为探明红壤旱坡地应用稻草覆盖的雨季和旱季保水作用,在湖北省咸宁市第四纪红色黏土母质发育的红壤8°坡地上开展田间试验,以不覆盖为对照,研究稻草覆盖对红壤的持水性、水分有效性、供水性、导水性、含水量及储水量的影响。结果表明:稻草覆盖改善了土壤的持水性和水分有效性,覆盖当年土壤田间持水量、凋萎系数和有效水容量分别比对照提高6.0%、7.3%和4.4%;稻草覆盖显著减缓了雨季红壤表层饱和导水率的下降幅度,尤其是大雨期间保护地表饱和导水性的作用更明显,102.8 mm的降雨结束之后,稻草覆盖的土壤平均饱和导水率是对照的2.7倍;稻草覆盖对土壤的供水性及非饱和导水性的影响表现为低吸力段增强,高吸力段减弱;土壤储水量在集中降雨阶段的上升幅度和在降雨间歇期的下降幅度都表现为稻草覆盖对照。总体上,土壤储水量均表现为稻草覆盖对照;稻草覆盖增加雨季土壤储水量主要通过增加入渗,而增加旱季土壤储水量主要通过减少蒸散发;稻草覆盖增加雨季土壤储水量的作用有限,且保水作用雨季旱季。因此,稻草覆盖在红壤旱坡地上的雨季和旱季的保水途径、特点及作用大小都不同。  相似文献   

15.
《Applied soil ecology》2001,16(3):283-290
The effects of soil faunal activity on the physical properties of the soils of a 2-year-old fallow in the sahelian zone of Senegal were studied. Factors studied included the presence or absence of woody shrubs and the effect of protection of plots from grazing and removal of fuel wood. The experimental design included a control in which termite activity was excluded by treating the soil with the persistent insecticide dieldrin.In both the protected and unprotected area of the experiment, termite burrowing activity (as measured by the number of entrance holes per square-metre) and water infiltration rates were significantly (ca. 80%) lower in termite exclusion plots than in plots not treated with insecticide 2 years after initial treatment. In protected plots where termites were present, there was a significant increase in infiltration rates in the part where woody shrubs were removed. In unprotected plots, by contrast, the presence of shrubs significantly increased infiltration rates, whether or not termites were present.Burrowing activity of earthworms was greater in the protected than in the unprotected area, and in the unprotected area burrowing in dieldrin treated plots was significantly increased by almost 65%. Activity of ants appeared to be little affected by the different treatments. The results demonstrate that the presence of healthy soil faunal populations was important in the infiltration of water in fallow soils and that protection from grazing and human activity improves faunal activity and water infiltration.  相似文献   

16.
The present paper summarizes the results from a long-term experiment setup in 1980 in the Taihu Lake region, China, to address the yield sustainability, the dynamic changes of soil organic carbon (SOC) storage, and soil fertility in the rice–wheat ecosystem. Treatments in three replicates comprising manure-treated and chemical fertilizer-treated groups (two factors), each having seven sub-treatments of different combinations of inorganic nitrogen (N), phosphorus (P), potassium (K), and rice straw, were randomly distributed. Results showed that the treatments of manure (pig manure from 1980 to 1996 and oil rape cake thereafter) + N + P + K (MNPK) and chemical fertilizer + N + P + K (CNPK) produced the highest and the most stable yields for both rice and wheat within the respective fertilizer treatment group. Potassium fertilization was necessary for yield sustainability in the ecosystem. Treatments of straw (as rice straw) + N (CRN) and manure + straw + N (MRN) produced more stable yield of rice but less stable of wheat. It was therefore recommended that straw should be only incorporated during the rice season. SOC contents in all treatments showed increasing trends over the period, even in the control treatment. Predicted SOC in chemical fertilizer-treated plots (mostly yet attainable) ranged from 16 to 18 g C kg−1, indicating the high carbon (C) sequestration potential of the soil as compared to the initial SOC. SOC in manure- or straw-treated plots ranged from 17 to 19 g C kg−1, which had been attained roughly 10 years after the experiment was initiated. Nutrient balance sheet showed that there was P surplus in all P-treated plots and a steady increase in Olsen-P over a 24-year period in 0–15 cm soil, which contributed little to crop yield increases. It was therefore suggested that P fertilization rate should be decreased to 30–40 kg P ha−1 year−1. Comparison of yields among the treatments showed that wheat was more responsive to P fertilizer than rice. Thus P fertilizer should be preferably applied to wheat. Soil pH decrease was significant over the 24-year period and was not correlated with fertilizer treatments. The overall recommendation is to incorporate straw at 4,500 kg ha−1 year−1 during the rice season only, with additional 190 kg N ha−1 year−1, 30–40 kg P ha−1 year−1 mainly during the rice season, and 150–160 kg K ha−1 year−1. Further research on the unusual P supply capacity of the soil is needed.  相似文献   

17.
In the coastal Batinah plain of Oman, a litterbag experiment was carried out in an irrigated field, investigating the effects of organic fertilization and mineral fertilization on the cultivation of carrots and cauliflower. Two straw varieties and two green-harvested crops were used, simulating the properties of green manures. The loss of C in the litterbags declined in the order maize (−94%) > alfalfa (−89%) > wheat (−80%) > canola (−69%). For all these materials, the concentration of muramic acid, as an indicator of bacterial C, as well as galactosamine was generally increased in comparison with the initial values. In contrast, fungal glucosamine and consequently also the ratio of fungal C/bacterial C declined for canola and wheat straw. The loss of N, P, and S was generally smaller than that of C and showed strong substrate-specific patterns. Fertilization and crop cultivation had no effect on C losses. Organic fertilization resulted in significant increases in S, Mg, and Al in the litterbags in comparison with mineral fertilization. Cultivation of carrots led to significantly lower ash, N, P, Ca, K, Na, and Al concentrations than cultivation of cauliflower. Organic fertilization and carrot cultivation both led to stronger fungal colonization of the litter retained in the litterbags in comparison with mineral fertilization and cauliflower cultivation, respectively. More information is required on the interactions between initial plant surface colonizing microorganisms and soil-derived colonizers.  相似文献   

18.
Laboratory incubation experiments were conducted to study the C and N mineralization dynamics of crop residues (fine roots and straw) of the two main crops (winter wheat and peanut) in the Chinese Loess Plateau under different ways of incorporation. The C mineralization patterns of the soil amended with winter wheat residues differed greatly, and the highest C mineralization was observed in the treatment with winter wheat straw incorporated (39% of the total added C mineralized). The way of straw placement had only a minor effect on the pattern of C mineralization for peanut. Generally, winter wheat residues showed a stronger immobilization than peanut residues during the incubation period, without any net N release. Winter wheat straw incorporated showed the strongest N immobilization with 35 mg kg−1 (equivalent to 27% of added N) immobilized at the eighth week. This study indicated that retaining crop residues at the soil surface in the dry land soils of the Chinese Loess Plateau is beneficial for C sequestration. It also showed that N immobilization occurs only during a limited period of time, sufficient to prevent part of the mineral N pool from leaching, and that net N mineralization can be expected during the subsequent cropping season, thus enhancing synchronization of N supply and demand.  相似文献   

19.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

20.
Field experiments during two successive rainy seasons were conducted in southern Vietnam to evaluate the effects of a commercial inoculant biofertilizer (‘BioGro’) and fused magnesium phosphate (FMP) fertilizer on yield and nitrogen (N) and phosphorus (P) nutrition of rice. Inoculation with BioGro containing a pseudomonad, two bacilli and a soil yeast significantly increased grain yield in the second season and straw yield in both seasons by 3–5%. The FMP fertilizer significantly increased grain yield from 1.72–2.33 t ha?1 to 2.99–3.58 t ha?1 along with total N and P accumulation at all rates in both cropping seasons. In the first season the difference in grain yield between BioGro treated and untreated plots was marginal but in the second season BioGro out-yielded the control at all the rates of added P. Overall, BioGro application did not compensate for low P fertilizer application to the same extent previously demonstrated for low N fertilizer applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号