首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
不同利用方式下红壤坡地土壤水分时空动态变化规律研究   总被引:21,自引:4,他引:21  
利用连续3年土壤水分定位观测数据,研究了红壤坡地不同利用方式下土壤水分的时空动态变化规律。结果表明:土壤水分时空动态变化主要受降雨和植被类型的影响。土壤水分季节变化分为相对稳定期、消耗期和补给期三个时段;土壤剖面(0~90cm)水分含量从表层到深层表现为增长型,依据2003年土壤水分标准差和变异系数。将土壤剖面划分为活跃层、次活跃层和相对稳定层3个层次;土壤剖面水分变异系数随降雨量和土层深度的增加而减小,随植被根系的增长而变大。平水年,深根系区与浅根系区土壤水分变化差异表现在30cm深度以下,而丰水年其差异主要表现在土壤表层(0~30cm);无论平水年还是丰水年,深根系区土壤水分变幅均比浅根系区大。  相似文献   

2.
利用黄土区燕沟流域42场模拟降雨下土壤水分观测数据,研究2种坡度的草地、灌木地在不同经营方式(原状地、刈割地、翻耕地)下的土壤水分对模拟降雨的响应。结果表明:1)在5次降雨补充下,依据土壤水分的标准差和变异系数指标,0-100cm土壤水分受土地经营方式影响表现为,原状草灌地土壤水分可划分为活跃层、次活跃层和相对稳定层,刈割地全剖面为相对稳定层,翻耕地可分为活跃层和相对稳定层。2)单次降雨事件则随降雨量增加,各经营方式下的水分活跃层逐渐变薄或消失,次活跃层变厚,而相对稳定层变薄,整个土壤剖面水分变化趋于一致。3)对于受高强度降雨补充的土壤水分变异性分层,建议采用更加灵敏的土壤水分标准差和变异系数判别标准:活跃层,标准差大于1.4,变异系数大于0.12;次活跃层,标准差1.4-0.9,变异系数0.12-0.08;相对稳定层,标准差小于0.9,变异系数小于0.08。4)坡度越小,土壤水分越高,坡度对草灌木地、刈割地的影响较翻耕地显著,且对50-100cm层水分影响远大于对表层0-50cm的影响。总之,降雨后土壤水分0-100cm层不断增加,且剖面土壤水分逐渐一致,土地经营方式、坡度因素对土壤水分变化强度和在不同深度土层中的表现有显著影响。  相似文献   

3.
不同植被覆盖类型黑土水分动态变化特征   总被引:2,自引:1,他引:1  
采用中子水分仪定位监测方法,研究黑土区平水年大豆地、草地和裸地3种覆盖类型土壤水分变化特征.结果表明:土壤水分空间垂直动态变化随深度增加而降低,基于变异系数(CV)将土壤水分垂直变化分为4层,即水分速变层、活跃层、次活跃层和相对稳定层.不同覆盖类型下,土壤水循环深度依次为大豆地>草地>裸地,土壤水循环强度依次为草地>大豆地>裸地;3种覆盖类型的土壤剖面含水量在作物生长季节内呈增长型变化特征,裸地0~20 cm土层各时段土壤含水量均高于草地和大豆地;30 cm土层以下土壤水分含量依次为草地>裸地>大豆地.该区土壤储水量主要受降雨调控,3种植被覆盖类型下,土壤水分的总蒸散量依次为草地>大豆地>裸地.  相似文献   

4.
通过对林地土壤水势和土壤含水量变化规律得出在降雨人渗过程中,土壤水分变化过程是零通量面发散和收敛型的相互转换;土壤含水量和土壤水势变化规律基本相同,林地10-20cm剖面水分变化受环境影响最显著,属表层急变型;30cm剖面水分变化相对缓慢为过渡层;50-100cm剖面水分变化较为一致,含水率也较为接近为稳变层。  相似文献   

5.
黄丘区野外坡面土壤水分变化对次降雨过程的响应   总被引:4,自引:0,他引:4  
土壤水分的垂直变化与空间变异特征对坡面降雨入渗和产流过程有重要影响。为了研究黄丘区降雨-土壤水分响应关系,在天水罗玉沟流域建立野外坡面小区,利用野外水分动态观测和人工模拟降雨试验,研究天然状态和90 mm/h降雨强度下的土壤水分变化规律。结果表明:天然状态下,土壤剖面土壤水分的垂直变化可以划分为速变层(0~20 cm)、活跃层(20~30 cm)、次活跃层(30~40 cm)和相对稳定层(40~100 cm),土壤水分的垂向分布存在分层现象,坡向分布存在显著的坡位差异(P0.05)。降雨过程中,降雨能明显增强土壤水分的活跃性,主要表现在0~30 cm土层范围内,随土层深度的增加,降雨对土壤水分活跃程度的影响逐渐减弱。0~30 cm土层土壤水分随降雨时间变化表现为3段式,即快速上升期、稳定期、略微下降期,深层次土壤水分在垂向的变化中表现为不均匀性,存在梯度性差异;除0~30 cm土层外,降雨仅增加各土层中的土壤水分,对各层间土壤水分在整体土层范围中土壤水分的占比影响较小,雨中坡位间土壤水分的分布差异更为显著(P0.01)。随着0~30 cm土层的土壤水分含水率的增加,产流速率呈增加并趋于稳定的趋势,产沙速率的变化趋势为产沙量达到高峰后逐渐减小并趋于稳定。  相似文献   

6.
黑土区不同土地利用方式土壤水分动态变化特征研究   总被引:5,自引:1,他引:4  
在中国科学院海伦农田生态系统国家野外科学观测研究站.应用田间定位试验研究了玉米地、休闲地、苜蓿地和裸地4种不同土地利用方式下农田黑土水分动态变化特征.结果表明:土壤剖面0-190 cm水分含量随深度的增加呈先增加后减小的趋势,不同土地利用方式下农田黑土表层0-30 cm的土壤含水量差异较明显,总体表现为裸地相对较高,其次为休闲地、苜蓿地和玉米地;研究时段内土壤水分的动态变化具有明显的季节性,一般可以划分为水分相对稳定期、水分消耗期和水分补给期3个时期;根据变异系数将土壤水分的垂直变化划分为活跃层、次活跃层和相对稳定层,变异系数随土层深度的增加而减小.  相似文献   

7.
以黄土高原沟壑区砂石覆盖苹果园为研究对象,对600 cm范围内土壤剖面水分含量的时间分异和空间分布状况进行了研究.结果表明:600 cm土层范围内,一周年内可划分为冬季增墒期和夏季失墒期两个阶段;土壤剖面水分空间分布随土壤深度的增加呈现波动性变化且稳定性不同,土壤含水量变化幅度随土层深度增加而变小,据此可将600 cm范围内的土壤剖面划分为速变层、相对稳定层、缓变层和稳定层;土壤水分在不同层次上的分布差异,8月土壤剖面不同层次含水量差异最大.11月次之,5月再次之.1月土壤不同层次含水量差异最小.综合看来,除土壤表层因砂石覆盖水分增加外,土壤剖面含水量随土壤深度的增加而减少且趋于稳定,水分下渗能力减弱;冬季土壤含水量多且分布均匀,夏季土壤水分减少且主要集中在上层,此时土壤不同层次水分含量差异大.  相似文献   

8.
内蒙古西部黄土丘陵区土壤水分动态初探   总被引:1,自引:1,他引:1  
通过对内蒙古西部黄土丘陵区土壤水分的初步研究,表明:该区土壤水分的垂直动态分布分为三个不同层次,即:水分不稳定层(0~40cm);中间过渡层(40~100cm);水分相对稳定层(100~200cm);旱作土壤水分的动态变化与降雨的变化基本一致;作物对土壤水分的消耗主要是当年降雨。  相似文献   

9.
古尔班通古特沙漠南缘固定沙丘土壤水分时空变化特征   总被引:10,自引:0,他引:10  
朱海  胡顺军  陈永宝 《土壤学报》2016,53(1):117-126
土壤水分是维系古尔班通古特沙漠荒漠植被发育最主要的制约因子。为了研究古尔班通古特沙漠南缘固定沙丘土壤水分特征,于2012年12月4日至2013年11月4日,采用中子仪法对0~400cm沙层土壤含水率进行了原位观测,分析了沙丘不同部位土壤含水率的时空变化及不同发育阶段梭梭对其根区土壤含水率的影响。结果表明:(1)0~40 cm土层为土壤水分活跃层,40~200 cm土层为土壤水分次活跃层,200 cm以下土层为土壤水分相对稳定层;(2)西坡、坡顶和东坡的土壤含水率差异不显著,丘间地土壤含水率与西坡、坡顶和东坡均存在极显著性差异,且丘间地土壤含水率相对较高;(3)3—5月是土壤水分补给期,6—10月是土壤水分耗损期,11月—翌年2月是土壤水分稳定期;(4)不同发育阶段梭梭根区土壤含水率秋季均显著低于春、夏两季,壮年阶段梭梭根区土壤含水率各季都较低,青年阶段梭梭根区土壤含水率各季相差较大,壮年阶段梭梭和青年阶段梭梭根区土壤含水率春、夏季均存在显著性差异。  相似文献   

10.
沙地土壤水分特征及水分时空动态分析   总被引:8,自引:0,他引:8  
通过对宁夏盐池沙地不同立地类型土壤水分连续两年的定位观测,探讨了固定沙丘不同部位、不同立地的沙柳林地和柠条林地的土壤水分特征和时空动态变化。结果表明:柠条林地的土壤容重最小,而保水能力最好。各样地土壤水分垂直分布总体表现出明显的分层特征,可划分为3层:土壤水分低值层、土壤水分活跃层、土壤水分相对稳定层,每一层的厚度因不同的立地类型而不同。  相似文献   

11.
桂西北岩溶山区峰丛洼地土壤水分动态变化初探   总被引:25,自引:0,他引:25  
土壤水分是岩溶山区植被恢复和生态环境建设的关键性限制因素。在桂西北岩溶山区峰从洼地,分析了不同利用方式坡面、洼地土壤水分的动态变化规律,结果表明:坡面土壤水分(0~20cm)为中等变异,不同利用方式间具有一定的差异,自然灌丛、撂荒地土壤含水量较高,但板栗、木豆林地土壤含水量较低,且易受外界条件的干扰,其栽种早期应注意采取一定的蓄水保墒措施;与坡地相比,洼地受外界条件的干扰相对较小,土壤剖面含水量为增长型,其变化主要发生在表层,为中等变异;土壤水分沿坡面的分布规律较为复杂,在植被类型相对一致的条件下,坡位的影响相对较小。  相似文献   

12.
盘式入渗仪法测定喀斯特洼地土壤透水性研究   总被引:9,自引:2,他引:7  
研究土壤水入渗有助于了解喀斯特地区表层岩溶带对降水资源的调蓄作用。该文利用盘式负压入渗仪(盘径d=20 cm,负压h0=-20 mm)研究了桂西北喀斯特洼地典型剖面各层次土壤透水性。结果表明:各层土壤透水性能差异较大,具有随土层深度增加而减小的趋势,但菜地50-80 cm层大于20-50 cm层;菜地剖面0-10 cm层土壤近似饱和导水率(1.85×10-3cm/s)是20-50 cm层的5.2倍,玉米地剖面0-16 cm层土壤近似饱和导水率(2.21×10-3cm/s)是55-70 cm层的3.1倍;土壤比重、初始含水率同土壤入渗性能关系密切,与近似饱和导水率的相关系数分别为-0.676*和-0.841**。  相似文献   

13.
为探明喀斯特坡地改为梯田后土壤水分的变化特征,以典型喀斯特坡地橘园和梯田橘园为研究对象,对不同深度土层(0—70 cm)土壤含水量进行1年 (376天)的连续监测。结果表明:(1)梯田橘园平均土壤含水量(32.64%)与坡地橘园(33.05%)差异很小,梯田橘园表层(0—10 cm)土壤含水量(43.35%)显著高于坡地橘园(34.24%),两者土壤水分均呈现旱季变化相对平缓、雨季波动较为剧烈的变化规律,梯田橘园表层土壤含水量与下层有明显差异,而坡地橘园各土层土壤含水量差异较小。(2)不同雨量的降雨事件中,梯田橘园各土层含水量总体增长幅度较坡地橘园大;停雨后24 h内,梯田橘园表层土壤含水量的衰退速度较坡地橘园慢,但停雨后1周内,梯田橘园各土层含水量衰退速度总体较坡地橘园快。(3)梯田橘园与坡地橘园的平均相对可利用水分分别为0.37与0.38,与非喀斯特地区相比,梯田在喀斯特峰丛洼地的保水效果相对不明显。研究结果可为定量评价喀斯特地区坡改梯措施的保水效益提供一定的科学依据。  相似文献   

14.
明确黄土丘陵区降雨对土壤水分影响,对准确评估降雨格局变化对生态系统结构和功能的影响具有重要意义。以陕北黄土丘陵区退耕地栽植后自然撂荒23年的柠条人工纯林为研究对象,通过土壤湿度传感器监测不同土层土壤体积含水量,探讨不同土层土壤水分补充增量对降雨特征(降雨量、降雨历时和降雨强度)的响应。结果表明:(1)土壤水分消耗和补充主要集中于0-500 cm土层,其月变化在垂直剖面呈“双峰”(4—5月)、“单峰”(6月)和“双峰”(7—10月),随土层深度增加变化率减弱;(2)当降雨量>4 mm时表层土壤水分得到有效补充,当其超过142.8 mm时补充深度可到达200 cm土层,其中长历时强降雨较短历时强降雨对土壤水分补充增量小,但其补充深度较深,达到峰值时间长,但小降雨长历时则土壤水分补充增量较小;(3)降雨特征对土壤水分影响随土层深度增加而减弱,其中降雨量和降雨历时对土壤水分影响主要在0—50 cm土层,而降雨强度对其影响主要在0—30 cm土层。降雨量(降雨历时)和土壤水分补充增量对数拟合最优,而降雨强度与其则表现为幂函数拟合最优,其可分别解释土壤水分补充增量的39%~76%(降雨量)、...  相似文献   

15.
垄沟集雨对紫花苜蓿草地土壤水分、容重和孔隙度的影响   总被引:6,自引:1,他引:5  
在旱作条件下, 将垄沟集雨措施应用于紫花苜蓿种植, 研究沟垄宽比和覆膜方式对2年龄紫花苜蓿草地土壤水分状况、土壤容重及孔隙度的影响。结果表明: 全越冬期, 膜垄和土垄处理0~120 cm土壤水分平均散失量分别低于CK(平作)28.43 mm和13.61 mm。膜垄处理整个集雨期的蓄墒增加率为59.03%~99.27%, 产流效率为53.43%~91.72%; 2009年集雨前期(4月上旬~6月上旬)土垄处理的蓄墒增加率、产流效率分别为1.92%~2.74%和1.71%~2.55%, 2009年集雨中后期(6月中旬~9月下旬)土垄处理的蓄墒增加率、产流效率较集雨前期显著升高, 分别为8.85%~36.77%和8.01%~35.82%; 膜垄和土垄处理的蓄墒增加率、产流效率均随垄面宽度增加而显著增加, 且膜垄的蓄墒增加率、产流效率显著高于土垄处理。垄沟集雨种植能够显著降低0~40 cm土壤层容重, 且0~20 cm土壤层容重降幅表现为膜垄大于土垄。垄沟集雨种植也能够显著增加0~40 cm土壤层孔隙度, 且0~20 cm土壤层孔隙度增幅表现为膜垄大于土垄。  相似文献   

16.
耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响   总被引:20,自引:6,他引:14  
为探明不同耕作方式对土壤剖面结构、水分入渗过程等的作用机理,采集田间长期定位耕作措施(常规耕作、免耕、深松)试验中的原状土柱(0~100 cm)及0~10 cm、10~20 cm、…、90~100 cm环刀样、原状土及混合土样,通过室内模拟试验进行了0~100 cm土层土壤入渗过程和饱和导水率的测定,分析了不同土层的土壤有机碳含量、土壤结构特征及相互关系。结果表明:从土柱顶部开始供水(恒定水头)到水分全部入渗到土柱底部的时间为:常规耕作免耕深松;土柱土壤入渗速率和累积入渗量为:深松免耕常规耕作;土柱累积蒸发量为:常规耕作免耕深松。土壤的饱和导水率表现为:0~10 cm和50~60 cm土层,免耕深松常规耕作;20~50 cm和60~100 cm土层,深松免耕常规耕作。随土层的加深,0.25 mm水稳性团聚体含量和土壤有机碳含量均表现为先增加(10~20 cm)再降低的趋势。在0~40 cm土层和80~100 cm土层,均以深松处理0.25 mm水稳性团聚体含量最高。在60 cm以上土层,土壤有机碳含量表现为:免耕深松常规耕作,而60 cm土层以下土壤有机碳显著降低,均低于4 g·kg?1,且在70 cm以下土层,常规耕作免耕深松。综上,耕作措施能够改变土壤有机碳含量,改善土壤结构,促进土壤蓄水保墒;深松更利于水分就地入渗,而免耕则更利于有机碳的提升和水分的储存,其作用深度在0~60 cm土层。  相似文献   

17.
土壤垂向分层和均匀处理下水分差异的数值探讨   总被引:2,自引:0,他引:2  
在现有众多的陆面过程模型中,对土壤水分的定量描述一般是假设垂向分布均匀,取表层土壤质地来表示整个垂向土壤质地。垂向分层和均匀处理下的土壤水分是存在差异的,这种差异有多大目前少有研究。设置3组不同饱和导水率组合的层状土壤代表不同区域的非均匀土壤,取3组层状土壤的上层土壤代表整个均匀土壤,通过建立一维土壤水分运动模型分析这种差异,同时分析饱和导水率、饱和含水量、残余含水率、孔隙大小分布参数和形状参数对层状土壤和均匀土壤的渗透量和储水量差异的敏感性,探讨垂向层状和均匀处理下土壤水分运动的差异。研究结果表明:1)建立的一维土壤水分运动模型模拟的土壤水分剖面与Yeh解析解和室内五水转化试验的土壤水分剖面一致,表明模型无论是考虑还是不考虑根系吸水都具有可靠性。2)采用垂向均匀方式处理,上下层饱和导水率相差越大的层状土壤,各水文变量的差异越大。当层状土壤上下层饱和导水率相差1.5倍时,层状土壤和均匀土壤的水分分布差别小于0.05 cm~3×cm~(-3);而当层状土壤上下层饱和导水率相差达3.3倍时,层状土壤和均匀土壤的水分分布差别达0.15 cm~3×cm~(-3),渗漏量相差20 cm以上,储水量相差5 cm左右。3)相对于层状土壤下层,均匀土壤下层的持水能力更差,水流速度更快,导致下层水分分布减小,渗漏量增加,储水量减小。4)形状参数n对渗透量的敏感性最强,土壤孔隙大小分布参数对储水量的敏感性最强,形状参数n其次。在实际应用中,如果一个区域的土壤上下层饱和导水率相差较大,那么垂向均匀处理可能会导致很大的误差,和实际土壤的水分分布相差很大,这会严重影响土壤水分的准确估计,在实际处理中需要认真考虑。  相似文献   

18.
为探讨喀斯特石漠化过程中地表小生境及成土母质岩性的演变对土壤有机碳的影响,以不同喀斯特地貌类型的角度出发,分别从贵州普定、兴义、关岭、荔波及印江县选取对应的喀斯特高原(KG)、峰丛洼地(KF)、峡谷(KX)、原始森林(KY)及槽谷(KC)作为研究区域,分析了0—40 cm土壤层(0—10,10—20,20—30,30—40 cm)及土壤与基岩交界面土层的有机碳含量,分别计算土壤有机碳密度及储量,并分析其空间分布特征及演变规律。结果表明:不同石漠化等级下土壤有机碳含量、密度及储量分别为113.18~163.98 g/kg,1.08~7.32 kg/m~2及4.07~24.29 kg,并且呈现出随着石漠化程度的增加而逐渐降低的趋势,同时小生境为石槽以及成土母质岩性为石灰岩及泥灰岩的土壤有机碳含量相对较高。不同喀斯特地貌类型之间土壤有机碳存在较大的差异,在同等的条件下KY及KC土壤有机碳储量相对要高于其他地貌类型。土壤有机碳在喀斯特石漠化演变链上迁移,而小生境及成土岩性的更迭对不同喀斯特地貌类型土壤有机碳在重构空间分布格局具有重要的指示意义。同时喀斯特岩溶地区生态环境复杂多变,要获得评估喀斯特地区土壤有机碳更灵敏的方法,仍需开展进一步研究。  相似文献   

19.
喀斯特地区黄壤坡面土壤水分对降雨的响应   总被引:1,自引:1,他引:0  
土壤水分是喀斯特地区水文生态环境的重要因素。通过在不同土地利用设置试验点,对降雨和20,40,80,100 cm深度土壤水分进行监测分析,揭示不同土地利用条件下土壤水分在降雨过程中的变化规律。结果表明:(1)植被盖度、土壤前期贮水量等因素对土壤水分的降雨补给量和土壤水分在土壤剖面上的再分配具有明显的影响。(2)土壤水分的降雨补给量在土壤剖面上的分布具有一定的层次性,随土层深度的增加整体表现为先增加后减少再增加的趋势;表层降雨补给量最小,最大降雨补给量多出现在100 cm深度。(3)土壤水分对降雨的响应具有滞后效应,并随土层深度增加而增强,随盖度增加而减弱。(4)在降雨影响阶段,可将土壤水分变化分为滞后期、上升期和消退期3个阶段;降雨过程中,植被盖度越高,降雨强度越大,土壤水分变化越快,并随着土层深度的增加减缓。研究结果为水资源的合理利用和配置以及水土保持提供参考和理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号