首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1) crop responses, 2) dynamics of NO3-N and NH4-N in different soil layers, 3) N balance and 4) system-level N efficiencies. Five treatments (2 fertilizers, 2 fertilizer rates and a control), each with three replicates, were arranged in the study. The higher N fertilizer rate, 300 kg N ha-1 (versus 150 kg N ha-1), returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment, while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N. At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general, about 50% of the total N input was recovered from all treatments. Pepper, relative to tomato, used N more efficiently with smaller N losses, but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus, optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.  相似文献   

2.
提高高产玉米氮素利用效率的根层氮素管理技术   总被引:5,自引:0,他引:5  
Many recently developed N management strategies have been extremely successful in improving N use efficiency.How-ever,attempts to further increase grain yields have had limited success.Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.).According to the in-season root-zone N management,the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NH + 4--N and NO 3--N) in the root zone from N target values.Other treatments included a control without N fertilization,70% of ONR,130% of ONR,and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials.Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007,grain yield declined from 13.3 to 11.0 Mg ha 1 because of an underestimation of N uptake.In 2008,N target values were adjusted to match crop uptake,and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha-1 for ONR.High maize yields were maintained at 12.6 to 13.5 Mg ha 1,which were twice the yield from typical farmers’ practice.As a result,apparent N recovery increased from 29% to 66%,and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment.In conclusion,the in-season root-zone N management approach was able to achieve high yields,high NUE and low N losses.  相似文献   

3.
稻草还田与施氮水平对土壤氮素供应和水稻产量的影响   总被引:3,自引:0,他引:3  
比较研究了3年定位试验后稻草还田和施N水平对红壤双季稻作系统土壤供N能力、水稻吸N特征和水稻生产的影响。结果表明:头年晚稻草秋季还田对来年早稻土壤NH4+-N和作物吸N量的提高具有促进作用,而早稻新鲜稻草还田使晚稻土壤NH4+-N和作物吸N量均略低于移走稻草处理。稻草还田处理3年后,土壤可矿化N与移走稻草处理相比提高了35.4%~53.9%,且水稻各生育期干物质生产量均高于移走稻草处理,稻谷增产率达4.0%~4.7%。施用N肥可以显著增加土壤NH4+-N和可矿化N含量,且随着N肥用量的增加,水稻植株的累积吸N量和系统生产力(地上干物质量和产量)均显著的增加,建议N(全年施N量185 kg hm-2)和习惯N(全年施N量265 kg hm-2)处理相对于无N处理的增产率分别为35.2%和45.3%,而N肥的吸收利用效率分别为27%和25%,农学产量效益分别为每公斤纯N增产谷粒12.7 kg和11.4 kg。  相似文献   

4.
【目的】紫云英翻压后在一定程度上可改善土壤理化性状,并提高后作水稻的产量,但是该机理是由于紫云英翻压矿化后提供的氮素还是由于与翻压紫云英后化肥氮素利用率的提高有关尚不清楚,因此,本项目通过连续4年紫云英翻压还田的定位试验与原状土柱模拟及15N示踪,研究了福建单季稻区紫云英压青回田对水稻产量与化肥15N吸收、 分配及残留的影响。【方法】采用单季稻田间定位试验,设5个处理: 1)对照,不翻压紫云英,不施化肥(CK);2)不翻压紫云英,常规化肥施用量(100%H);3)紫云英+常规化肥用量(Z+100%H);4)紫云英+60%的常规化肥(Z+60%H);5)只翻压紫云英,不施化肥(Z)。常规化肥用量(100%H)为施氮量N 135 kg/hm2,N∶P2O5∶K2O=1∶0.4∶0.7,每年紫云英翻压量为18000 kg/hm2。每个处理3次重复,小区面积15 m2,种植水稻为每小区2015丛。于定位试验的第4年,在田间定位试验小区中,采用15N-尿素(丰度10%)示踪法与原状土柱模拟水稻植株的氮素吸收及分配情况。PVC管直径25 cm,长35 cm,其中压入田面下20 cm,每小区埋两个土柱,每个土柱中种植两株水稻。【结果】紫云英年翻压18000 kg/hm2并结合施用100%化肥(Z+100%H),水稻子粒4年平均产量比单施100%化肥(100%H)增产6.5%,同时在18000 kg/hm2 的紫云英翻压量下,主作物水稻化肥减量40%(Z+60%H)的产量与100%H的处理基本相当。Z+100%H处理对提高水稻分蘖期植株氮含量最为明显,尤其是茎叶氮含量较100%H提高7.0%,差异显著。虽然不同施肥处理水稻生育期的化肥氮素利用率无明显变化,但Z+100%H处理分蘖期与成熟期植株氮素吸收量分别较100%H提高23.0%与18.0%,说明绿肥与化肥配施有利于水稻植株吸收外源氮素,且植株吸收氮的差异主要来自于紫云英矿化的氮源。Z+60%H 与100%H处理的分蘖期与成熟期植株氮素吸收量则基本相当。不同施肥处理均有提高土壤全氮含量的趋势;Z+60%H 处理的耕层土壤化肥氮素的残留率最高,并显著高于Z+100%H处理。【结论】连续4年翻压紫云英明显提高了福建单季稻区黄泥田的农田生产力,在减少40%常规化肥用量的情况下仍可维持产量稳定。翻压绿肥减肥增效的主要机制之一是紫云英矿化的养分替代了化肥。  相似文献   

5.
中国南方大棚蔬菜地氮平衡与损失   总被引:28,自引:0,他引:28  
High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal of this study was to determine the annual N balance and loss in a greenhouse vegetable system of annual rotation of tomato,cucumber,and celery at five N (urea) application rates (0,348,522,696,and 870 kg N ha-1 year-1).Total N input to the 0-50 cm soil layer ranged from 531 to 1 053 kg ha-1,and N fertilizer was the main N source,accounting for 66%-83% of the total annual N input.In comparison,irrigation water,wet deposition,and seeds in total accounted for less than 1% of the total N input.The fertilizer N use efficiency was only 18% under the conventional application rate of 870 kg N ha-1 and decreased as the application rate increased from 522 to 870 kg N ha-1.Apparent N losses were 196-201 kg N ha-1,of which 71%-86% was lost by leaching at the application rates of 522-870 kg N ha-1.Thus,leaching was the primary N loss pathway at high N application rates and the amount of N leached was proportional to the N applied during the cucumber season.Moreover,dissolved organic N accounted for 10% of the leached N,whereas NH3 volatilization only contributed 0.1%-0.6% of the apparent N losses under the five N application rates in this greenhouse vegetable system.  相似文献   

6.
农作物N素利用效率基因型差异及其机理   总被引:2,自引:0,他引:2  
不同农作物N素利用效率基因型差异主要与N素吸收效率和生理利用效率有关。根系N的吸收动力学、根系形态、吸收时间是影响N素吸收效率的重要因素;N素生理利用效率与N的同化、转运及光合作用、C转运效率等生理过程有关。分析农作物N素利用效率基因型差异机理对提高N肥利用效率,降低N肥损失,充分发挥N肥在农业生产中的作用,降低农业生产成本和保护生态环境,促进农业可持续发展具有重要意义。  相似文献   

7.
通过GIS和GPS技术监测农业生态系统中N的空间变化是最近开发的一项新技术。研究人员通过该项监测技术对精细管理地区(SSMZ)N变化状况进行了研究,结果表明:当以方格法为对照时,SSMZ处理比常态管理能更好地管理田间养分,并且方法简单、有效。SSMZ考虑到作物产量、生物量、土壤状况和N的利用率,进而在保证作物产量较大的同时降低输入土壤中的养分,达到改善水质、保护环境的目的。  相似文献   

8.
氮肥用量及其分施比例对棉花氮利用和土壤氮平衡的影响   总被引:1,自引:0,他引:1  
The Yellow River valley is one of the three largest cotton production areas in China.An experiment was performed in cotton fields of Anyang,China from 2013 to 2014 to investigate the effects of nitrogen(N) application rate and the ratio between basal and topdressing N fertilizer on N balance in a soil-plant system,N use efficiency,and cotton yield.Five N application rates as treatments were applied with the same split application ratio.Half of the N(50% basal fertilizer) was applied at pre-planting and the other half(50% topdressing fertilizer) at the initial flowering stage.These treatments were:zero N(N0,control),90 kg N ha~(-1)(N90(5/5)),180 kg N ha~(-1)(N180(5/5)),270 kg N ha~(-1)(N270(5/5),a reduced N rate),and 360 kg N ha~(-1)(N360(5/5),a conventional N rate).Additional 2 split application ratios as treatments were applied with the same N rate of 270 kg N ha~(-1).The split application ratios between basal N and topdressing N were 30%:70%(N270(3/7)) and 70%:30%(N270(7/3)).Results demonstrated that soil NH_4-N content in the 0–60 cm layer and NO3-N content in the 0–20 cm layer increased with increased N rate at the squaring and boll-opening stages and then decreased to lower levels at the initial flowering and harvest stages.Soil NO_3-N content in the 20–60 cm layer after the initial flowering stage increased with the increase of topdressing N rate.Soil apparent N surplus varied at different growth stages,while the soil apparent N surplus over the entire growth period exhibited a positive relationship at N rates over 180 kg ha~(-1).Seed cotton yield of N270(3/7) was the highest of all treatments.Plant N uptake,N agronomic efficiency,and apparent N recovery efficiency of N270(3/7) were significantly higher than those of N270(5/5) and N270(7/3) in both growing seasons.These suggest both economic and ecological benefits in cotton production in the Yellow River valley could be created,by appropriately reducing total N application rate and increasing the ratio of topdressing to basal N fertilizer at the initial flowering stage.  相似文献   

9.
同位素^15N稀释法测定豆科植物固N初步研究   总被引:3,自引:0,他引:3  
李井葵  蔡大同 《土壤肥料》1991,(1):46-48,F003
  相似文献   

10.
洞庭湖区不同土地利用方式耕作土壤氮素含量与循环   总被引:2,自引:0,他引:2  
通过对洞庭湖典型地区的密集采样分析和农户调查,研究了4种利用方式耕作土壤全N、微生物生物量氮(MB-N)含量、两者关系和N素循环特征。结果表明:耕作土壤全N、MB-N含量平均值为3.00±0.48g/kg和101.4±49.2mg/kg。双季稻、一季稻、水田旱作和旱地全N平均含量依次为3.12±0.40g/kg、3.03±0.39g/kg、2.79±0.43g/kg2、.10±0.46g/kg。4种利用方式的MB-N含量分别为124.0±56.6mg/kg、96.4±39.2mg/kg、108.0±48.6mg/kg、75.2±30.5mg/kg。除水田旱作外,MB-N与全N之间存在极显著的正相关关系(P<0.01)。土壤N素盈余量依次为双季稻(105.0kg/hm2.a)>一季稻(75.1kg/hm2.a)>水田旱作油菜(64.5kg/hm2.a)>旱地苎麻(51.9kg/hm2.a)。  相似文献   

11.
《土壤圈》2016,(2)
Achieving both high yield and high nitrogen use efficiency(NUE) simultaneously has become a major challenge with increased global demand for food,depletion of natural resources,and deterioration of environment.As the greatest consumers of N fertilizer in the world,Chinese farmers have overused N,and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship.To address this problem,this study evaluated the total and dynamic N requirement for different yield ranges of two major crops(maize and wheat),and suggested improvements to N management strategies.Whole-plant N aboveground uptake requirement per grain yield(N_(re)q) initially deceased with grain yield improvement and then stagnated,and yet most farmers still believed that more fertilizer and higher grain yield were synonymous.When maize yield increased from 7.5to 12.0 Mg ha~(-1),Nreq decreased from 19.8 to 17.0 kg Mg~(-1) grain.For wheat,it decreased from 27.1 kg Mg~(-1) grain for grain yield 4.5 Mg ha~(-1) to 22.7 kg Mg~(-1) grain for yield 9.0 Mg ha~(-1).Meanwhile,the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield,which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages.We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE.  相似文献   

12.
中国水稻不同产量、品种和种植制度下氮需求量变异状况   总被引:2,自引:0,他引:2  
Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-level measurements in different reaches of the Yangtze River, China to determine which factors contributed to variability in N requirement in rice. Yield, variety, and cropping system were significantly related to N requirement. The N requirement remained consistent at about 18.6 kg N Mg~(-1)grain as grain yield increased from 7 to 9 Mg ha~(-1), then decreased to 18.1, 16.9, and 15.9 kg N Mg~(-1)grain as yield increased to 9–10, 10–11, and 11 Mg ha~(-1), respectively. The decreased requirement for N with increasing yield was attributable to declining N concentrations in grain and straw and increased harvest index. Super rice variety had lower N requirement(17.7 kg N Mg~(-1)grain) than ordinary inbred and hybrid varieties(18.5 and 18.3 kg N Mg~(-1)grain, respectively), which was a result of lower grain and straw N concentrations of super rice. The N requirements were 19.2, 17.8, and 17.5 kg N Mg~(-1)grain for early, middle, and late rice cropping systems, respectively. In conclusion, the rice N requirement was affected by multiple factors, including yield, variety, and cropping system, all of which should be considered when planning for optimal N management.  相似文献   

13.
China has the world''s highest nitrogen (N) application rate, and the lowest N use efficiency (NUE). With the crop yield increasing, serious N pollution is also caused. An in-situ field experiment (2011-2015) was conducted to examine the effects of three N levels, 0 (i.e., no fertilizer N addition to soil), 120, and 180 kg N ha-1, using integrated rice management (IRM). We investigated rice yield, aboveground N uptake, and soil surface N budget in a hilly region of Southwest China. Compared to traditional rice management (TRM), IRM integrated raised beds, plastic mulch, furrow irrigation, and triangular transplanting, which significantly improved rice grain yield, straw biomass, aboveground N uptake, and NUE. Integrated rice management significantly improved 15N recovery efficiency (by 10%) and significantly reduced the ratio of potential 15N loss (by 8%-12%). Among all treatments, the 120 kg N ha-1 level under IRM achieved the highest 15N recovery efficiency (32%) and 15N residual efficiency (29%), with the lowest 15N loss ratio (39%). After rice harvest, the residual N fertilizer did not achieve a full replenishment of soil N consumption, as the replenishing effect was insufficient (ranging from -31 to -49 kg N ha-1). Furthermore, soil surface N budget showed a surplus (69-146 kg N ha-1) under all treatments, and the N surplus was lower under IRM than TRM. These results indicate IRM as a reliable and stable method for high rice yield and high NUE, while exerting a minor risk of N loss. In the hilly area of Southwest China, the optimized N fertilizer application rate under IRM was found to be 100-150 kg N ha-1.  相似文献   

14.

Trials were performed with early and semi-early potatoes to test the effects of nitrogen (N) fertilizer level (0-160 kg N ha-1) and timing (all at planting versus half then and half either soon after emergence or 3 weeks later). All seven trials with earlies were irrigated as required, whilst different irrigation regimes (moderate versus intensive) were compared in two trials with semi-earlies. No benefit was derived from splitting the N application. Haulm growth and N uptake increased in all cases almost linearly up to the highest N level, but tuber yield did not respond in the same way. The optimum N level was 80 kg N ha-1 for a yield of 15 Mg ha-1, rising to 120 kg N ha-1 for a yield of 40 Mg ha-1. Tuber quality was lowered by the use of excess N fertilizer, particularly in the case of earlies. The quantity of mineralised N present in the soil after harvest rose sharply with above optimum fertilizer use, and the amount of N present in crop residues also increased. The likely leaching after early potatoes was estimated to be up to 80 kg N ha-1. The proportion of fertilizer N which was not accounted for in either tuber yield, crop residues or mineral N in soil was 26% in earlies and 38% in semi-earlies.  相似文献   

15.
Maize (Zea mays L.) is an important food crop in the Guinea savannas of Nigeria. Despite its high production potential, drought, Striga hermonthica parasitsim, and poor soil fertility particularly nitrogen deficiency limit maize production in the savannas. Breeders at IITA have developed drought- and Striga-tolerant cultivars for testing, dissemination, and deployment in the region. Information on the response of these cultivars to N fertilization is, however, not available. This study evaluated grain yield, total N uptake (TNU), N uptake (NUPE), N utilization (NUTE), and N use efficiency (NUE) of selected maize cultivars along with a widely grown improved maize cultivar at two locations in the Guinea savannas of northern Nigeria. Maize grain yield increased with N application. The average grain yield of the maize cultivars was 76% higher at 30, 156% higher at 60, and 203% higher at 120 kg N ha?1 than at 0 kg N ha?1. This suggests that N is a limiting nutrient in the Nigerian savannas. Five drought-tolerant cultivars produced consistently higher yields when N was added at all levels. These cultivars had either high NUPE or NUTE confirming earlier reports that high N uptake or NUTE improves maize grain yield. The study also confirms earlier reports that maize cultivars that are selected for tolerance to drought are also efficient in uptake and use of N fertilizer. This means that these cultivars can be grown with application of less N fertilizer thereby reducing investment on fertilizers and reduction in environmental pollution.  相似文献   

16.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

17.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

18.
Appropriate nitrogen (N) management practices are of critical importance in improving N use efficiency (NUE), maize (Zea mays) yield and environmental quality. A six-year (2005–2010) on-farm trial was conducted in Ottawa, Canada to assess the effects of N rates and application methods on grain yield and NUE. In four out of the six-year study, grain yield increased by 60–77 kg ha?1 by sidedress, compared to 49–66 kg ha?1 for each kg N ha?1 applied at preplant. Grain yield response to N between the two strategies was similar in the other growing seasons. Sidedress strategy required 15 kg N ha?1 less of the maximum economic rate of N (MERN) than preplant application. Our results indicate that sidedress application of 90–120 kg N ha?1 with a starter of 30 kg N ha?1 resulted in greater yield, grain quality and NUE than preplant N application in this cool, humid and short growing-season region.  相似文献   

19.
Four spring wheat genotypes (Triticum aestivum L.) were grown without (N0 = 0 kg N ha?1) and under ample (N1 = 250 kg ha?1) nitrogen (N) fertilizer in field experiments in two seasons. The aim was to assess genotypic variation in N use efficiency (NUE) components and N-related indices during grain filling thus to identify superior wheat genotypes. Leaf chlorophyll (SPAD) readings at crucial growth stages were employed to help differentiate genotypes. Interrelations between yield and N-related indices with SPAD, where also assessed to explain possible pathways of improving NUE early in the growing season. Results showed that genotypic effects on NUE were mostly evident in 2000, a year with drier preanthesis and wetter postanthesis than the normal periods. ‘Toronit’ almost always had the highest biomass yield (BY) and grain yield (GY). Except in 1999 under N0, ‘L94491? showed the highest % grain N concentration (GNC). Genotypes affected SPAD at almost all stages and N fertilization delayed leaf senescence for all genotypes and growth seasons. Correlations between SPAD at different growth stages and GY, N biomass yield at maturity (NBYM) and GNC were significant (P≤ 0.001), positive and strong/very strong (>r = 0.7). N translocation efficiency (NTE) was inversely related to PANU (~r = ? 0.77, P≤ 0.001), suggesting that N after anthesis is being preferentially transported to the ears to meet the N demand of the growing grains. It is concluded that there is still a large potential for increased NUE by improved N recirculation, use of fast and inexpensive crop N monitoring tools and high yielding, N uptake efficient genotypes.

Abbreviations: NUE, Nitrogen use efficiency; SPAD, Minolta SPAD-502 chlorophyll meter, NHI, nitrogen harvest index; HI, Harvest index; NTE, N translocation efficiency from vegetative plant parts to grain; DMTE, dry matter translocation efficiency; CPAY, contribution of pre-anthesis assimilates to yield; PANU, Post-anthesis N uptake, d.a.s., days after sowing, N0, zero (0) kg ha?1 applied N fertilizer, N1, 250 kg ha?1 applied N fertilizer.  相似文献   

20.
Timely and fitting nitrogen (N) application decreases costs and pollution risk in maize cultivation. To explore the accumulation and remobilization of dry matter (DM), N, phosphorus (P), and potassium (K) in waxy maize under various N topdressings (0?kg ha?1, LN; 150?kg ha?1, MN; 300?kg ha?1, HN) at the jointing stage, a field trial involving two waxy maize varieties (Suyunuo 5 and Yunuo 7) was conducted in 2013–2016. The highest grain yield was obtained under MN mainly due to the highest grain numbers and grain weight. The increase in grain yield under MN was mainly due to the high DM accumulation post-silking, as well as high N, P, and K accumulation and remobilization pre-silking. Generally, the plants had high harvest index (HI) of DM (N, P, and K), partial N fertilizer productivity, and moderate N utilization efficiency (NUE) under MN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号