首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以1998—2012年研究区26个气象站点实测降水数据和同期TRMM 3B43降水数据为数据源,在GIS技术的支持下,运用相关系数(R)、相对误差(BIAS)分析和探讨月、季、年尺度和单个站点的TRMM 3B43降水数据在研究区的适用性和分布规律。分析表明:(1)TRMM 3B43降水数据和气象站点观测数据的相关性较好,在年尺度上,TRMM 3B43降水数据总体精度较高,相关系数R为0.75,但也存在个别站点误差较大,最大误差达到19.13%,总体上TRMM 3B43降水数据比站点观测数据稍微偏大;(2)季节尺度上,TRMM 3B43降水数据和站点观测数据春季的相关系数R达到0.82,要高于秋季和冬季。夏季较差,但相关系数R也达到0.79,且均通过置信度100%检验;(3)TRMM 3B43降水数据在月尺度上数据精度最高,相关系数R达到0.91;(4)数据个体精度检验上选取了19个气象站点,各个观测站点的拟合优度R2均在0.75以上,相关系数R均大于0.80,结果表明TRMM 3B43降水数据在研究区具有较好的适用性。  相似文献   

2.
热带测雨卫星数据在黑河流域的精度及应用   总被引:2,自引:0,他引:2  
[目的]验证热带测雨卫星数据TRMM(tropical rainfall measuring mission)3B43降水产品在黑河流域内的精度及可用性,了解全流域降水的空间分布,为西北干旱区流域开展水文和生态研究提供数据支持。[方法]基于黑河流域1998—2013年TRMM 3B43V7数据和11个气象站点数据,使用相关系数、均方根误差、平均误差、平均绝对误差等主要指标评估其在流域内精度,揭示各指标空间分布特征。[结果](1)TRMM数据与实测数据有极强的统计相关性和趋势一致性,但存在不同程度高估现象,月平均高估2.84mm,季、年尺度高估值分别达到8.55和34.1mm;(2)相关系数、均方根误差,从上游到下游依次降低,平均误差在3尺度上上游值均远低于中下游,平均绝对误差在年尺度上游最低,下游次之,中游最高,而在季节尺度上中游相差不大,下游最小,月尺度从上游到下游平均绝对误差值逐渐递减。[结论]TRMM数据显示黑河流域多年平均降雨量呈西南部向中、北部递减的分布格局,且降水量具有上游中游下游的梯度分布,降水年内分配不均,主要集中在5—9月。  相似文献   

3.
高分辨率卫星降雨产品的出现为降水观测提供了良好的前景。然而这些产品在使用前需要经过全面的精度评估。评估了TRMM (Tropical Rainfall Measuring Mission)3B43V7降水数据在洞庭湖流域的精度和适应性。基于洞庭湖流域1998—2011年TRMM降水数据和27个气象站点的实测降水数据,采用相关系数、均方根误差和均方误差技能分数等指标在月和季尺度下评估其在流域内精度,揭示各指标的空间分布特征。结果表明:(1)在月尺度上,TRMM数据与实测数据拟合良好,相关系数为0.89,但TRMM数据在流域大部分地区高估降水。(2)在季尺度上,TRMM数据精度较月尺度有所提升,相关系数达到0.94,并且可靠性更高。(3)两种数据在流域降水时空分布上表现出一致性,在春夏两季为湿润多雨期,秋冬季节降水则相对匮乏。流域内降水分布不均匀,整体呈从东南向西北减少趋势。  相似文献   

4.
TRMM降水数据在复杂山地的精度评估——以重庆市为例   总被引:1,自引:0,他引:1  
在地形复杂的重庆地区,利用研究区内34个气象站点实测数据,分别从年、季、月3个尺度,对2000-2011年间TRMM 3B43降水数据精度进行了验证,并分析了高程和坡度对月尺度验证结果的影响,同时利用主成分分析法比较了高程与坡度对TRMM 3B43降水数据的影响程度。研究表明:(1) 年尺度上,TRMM 3B43年降水数据普遍高于气象站点的实测结果(平均偏高5.86%),渝西、渝南的结果比渝东北的准确。季尺度上,秋季拟合效果高于其它3个季节。月尺度上,相关系数R=0.85,两者之间存在显著相关性。(2) 逐站点验证,研究区TRMM 3B43月降水数据具有较高精度(相关系数均大于0.80)。(3) 随着海拔的升高,相关系数呈"增加-减少-增加"的变化趋势,绝对偏差呈减小趋势;随着坡度的升高,绝对偏差呈"增加-减少-增加"的变化趋势,绝对偏差呈线性增加的趋势。(4) 利用主成分分析方法得出,高程对数据精度的影响大于坡度。  相似文献   

5.
基于MOD16产品的怒江流域中上游蒸散发分布特征研究   总被引:3,自引:1,他引:2  
[目的]研究怒江流域中上游蒸散发的空间分布特征,为流域水资源合理开发及生态保护提供支撑。[方法]利用气象站点实测降水资料,验证TRMM(tropical rainfall measuring mission)3B43产品在怒江流域中上游的精度,进而对MODIS(moderate-resolution imagine spectroradiometer)全球陆地蒸散发产品(MOD16)在该流域的适用性进行检验。在此基础上,探讨该流域蒸散发及产水量的空间分布特征。[结果]①TRMM3B43数据与站点实测月降水量相关系数R为0.86,在怒江流域中上游使用具有较好精度,MOD16蒸散发量相对偏大,但仍具有一定的适用性;②研究区多年平均蒸散发量为489.4 mm,蒸散发主要集中在300~800 mm;③降水量与蒸散发量的差值(P-E)与降水量(P)的空间分布格局相似,(P-E)/P在无植被地区较大(为0.33),在植被覆盖区相对较小。[结论]研究区多年平均蒸散发量空间分布差异较大,沿河流呈现出低—高—低—高的变化规律;MOD16产品具有覆盖范围广,时空上连续等特点,能够为缺资料地区蒸散发的相关研究提供相对可靠的数据支撑。  相似文献   

6.
基于TRMM 3B43数据的川西高原月降水量空间降尺度模拟   总被引:2,自引:0,他引:2  
利用2001-2013年TRMM 3B43、MODIS-NDVI、DEM、气象观测等数据,在分析植被对降水响应滞后性的基础上,构建了TRMM 3B43数据中月降水量与经纬度、海拔、坡向和NDVI因子间的多元线性回归方程式,作为川西高原月降水量资料的降尺度计算模型,采用“回归方程+残差”的插值方法获取研究区2001-2013年1km空间分辨率的月降水量空间数据,并利用区内16个气象站点的观测数据与模拟结果进行了相关分析和误差检验。结果表明:(1)各气象观测站点基于TRMM 3B43资料的降尺度模拟降水量的数据均具有很高的精度,其中,精度最高的稻城站模拟结果与站点观测值的相关系数高达0.9839,精度最低的小金站相关系数亦高达0.8781;(2)在月、年尺度上,降尺度模拟降水量的数据亦具有很高的精度,其中,5-10月的精度明显高于其它月份,湿润年份精度总体高于干旱年份;(3)降尺度模拟降水量与站点实测降水量整体上相关系数为0.9499,偏差为0.0866,两者吻合度较高,但降尺度模拟降水量值略偏高;(4)降尺度在月尺度上能基本保证TRMM 3B43原始数据的精度,而在年尺度上能有效提高原始数据的精度,加之对空间分辨率的提高,可为获得更加全面、精细的降水分布数据提供有效方法。  相似文献   

7.
GPM(Global Precipitation Measurement)是继TRMM(Tropical Rainfall Measuring Mission)之后的新一代全球卫星降水测量计划。GPM扩展了TRMM传感载荷,提升了降水观测能力。以GPM和TRMM重合期(2014年3月—2015年4月)数据为对象,利用黄河流域内76个气象站点的降雨实测数据,探讨了两种卫星降水数据在黄河流域的适用性,并分析了流域内两种卫星降水数据误差的时空分布。结果表明:年尺度上,GPM与TRMM卫星数据与实测降水量的决定系数分别为0.78,0.86,总体一致性较好,但分别存在2.46%与2.19%的相对高估。季节尺度上,春、秋两季数据精度高,夏季卫星降水数据相对于实测降水量存在较大的绝对误差,冬季则相对误差较大。月尺度上,除7月、8月外卫星降水数据均大于实测降水量,相对误差最大值出现在12月,绝对误差最大值出现在9月。单站点验证结果表明GPM与TRMM卫星降水数据在流域北部的陶乐、惠农、临河等区域数据精度偏低,而在广大的流域中南部区域卫星降水数据与实测降水量有较高的一致性。  相似文献   

8.
在降水资料缺乏的天山山区,基于重建时间序列后的NDVI和DEM数据,采用CART算法对TRMM3B43月降水数据进行校正。利用研究区25个站点实测降水量对校正前的TRMM降水数据和校正后的TRMM降水数据分别进行精度检验。结果表明:校正前TRMM月降水与站点实测降水有很好的一致性,存在显著的线性相关关系,但误差较大;TRMM降水与实测降水的决定系数(R2)随时间尺度的增大而减小,相对误差(δ)和均方根误差(RMSE)则随之增大,说明TRMM遥感数据的精度随时间尺度的增加而减小;校正后TRMM降水精度得到了显著地提高,与实测降水在月、季、年尺度上的R2分别为:0.97,0.87,0.83,相比校正前R~2提高了10%以上,误差也有明显的减小。这说明在天山山区,使用CART对TRMM降水数据进行校正的方法可行。  相似文献   

9.
在不同空间尺度下分别建立TRMM 3B43降水数据与数字高程模型(DEM)和归一化植被指数(NDVI)的二次多项式回归模型,将2001—2013年黑河流域TRMM降水数据的空间分辨率从0.25°提高到1 km,并利用流域内9个气象站点实测数据对降尺度结果进行了检验。结果表明:降尺度方法不仅提高了TRMM数据的空间分辨率,数据的精确程度也有所提高;与传统线性回归模型降尺度方法相比,基于二次多项式回归模型获得的降尺度结果更接近于实测值,其结果更为准确;模型建立的尺度对最终降尺度结果精确性具有较大影响,0.50°是基于DEM和NDVI对黑河流域TRMM降水数据进行降尺度的相对最优尺度。  相似文献   

10.
准确估算区域降水对水文过程评价和水资源管理意义重大。为评估TRMM 3B42V7降水产品在海河流域南系的估算精度及其在土壤和水评估模型(Soil and Water Assessment Tool,SWAT)中的适用性,利用28个气象站降水观测数据(2007-2016年)和101个雨量站观测数据(2010-2016年)开展研究。研究表明:站点尺度上,3B42V7降水产品对月降水估算的均方根误差小于15 mm,平均误差小于8.5 mm;在湿润季节的估算精度更好。流域尺度上,日降水估算精度较差,相关系数小于0.6。分区尺度上,3B42V7能够很好地捕捉到不同等级降水强度,但对微量降雨有所低估;山区和平原的年降水量均出现高估现象,平原区较为突出;此外,3B42V7能够较好地捕捉到研究区内极端降水的时间和空间分布。分2种情景进行水文模拟,利用月平均流量对模型进行校准和验证,在情景Ⅰ中,验证期模拟结果较好,决定系数在0.56~0.96之间,纳什效率系数在-11.09~0.94之间。TRMM 3B42V7可为海河流域及其类似区域的水资源管理提供参考。  相似文献   

11.
靖娟利    罗福林  王永锋    王安娜 《水土保持研究》2019,26(5):158-165
为了研究滇黔桂岩溶区近20 a降水时空变化特征,基于1998—2017年TRMM 3B43降水数据和72个气象站点实测数据,运用相关系数、相对偏差对TRMM 3B43降水数据在月尺度上进行了验证,并借助Sen-Median趋势分析、Mann-Kendall检验以及Hurst指数等数理统计方法对研究区降水时空动态特征进行了定量分析。结果表明:(1)TRMM 3B43降水数据与气象站点实测数据具有较高的相关性,月尺度相关系数为0.92(p<0.01);(2)1998—2017年研究区降水量呈不显著波动上升趋势,上升速率为0.716 mm/a(p>0.05);春、夏两季降水量以减少趋势为主,秋、冬两季降水量以增加趋势占主导;(3)降水量年、季节均值空间分布差异显著,年降水量呈增加趋势的区域(47.71%)略高于呈减少趋势的区域(41.71%);春、夏两季降水量以减少趋势为主,秋、冬两季以增加趋势为主;(4)年降水量持续增加的区域占38.45%,集中分布在广西、贵州东南部、云南与贵州北部接壤地带;持续减少的区域占46.21%,主要分布在云南和贵州大部分地区。研究结果对研究区水资源管理、灾害监测具有重要意义。  相似文献   

12.
高分辨率降水数据有助于刻画降水的时空分异特性,对流域水文、气象和生态等过程的精准模拟具有重要作用,因此对低分辨率降水产品开展空间降尺度,提高其分辨率十分必要。鉴于此,本文在充分考虑热带降雨测量卫星(Tropical Rainfall Measuring Mission,TRMM)降水产品在渭河流域适用性的基础上,引入归一化差分植被指数(Normalized Difference Vegetation Index,NDVI)、数字高程模型(Digital Elevation Model,DEM)、坡度、坡向和经纬度等地理环境因子,构建了多尺度地理加权回归(Multi-scale Geographically Weighted Regression,MGWR)模型用以分析不同因子对渭河流域降水空间格局影响的尺度差异;进一步提出了一种针对TRMM降水产品的空间降尺度方法,并透过精度评价验证了降尺度结果的可靠性。结果表明:1)TRMM降水产品数据相较于站点实测数据存在一定精度误差,年尺度上R2=0.807,BIAS=2.909%,RMSE=83.477 mm,表现较好;季尺度上秋季R2最高,为0.847,夏季RMSE最大,为62.393 mm,四季的BIAS均较低;月尺度R2为0.456~0.815,BIAS介于±0%~8%之间,多数月份为正值,RMSE值域范围为3.019~37.841 mm,精度较好;总体而言,TRMM降水产品数据在年、季和月尺度上均表现出良好的整体适用性。2)不同因子在干湿年份对降水空间分异格局的影响呈现出不同的尺度特征,其中湿润年的DEM、NDVI、坡向和经纬度对降水呈现局部影响,坡度影响具有全局性,而干旱年各因子均表现为局部影响。3)流域和站点尺度上,降尺度TRMM数据相较于降尺度前产品数据精度得到一定改善,其中流域尺度上,R2整体提升3%,RMSE降低1mm;站点尺度上,各站点统计指标变化各异,但降尺度后统计指标整体优于降尺度前,并且由于时间尺度上的误差累积,站点年尺度数据精度相比月尺度数据稍差(R2由0.8~0.91变为0.4~0.95,RMSE从11~17变为32~150)。4)降尺度TRMM数据相比于降尺度前产品数据,空间分布更细腻,细节特征表现更好,且在年、月时间尺度上均具有较高的精度,可为渭河流域资料短缺地区的水文设计提供数据支撑。  相似文献   

13.
以处于湿润区的巢湖流域为研究区,利用120个地面站点2016年1月至2017年2月的实测降水数据,评估了GPM IMERGE降水数据在研究区的适用性和分布规律。结果显示:(1) GPM产品对巢湖流域降水的估测能力总体较高。日尺度上,GPM产品均表现出较高的线性相关性(R0.78)和较低的均方根误差(RMSE8.62 mm),但对降水存在一定程度的高估(BIAS9.52%)。在季节尺度上,GPM数据与地面站点数据在夏季相关性最高(R0.8),但均方根误差也最高(RMSE13.8 mm)。(2)降水强度对GPM产品的探测精度存在影响,降水强度过低(0.1 mm/d)或过高(50 mm/d)对GPM的探测能力均有削弱。(3)流域中部GPM数据和地面站点降水量的相关性较边缘更高;准实时产品在流域西南部绝对误差较大,但经地面站点校正后的GPM-F产品在流域内绝对误差分布较平均;流域内多数站点的GPM数据高估了降水。(4)相比准实时产品,经地面站点校正的GPM-F产品在秋冬季和高强度降水中的精度较准实时GPM-E和GPM-L产品均有提升,但导致了更严重的高估情况。因此,在选择GPM产品进行流域降水分析及水文模拟时,应结合时效性要求、研究的时间尺度和降水强度等条件综合考量,并在研究流域做适当精度评估后选用。  相似文献   

14.
以多年月平均NDVI值高于0.1为阈值,对蒙古高原进行“植被区”与“非植被区”的子区域划分。在分析“植被区”植被对降水响应时滞性和“非植被区”陆地表面温度不同数据值与降水量相关性的基础上,子区域分别构建了TRMM3B43降水数据与海拔、坡度、坡向数据、归一化植被指数(NDVI)/陆地表面温度(LST)数据的地理加权回归(GWR)模型,得到区内2006-2015年每年5-10月1km空间分辨率的月降水量降尺度模拟数据,并利用区内141个气象站点数据对降尺度模拟数据进行精度验证。结果表明:(1)蒙古高原“植被区”植被对降水响应存在时滞性,约为一个月;“非植被区”多数月份白天与夜晚陆地表面温度差(LST_D_N)与降水量的相关性最显著。(2)降尺度模拟数据与气象站点数据具有较好的一致性,月尺度相关系数为0.83,各站点相关系数介于0.42~0.98。(3)在生长季、月平均尺度上,降尺度模拟数据具有较高精度,其中9月和10月数据精度优于TRMM 3B43数据。降尺度模拟数据整体精度较高,加之对原始数据在50°N以上未覆盖地区的填补以及空间分辨率的提高,可为区内水循环变化、农牧业生产、干旱监测等...  相似文献   

15.
在充分考虑2001−2019年TRMM 3B43降水量数据在长江流域适用性的基础上,基于地理加权回归模型(GWR),结合归一化植被指数(NDVI)、增强型植被指数(EVI)、高程、坡度、坡向数据,选取不同组合对19a内TRMM降水量数据进行降尺度,并对优选的降尺度数据分别进行GDA、GRA校正,最后在年、季、月尺度下进行精度评价与结果分析。结果表明:(1)降尺度数据与站点实测数据的R²、BIAS、RMSE满足精度要求的同时,空间分辨率由0.25°提高至1km,且TRMMNDVI数据精度优于TRMMEVI数据。(2)GDA校正结果优于GRA校正结果,且数据稳定性更好,更适于长江流域TRMM数据校正。(3)数据与站点实测数据R²在年(0.91~0.986)、季(0.704~0.88)、月(0.625~0.89)尺度上均有较高精度,细节特征较TRMM数据表现更好。(4)降水量越大的月份降尺度及校正效果越好。降尺度及校正后的TRMM数据能更好地反映长江流域真实降水信息,为农业生产、水资源优化配置、防洪减灾等提供可靠的数据支持。  相似文献   

16.
降雨是引起土壤侵蚀的外部动力因素,卫星降雨产品能够有效地克服常规降雨观测数据在空间上的不连续性,具有明显空间分布优势。为了探究卫星降雨产品在福建地区的适应性,利用福建省22个全国气象站点的观测数据,分别对全球降雨测量GPM和热带降雨测量TRMM两种卫星降水数据在日、旬、月、季度几个不同时间尺度上进行了对比分析。结果表明:随着时间尺度增加,GPM和TRMM与地面实测数据的相关性都呈现出依次递增的现象,日均均方根误差RMSE*逐渐降低,特别是由日到旬尺度变化时RMSE*出现陡降,而旬和月的差异不大;卫星产品与站点实测数据拟合直线的斜率逐渐趋向于1。在日尺度上,相关性都小于0.5,RMSE*均大于13 mm/d;在旬尺度上,相关性介于0.7~0.8,RMSE*均小于5 mm/d;在月尺度上,两者与观测数据的相关性都大于0.9,GPM数据整体上精度优于TRMM数据,但是在福建东南沿海TRMM精度要高于GPM。在季度尺度上两种卫星产品的精度与季节总降雨量呈负相关,季节差异较大;夏季多雨时r值和K值低而RMSE最高,冬季少雨时与地面实测数据一致性高,rK值最高而RMSE最低,春秋两季也有较好的精度;在不同的季节GPM各项指标均优于TRMM。综合不同时间尺度的结果,总体上,两种卫星降雨数据都具有较高的精度,其中GPM卫星降水数据在福建省的适用性较高,数据的空间分辨率更高,数据精度也略高,更适合于区域应用。  相似文献   

17.
以辉发河流域为研究区,采用SWAT分布式水文模型,以实测降水数据和TRMM降水产品作为模型输入,在月尺度和日尺度上构建了四种径流模拟情景,并利用SUFI_2算法分析了不同降水输入和时间尺度下模型的参数敏感性、参数不确定性和径流模拟结果。结果表明:(1)TRMM降水产品的误差会改变参数的敏感性排序,尤其是在日尺度上;(2)4种模拟情景P因子的范围为0.58~0.9,R因子的范围为0.47~1.58,模型拟合精度较好。月尺度上TRMM数据的估算误差较小,其更高的空间分辨率可使径流模拟不确定性得到明显改进,而随着时间尺度的变化,TRMM数据在日尺度上的误差增大会导致日径流模拟结果不确定性的增加;(3)在月尺度和日尺度上,采用TRMM数据降水输入模拟径流,其NS和R2系数均达到较好水平,实测降水模拟结果略优于TRMM数据。研究表明,在辉发河流域,TRMM降水产品在径流模拟方面表现出较好的适宜性,是一种较为可靠的降水数据源。  相似文献   

18.
TRMM卫星降水数据在区域干旱监测中的适用性分析   总被引:5,自引:4,他引:1  
为了评估高时空分辨率的卫星遥感降水产品在干旱监测中的适用性,该文基于热带降雨卫星(tropical rainfall measurement mission,TRMM)产品和气象站点的观测数据,利用标准化降水指数(standardized precipitation index,SPI)分别计算了2种数据源的不同时间尺度(1、3、6和12个月)的河南省1998-2016年干旱事件发生的年际和空间变化。结果表明:TRMM 3B43月尺度降水数据与气象站点的观测数据具有显著的相关性,相关系数均高于0.9,除少数情况下,TRMM 3B43对降水存在略微高估现象;两种数据源计算的各时间尺度(1、3、6和12个月)存在着很高的一致性,波动幅度随着时间尺度的增大而减小;1998年以来河南省春季发生干旱事件的年份是2000、2001年,夏季发生干旱事件的年份是1999、2014年,秋季发生干旱事件的年份1998、2001、2007年,冬季发生干旱事件的年份1999、2012年,另外,基于SPI-12得出发生干旱的年份是1999、2001、2012和2013年;根据站点的不同时间尺度的两种数据源的SPI时间序列进行相关性分析,其相关系数都高于0.7,两者间的一致性很高,说明TRMM数据能够替代站点观测数据进行干旱的监测与评估。  相似文献   

19.
GPM与TRMM降水数据在海河流域的精度对比研究   总被引:1,自引:0,他引:1  
[目的]对GPM与TRMM降水产品在海河流域的测量精度进行对比研究,以评估TRMM及GPM数据在海河流域的适用性。[方法]以海河流域为研究区,利用35个气象站点2014年4—10月的实测降水量数据在月时间尺度上对两代降水产品利用决定系数R2和相对误差BIAS进行精度评价。[结果](1)卫星降水产品与气象台站实测降水量决定系数从TRMM数据的0.758 2提升至GPM数据的0.7607,斜率K从TRMM数据的0.810 5提升至GPM的数据的0.833 5。(2)TRMM与GPM降水产品差别较小,虽两者均轻微低估了降水量,但整体上精度较高且GPM略优于TRMM。[结论]GPM IMERG降水产品在海河流域月尺度的高空间分辨率水文分析方面具有很好的应用前景。  相似文献   

20.
黄河流域干旱时空变化特征及其气候要素敏感性分析   总被引:1,自引:0,他引:1  
利用黄河流域102个气象站点1961-2013年气象数据,选用相对湿润度指数作为干旱指标,探讨年尺度和季节尺度干旱的时空分布特征,并尝试利用偏导数方法计算分析相对湿润度指数的气候要素敏感性及其与气候要素间的相关关系。结果表明:黄河流域上游旱情比中游和下游地区偏重,春夏秋冬各季分别处于中旱、轻旱、中旱和特旱状态,全年尺度处于特旱程度,季节和全年尺度的相对湿润度指数均呈现从西北到东南递增的变化趋势,春季、秋季和全年尺度特旱区域主要分布在陕西、山西、宁夏北部以及内蒙古地区,而气象干旱减缓的站点主要分布在黄河流域上游地区,干旱增强的站点主要分布在黄河流域东南部。相对湿润度指数对太阳辐射和相对湿度呈正向敏感,对温度和风速呈负向敏感。上游和中游地区夏季相对湿润度指数最敏感要素分别为太阳辐射和平均温度,全流域春季、秋季、冬季和全年尺度对相对湿度最敏感。全流域春季和夏季与相对湿润度指数相关性最强的要素均为相对湿度,上游和下游地区秋季的主控要素为太阳辐射,上游、中游和下游地区冬季则分别与温度、风速和风速相关性最强。全年尺度上,上游、中游和下游地区相对湿润度指数变化的主控要素则为太阳辐射、相对湿度和相对湿度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号