首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Atmospheric emissions of fly ash and SO2 from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant (sites Ia, II, and III, respectively), representing high, moderate and low emission rates. An additional site (site Ib) at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO2 emissions. Soil microbial biomass C and N, CO2 evolved and activities of l-asparaginase, l-glutaminase, β -glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH4NO3 extractable) Cd, Cr, and Ni, effective cation exchange capacity and base saturation in the humus layer along the 15 km long transect significantly (P<0.05) reflected the effect of past depositions of alkaline fly ash. Soil microbial and biochemical parameters were significantly (P<0.05) affected by chronic fly ash depositions. The effect of forest type (i.e. comparison of sites Ia and Ib) on the studied parameters was generally dominated by the deposition effect. Alkaline depositions significantly (P<0.05) decreased the microbial biomass C and N, microbial biomass C-to-N ratios and microbial biomass C-to-organic C ratios. Microbial respiration, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase, β-glucosidase, acid phosphatase and arylsulfatase were increased by long-term depositions from the power plants. Acid phosphatase had the highest specific (enzyme activities expressed per unit organic C) activity values among the enzymes studied and arylsulfatase the lowest. The responses of the microbial biomass and soil respiration data to different atmospheric deposition loads were mainly controlled by the content of organic C and cation exchange capacity, while those of enzyme activities were governed by the soil pH and concentrations of mobile heavy metals. We concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.  相似文献   

2.
The conversion of secondary forests to larch plantations in Northeast China has resulted in a significant decline in soil available nitrogen (N) and phosphorus (P), and thus affects plant productivity and ecosystem functioning. Microbes play a key role in the recycling of soil nutrients; in turn, the availability of soil N and P can constrain microbial activity. However, there is little information on the relationships between available soil N and P and the microbial biomass and activity in larch plantation soil. We studied the responses of soil microbial respiration, microbial biomass and activity to N and P additions in a 120-day laboratory incubation experiment and assessed soil microbial properties in larch plantation soil by comparing them with the soil of an adjacent secondary forest. We found that the N-containing treatments (N and N + P) increased the concentrations of soil microbial biomass N and soluble organic N, whereas the same treatments did not affect microbial respiration and the activities of β-glucosidase, N-acetyl-β-glucosaminidase and acid phosphatase in the larch plantation. In addition, the concentration of microbial biomass P decreased with N addition in larch plantation soil. In contrast, N and N + P additions decreased microbial respiration, and N addition also decreased the activity of N-acetyl-β-glucosaminidase in the secondary forest soil. The P treatment did not affect microbial respiration in either larch plantation or secondary forest soils, while this treatment increased the activities of β-glucosidase and acid phosphatase in the secondary forest soil. These results suggested that microbial respiration was not limited by available P in either secondary forest or larch plantation soils, but microbial activity may have a greater P demand in secondary forest soil than in larch plantation soil. Overall, there was no evidence, at least in the present experiment, supporting the possibility that microbes suffered from N or P deficiency in larch plantation soil.  相似文献   

3.
A thorough understanding of the role of microbes in C cycling in relation to fire is important for estimation of C emissions and for development of guidelines for sustainable management of dry ecosystems. We investigated the seasonal changes and spatial distribution of soil total, dissolved organic C (DOC) and microbial biomass C during 18 months, quantified the soil CO2 emission in the beginning of the rainy season, and related these variables to the fire frequency in important dry vegetation types grassland, woodland and dry forest in Ethiopia. The soil C isotope ratios (δ13C) reflected the 15-fold decrease in the grass biomass along the vegetation gradient and the 12-fold increase in woody biomass in the opposite direction. Changes in δ13C down the soil profiles also suggested that in two of the grass-dominated sites woody plants were more frequent in the past. The soil C stock ranged from being 2.5 (dry forest) to 48 times (grassland) higher than the C stock in the aboveground plant biomass. The influence of fire in frequently burnt wooded grassland was evident as an unchanged or increasing total C content down the soil profile. DOC and microbial biomass measured with the fumigation-extraction method (Cmic) reflected the vertical distribution of soil organic matter (SOM). However, although SOM was stable throughout the year, seasonal fluctuations in Cmic and substrate-induced respiration (SIR) were large. In woodland and woodland-wooded grassland Cmic and SIR increased in the dry season, and gradually decreased during the following rainy season, confirming previous suggestions that microbes may play an important role in nutrient retention in the dry season. However, in dry forest and two wooded grasslands Cmic and SIR was stable throughout the rainy season, or even increased in this period, which could lead to enhanced competition with plants for nutrients. Both the range and the seasonal changes in soil microbial biomass C in dry tropical ecosystems may be wider than previously assumed. Neither SIR nor Cmic were good predictors of in situ soil respiration. The soil respiration was relatively high in infrequently burnt forest and woodland, while frequently burnt grasslands had lower rates, presumably because most C is released through dry season burning and not through decomposition in fire-prone systems. Shifts in the relative importance of the two pathways for C release from organic matter may have strong implications for C and nutrient cycling in seasonally dry tropical ecosystems.  相似文献   

4.
In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P<0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.  相似文献   

5.
From the global change perspective, increase of atmospheric CO2 and land cover transformation are among the major impacts caused by human activities. In this study, we are addressing the combined issues of the effect of CO2 concentration increase and plant type on soil microbial activities by asking how annual and perennial plant groups affect soil microbial processes under elevated CO2. The experimental design used a mix of species of different growth forms for both annuals and perennials. Our objective was: (1) to determine how two years of annual or perennial plant cover and CO2 enrichment could affect Mediterranean soil microbial processes; (2) to test the resistance and the resilience of these soil functional processes after a natural perturbation. We determined the effects of 2 years atmospheric CO2 enrichment on soil potential respiration (SIR), denitrification (DEA) and nitrification (NEA) activities. We could not find any significant effect of CO2 increase on SIR, DEA and NEA. However, we found a strong effect of the plant cover type, i.e. annuals versus perennials, on the potential microbial activity related to N cycling. DEA and NEA were significantly higher in soil under annual plants while SIR was not significantly different. To determine whether these changes would survive a natural perturbation, we carried out a rain event experiment once the experimental treatments (i.e. different plant cover and atmospheric CO2 concentration) were stopped. The soil potential respiration, as expressed by the SIR, was not affected and remained stable. DEA rates converged rapidly under annuals and perennials after the rain event. Under both annuals and perennials NEA increased significantly after the rain event but remained significantly higher in the soil with annual plants. The relative change of the soil microbial processes induced by annual and perennial plants was inversely related to the density and the diversity of the corresponding microbial functional groups.  相似文献   

6.
The aim of this study was to determine the effects of increasing concentrations of salt solutions (including 0.12, 2, 6, and 10 dS m−1) on the growth of berseem clover (Trifolium alexandrinum L.) and related soil microbial activity, biomass and enzyme activities. Results showed that the dry weights of root and shoot decreased with an increase in the concentrations of salt solutions. Soil salinization depressed the microbiological activities including soil respiration and enzyme activities. Substrate-induced respiration was consistently lower in salinized soils, whereas microbial biomass C did not vary among salinity levels. Higher metabolic quotients (qCO2) and unaffected microbial biomass C at high EC values may indicate that salinity is a stressful factor, inducing either a shift in the microbial community with less catabolic activity or reduced efficiency of substrate utilization. Acid phosphatase and alkaline phosphatase activities decreased with increasing soil salinity. We found significant, positive correlations between the activities of phosphatase enzymes and plant's root mass, suggesting that any decrease in the activities of the two enzymes could be attributed to the reduced root biomass under saline conditions.  相似文献   

7.
Ecosystem and biogeochemical responses to anthropogenic stressors are the result of complex interactions between plants and microbes. A mechanistic understanding of how plant traits influence microbial processes is needed in order to predict the ecosystem-level effects of natural or anthropogenic change. This is particularly true in wetland ecosystems, where plants alter the availability of both electron donors (e.g., organic carbon) and electron acceptors (e.g., oxygen and ferric iron), thereby regulating the total amount of anaerobic respiration and the production of methane, a highly potent greenhouse gas. In this study, we examined how plant traits associated with plant inputs of carbon (photosynthesis and biomass) and oxygen (root porosity and ferric iron on roots) to mineral soils relate to microbial competition for organic carbon and, ultimately, methane production. Plant productivity was positively correlated with microbial respiration and negatively correlated to methane production. Root porosity was relatively constant across plant species, but belowground biomass, total biomass, and the concentration of oxidized (ferric) iron on roots varied significantly between species. As a result the size of the total root oxidized iron pool varied considerably across plant species, scaling with plant productivity. Large pools of oxidized iron were related to high CO2:CH4 ratios during microbial respiration, indicating that as plant productivity and biomass increased, microbes used non-methanogenic respiration pathways, most likely including the reduction of iron oxides. Taken together these results suggest that increased oxygen input from plants with greater biomass can offset any potential stimulation of methanogenic microbes from additional carbon inputs. Because the species composition of plant communities influences both electron donor and acceptor availability in wetland soils, changes in plant species as a consequence of anthropogenic disturbance have the potential to trigger profound effects on microbial processes, including changes in anaerobic decomposition rates and the proportion of mineralized carbon emitted as the greenhouse gas methane.  相似文献   

8.
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (Corg, Nt, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G to a more G+, and from a fungal to a more bacteria-dominated community. Rhizosphere β-xylosidase, N-acetyl-β-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, β-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G, G+/G). The activities of β-glucosidase, β-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microflora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply.  相似文献   

9.
In most parts of tropical Africa, conversion of forests into agricultural lands is often accompanied by drastic changes in soil properties. However, little study has been done to examine changes in biological properties of soils from different land-uses in response to addition of C and nutrients. We conducted this study with the aim of investigating nutrient limitations for microbial activity in soils from agricultural (farm) and forest land-uses at Wondo Genet (Ethiopia) after amendment with C and limiting nutrients. We measured CO2 respiration rates from the soils incubated in the laboratory before and after addition of glucose-C together with N and/or P in excess and/or limiting amounts. Based on the respiration kinetics, we determined the basal respiration (BR), substrate-induced respiration (SIR), specific-microbial growth rate (μ), respiration maxima (Rmax), % of glucose-C respired, and microbially available N and P in the soils. We found that N was more limiting than P for the micro-biota in the soils considered, suggesting the presence of ample amounts of indigenous P that could be extracted by the micro-biota, if provided with C. Addition of P resulted in a respiration pattern with two peaks, presumably reflecting different N pools being available over time. The SIR, Respiration maxima, μ and microbially available P were higher in soils from the farm, while %C respired was higher in the forest, suggesting increased C costs for micro-biota to be able to utilize nutrients that are strongly bound to organic-matter or clay minerals. Depending on land-use, about 49-69% of added glucose-C was respired during two and a half weeks time, but differences between N or P additions were not significant. The correlation between soil physical and chemical properties and respiration parameters, however, depended on whether N or P was limiting. We concluded that examining the soil respiration kinetics could provide vital information on nutritional status of micro-organisms under different land-uses and on potential availability of nutrients to plants.  相似文献   

10.
The chemical composition and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. Little is known about how changes in the composition of the soil microbial community affect decomposition rates and other ecosystem functions. This study examined the degradation of universally 13C-labeled glucose, glutamate, oxalate, and phenol in soil from an old-growth Douglas-fir (Pseudotsuga menziesii)—western hemlock (Tsuga heterophylla) forest in the Oregon Cascades that has experienced 7 y of chronic C input manipulation. The soils used in this experiment were part of a larger Detritus Input and Removal Treatment experiment and have received normal C inputs (control), doubled wood inputs, or root and litter input exclusion (no inputs). Soil from the doubled wood treatment had a higher fungal:bacterial ratio, and soil from the no inputs treatment had a lower fungal:bacterial ratio, than the control soil. Differences in the utilization of the compounds added to the field-manipulated soils were assessed by following the 13C tracer into microbial biomass and respiration. In addition, 13C-phospholipid fatty acids (PLFA) analysis was used to examine differential microbial utilization of the added substrates. Glucose and glutamate were metabolized similarly in soils of all three litter treatments. In contrast, the microbial community in the double wood soil respired more added phenol and oxalate, whereas microbes in the no inputs soil respired less added phenol and oxalate, than the control soil. Phenol was incorporated primarily into fungal PLFA, especially in soil of the double wood treatment. The addition of all four substrates led to enhanced degradation of soil organic matter (priming) in soils of all three litter treatments, and was greater following the addition of phenol and oxalate as compared to glucose and glutamate. Priming was greater in the no inputs soil as compared to the control or doubled wood soils. These results demonstrate that altering plant inputs to soil can lead to changes in microbial utilization of C compounds. It appears that many of these changes are the result of alteration in the size and composition of the microbial community.  相似文献   

11.
Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon gerardii (Andropogon), Nassella viridula (Nassella) and Pascopyrum smithii (Pascopyrum); in ascending order of litter quality. Net mineralization (per g soil N) measured in year-long laboratory incubations showed no differences in comparisons of Bromus with two of the three native grasses: Andropogon and Nassella. Higher mineralization in Pascopyrum stands relative to Bromus was consistent with its higher litter quality. However, an unusually high occurrence of an N-fixing legume in Pascopyrum stands, potentially favoring high mineralization rates, confounded any conclusions regarding the effects of plant N use on N mineralization. Instead of an initial flush of net mineralization, as would be expected in laboratory incubation, we observed an initial lag phase. This lag in net N mineralization coincided with high microbial activity (respiration) that suggests strong N limitation of the microbial biomass. Further support for the importance of immobilization initially came from modeling mineralization dynamics, which was explained better when we accounted for microbial growth in our model. The absence of strong differences in net mineralization beneath these grasses suggests that differences in plant N use alone were unlikely to influence soil N mineralization through substrate quality, particularly under strong N control of the microbial biomass.  相似文献   

12.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

13.
We used oligotrophic, P-limited herbaceous wetlands of northern Belize as a model system, on which to document and explain how changes in nutrient content along a salinity gradient affect activities of extracellular enzymes involved in macrophyte decomposition. To determine what is more important for decomposition, the initial litter quality, or site differences, we used reciprocal litter placement in a combined “site quality” and “litter quality” experiment running from August 2003 to April 2004. The experiment was set up in long-term control and nutrient addition plots (P, N, and NP) established in 2001 in 15 limestone-based inland marshes with a wide range of water conductivities (200-6000 μS) and a uniform pH (7.0-7.7) dominated by emergent macrophytes, Eleocharis spp. There were no differences among the plots in total sediment N and water NH4-N, but total and KCl-extractable sediment P and water PO4-P were significantly higher in P and NP plots throughout the duration of the experiment. The initial litter N content was slightly but significantly different between control and N plots versus P and NP plots (5.7 and 7.1 mg g−1, respectively). The difference was much bigger for litter P content, 0.1 and 0.7 mg g−1, respectively. Enzyme activities of alkaline phosphatase, leucine-aminopeptidase, arylsulfatase, and β-glucosidase were measured fluorometrically in Eleocharis litter in both the litterbag experiment and the naturally decomposing material. Total phospholipid fatty acid (PLFA) content in litter samples was used as a measure of microbial biomass present. Phosphatase always exhibited the highest activity of the enzymes studied, followed by leucine-aminopeptidase, arylsulfatase and β-glucosidase. There were no significant differences between enzyme activities from litterbags and the unconfined litter. Phosphatase activity was significantly suppressed in P-addition plots under all salinity levels while the activities of the remaining enzymes were significantly higher in P-enriched plots. There was a strong correlation between decomposition coefficient k-values and most of the enzymes as well as between the amount of PLFA and enzyme activities. PLFA, arylsulfatase, and litter C/P were the best predictors of k-values.  相似文献   

14.
The main energy sources of soil microorganisms are litter fall, root litter and exudation. The amount on these carbon inputs vary according to basal area of the forest stand. We hypothesized that soil microbes utilizing these soil carbon sources relate to the basal area of trees. We measured the amount of soil microbial biomass, soil respiration and microbial community structure as determined by phospholipid fatty acid (PLFA) profiles in the humus layer (FH) of an even-aged stand of Scots pine (Pinus sylvestris L.) with four different basal area levels ranging from 19.9 m2 ha−1 in the study plot Kasper 1 to 35.7 m2 ha−1 in Kasper 4. Increasing trend in basal respiration, total PLFAs and fungal-to-bacterial ratio was observed from Kasper 1 to Kasper 3 (basal area 29.2 m2 ha−1). The soil microbial community structure in Kasper 3 differed from that of the other study plots.  相似文献   

15.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

16.
The ratios of soil carbon (C) to nitrogen (N) and C to phosphorus (P) are much higher in Chinese temperate forest soils than in other forest soils, implying that N and P might limit microbial growth and activities. The objective of this study was to assess stoichiometric responses of microbial biomass, enzyme activities, and respiration to N and P additions. We conducted a nutrient (N, P, and N + P) addition experiment in two temperate soils under Korean pine (Pinus koraiensis) plantation and natural broadleaf forest in Northeast China and measured the microbial biomass C, N, P; the activities of β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), and acid and alkaline phosphomonoesterase (AP); and the microbial respiration in the two soils. Nitrogen addition increased microbial biomass N and decreased microbial biomass C-to-N ratio and microbial respiration in the two soils. Nitrogen addition decreased NAG activity to microbial biomass N ratio, P addition decreased AP activity to microbial biomass P ratio, and N, P, and N + P additions all increased BG activity to microbial biomass C ratio. These results suggest that microbial stoichiometry is not strictly homeostatic in response to nutrient additions, especially for N addition. The responses of enzyme activities to nutrient additions support the resource allocation theory. The N addition induced a decline in microbial respiration, implying that atmospheric N deposition may reduce microbial respiration, and consequently increase soil C sequestration in the temperate region.  相似文献   

17.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling.  相似文献   

18.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

19.
《Geoderma》2005,124(1-2):193-202
In semiarid climate soils, the establishment of a plant cover is fundamental to avoid degradation and desertification processes. A better understanding of the ability of plants to promote soil microbial processes in these conditions is necessary for successful soil reclamation. Six different plant species were planted in a semiarid soil, in order to know which species are the most effective for the reclamation of semiarid areas. Six years after planting, the rhizosphere soils were studied by measuring chemical (pH, electrical conductivity, total organic carbon and other carbon fractions), physical (% of saggregates), microbiological (microbial biomass carbon and soil respiration), and biochemical (dehydrogenase, phosphatase, β-glucosidase and urease activities) parameters. In general, in all the soil–plant systems plant nutrients, organic matter and microbial activity increased compared to the control soil. For some species, such as Rhamnus lycioides, the increase in the total organic carbon content (TOC) in the rhizosphere zone was almost 200%. A positive correlation was found between TOC and water-soluble carbon (p<0.001); both parameters were negatively correlated with electrical conductivity. Microbial biomass carbon and soil respiration were highest in the rhizosphere of Stipa tenacissima (98% and 60%, respectively, of increase on soil control values) and Rosmarinus officinalis (94% and 51%, respectively, of increase on soil control values). These microbiological parameters were correlated with the percentage of stable aggregates (p<0.01). Enzyme activities were affected by the rhizosphere, their values depending on the shrub species.  相似文献   

20.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号