首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
中国亚热带红壤团聚体稳定性与土壤化学性质的关系   总被引:16,自引:1,他引:16  
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and Al oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates, especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm. In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

2.
溅蚀过程中红壤团聚体周转路径的定量表征   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究土壤团聚体的形成和破碎过程对于降雨侵蚀的响应机制,对降雨打击作用下不同粒径红壤团聚体在溅蚀过程中的周转路径进行了探讨。该研究基于稀土元素示踪法,对各粒径团聚体分别进行了标记,电感耦合等离子体质谱测定,实现全土样团聚体的周转路径追踪;然后通过室内模拟降雨试验,在90和30 mm/h降雨溅蚀条件下,对不同粒径大小团聚体(2~5、0.25~<2、0.053~<0.25、<0.053 mm)随降雨历时的周转变化规律进行了定量化研究。结果表明:稀土元素标记得到的标记团聚体效果较好且在湿筛过程中回收率达到90%以上,吸附稳定;不同降雨强度下,土壤团聚体的周转过程呈现出向破碎方向转化的趋势;90 mm/h降雨下团聚体更快发生破碎并到达稳定状态,其累积破碎率在降雨40 min后基本不发生改变,而30 mm/h下土壤团聚体会随降雨动能的累积逐步发生破碎;结合相关性分析可以发现小团聚体的变化对于整个溅蚀过程的累积破碎率和累积团聚率均表现出显著相关(P<0.01),>0.25 mm团聚体与其他粒级团聚体间的周转不显著相关(P>0.05),但<0.25 mm团聚体可能通过逐级团聚影响到其他粒级团聚体。不同团聚体在溅蚀过程中的双向转化过程,研究结果为侵蚀过程中土壤结构的动态变化模型提供理论参考。  相似文献   

3.
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and A1 oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates,especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm.In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

4.
[目的]研究降雨驱动作用下土壤团聚体受雨滴打击发生破碎和形成的过程,丰富土壤侵蚀研究机理。[方法]基于稀土元素示踪法,对各粒径土壤团聚体同时进行标记。在90 mm/h降雨溅蚀条件下,通过各粒径土壤团聚体(2~5 mm, 0.25~2 mm, 0.053~0.25 mm,<0.053 mm)在不同降雨特征参数(降雨历时、雨滴大小)下的质量变化和稀土元素含量变化,定量分析了团聚体间的周转路径和溅蚀颗粒特征。[结果]降雨驱动作用下,溅蚀量和溅蚀率会随着降雨动能的增加而变大,溅蚀颗粒主要分布于0.25~2 mm粒径范围内;除>2 mm的颗粒为大团聚体直接飞溅产生,<0.25 mm粒级溅蚀颗粒均主要源于大粒级团聚体破碎形成,最高可达到73.83%,其次为该粒级直接被击飞形成,同时会有小粒级颗粒吸附黏结形成;在残余团聚体的动态周转过程中,主要是相邻级别的团聚体间形成和破碎过程占比较高,其中大团聚体破碎产生小团聚体和粉黏粒团聚形成小团聚体分别对原粒级团聚体的破碎和形成方向的贡献率较高,分别达到24.06%~42.15%和36.83%~70.76%,且随着降雨时间的变化,大团聚体首先...  相似文献   

5.
湿润速率和粘粒含量对红壤沟间侵蚀的影响   总被引:4,自引:0,他引:4  
An aggregate stability test and a simulated rainfall test were conducted on four representative Ultisols from southeastern China. The soils selected, with clay contents ranging between 117 and 580 g kg-1 , were derived from shale and Quaternary red clay. The stability of aggregates (2–5 mm in diameter) obtained from the soil samples were determined by the Le Bissonnais method. For determination of infiltration, runoff, and erosion, the soil samples were packed in 30 cm × 60 cm trays, wetted at rates of 2, 10, and 60 mm h-1 , and then exposed to simulated rainfall at 60 mm h-1 for 1 h. The results indicated that both aggregate stability and slaking caused by fast wetting increased with increasing clay content. The effect of wetting rate (WR) on infiltration and seal formation varied with clay contents. In the soil with low clay content (sandy loam), the infiltration rate was affected slightly by WR due to low aggregate stability and slaking. In the soils with medium clay content (silt clay loam and clay), WR affected infiltration significantly due to the high aggregate slaking force. In the soil with high clay content, the effect of WR on infiltration was significant, but not as evident as in the soils with medium clay content, which may be related to high aggregate stability by wetting partially compensating for slaking force. The effect of WR on soil loss was similar to that of runoff, but more pronounced. The findings from this study indicated that the relationship between wetting rate and clay content should be considered when predicting interrill erosion in Ultisols.  相似文献   

6.
《CATENA》2001,44(1):47-67
Soil aggregation in relation to other soil properties was studied along a climatological transect in the Southeast of Spain. Three sites were selected along this transect ranging from semiarid to subhumid climatological conditions. The aggregate size distribution, the macro and microaggregate stability of the superficial soil horizon and their relations with other soil properties were analysed. Large aggregates (>10, 10–5, 5–2 mm) were present in highest proportions in the most arid of the studied areas. These large aggregates were associated with high values of water-stable microaggregates; however, they did not improve soil structure and are related to high bulk densities and low water retention. Aggregates 1–0.105 mm were positively correlated to medium, fine, very fine sand and silt fractions and to organic matter. Aggregates <0.105 mm were positively correlated to organic matter and clay content. Small aggregate sizes (1–0.105 and <0.105 mm) had a positive influence on soil water retention and they seem a good indicator of soil degradation.Water stability of microaggregates showed a positive correlation with clay content while the stability of the macroaggregates depended on the organic matter content when the organic matter content was greater than 5 or 6%. Below that threshold the carbonate content was strongly correlated with aggregate stability. A general conceptual scheme of associations between aggregate size distribution, water-stable microaggregation and textural characteristics for the area was developed.The land use history affecting soil overlaps the pattern of climatological situations and has to be taken into account. Aggregate size distribution and stability can be used as indicator of soil degradation, but not as a unique parameter.  相似文献   

7.
The influence of clay content and silt–clay fabric on aggregate stability was investigated. Two silt—clay fabrics were produced in the laboratory by mixing silt particles with a clay phase: (i) a loose packing of the silt particles with clay aggregates, and (ii) a close packing of the silt particles with the dispersed clay phase, the latter coating and bridging the silt particles. Porosity and pore size distribution were measured, and the silt—clay fabric was described using scanning electron microscopy. The aggregate stability was measured under three treatments corresponding to different wetting conditions and energy levels: fast wetting, mechanical breakdown and slow wetting. Our results show that aggregate stability is related to both clay content and silt—clay fabric. Comparison of fragment size distributions and their mean weight diameter amongst the three treatments enabled identification of mechanisms responsible for the variation of aggregate breakdown. The compression of trapped air was the predominant breakdown mechanism for both fast and slow wetting and was related mainly to porosity characteristics. For the mechanical breakdown, the degree of disintegration depended on the cohesion of the silt–clay fabric, which is related to the continuity of the solid phase.  相似文献   

8.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

9.
Soil microaggregates contain particles of different sizes, which may affect their potential to store organic carbon (OC). A variety of methods can be used to isolate microaggregates from the larger soil structures, among which wet sieving approaches are widely employed. We developed a novel dry crushing method that isolates microaggregates along failure planes due to mechanical stresses rather than hydraulic pressures and compared the mechanical stability, OC contents and microbial community composition between dry-crushed and wet-sieved samples with contrasting clay contents. Dry-crushed samples exhibited a higher stability and bacterial diversity compared to wet-sieved samples. As a result, the dry-crushed microaggregates had different size distributions when analysed dry and after wetting. In the dry state, dry-crushed microaggregates were larger and contained more sand-sized primary particles within the aggregate structures. The wetting of dry-crushed aggregates caused a disintegration of larger microaggregates and sand-sized primary particles into smaller microaggregates that contained finer particles. In the soils with lower clay contents, the diameter of dry-crushed microaggregates was 40 μm larger due to more sand-sized primary particles remaining within the aggregates. Depending on how much volume in microaggregates is occupied by large primary particles, the OC concentration increased in the soil with higher clay content. Wet-sieved size fractions also showed a similar pattern of OC distribution, whereas more primary particles were observed outside of aggregates. Wet sieving approaches disperse the soil into OC-rich aggregates and might be preferable if OC dynamics are investigated. Differences in bacterial community composition in dependence on clay content were more pronounced in dry-crushed microaggregates. If intact aggregate architectures are of interest for the isolation of soil structural units, the presented dry crushing method might provide an advantageous alternative that also better preserves bacterial diversity.  相似文献   

10.
Abstract

Chemical and physical characteristics of soil aggregates from Clarion loam (fine‐loamy, mixed, mesic Typical Hapludoll) and Edina silt loam (fine, montmorillonitic, mesic Typic Argialboll) soil were evaluated to compare two alternate farming practices. Aggregate size distribution was measured for the 0‐to‐3 mm and 0‐to‐76 mm fractions collected from within existing ridges to a soil depth of 0.15 m prior to planting corn (Zea mays L.), after the first cultivation, at anthesis, and after harvest in 1990. Selected physical and chemical properties were determined for air‐dry aggregates in six size classes (0‐to‐0.5, 0.5‐to‐1.0, 1.0‐to‐2.0, 2.0‐to‐3.0, 3.0‐to‐4.0, and 4.0‐to‐5.0 mm) collected from the two Iowa soils prior to planting. Temporal changes in aggregate size distribution were observed for both soils, presumably because of combined rainfall and crop management effects. Physical and chemical properties of soil aggregates showed large differences between locations and within size fractions when compared to the bulk soil. Clarion loam had relatively more consistent exchangeable cation concentrations compared to Edina silt loam, presumably because of sustained incorporation of manure and municipal sludge at that site. Soil aggregation and aggregate properties can be used as indicators to evaluate the effects of alternate fanning practices.  相似文献   

11.
Soil aggregate breakdown is the first key factor that causes soil erosion. At present, research on the mechanisms of soil aggregate breakdown during rainfall is common. However, the research to on quantifying the relative contributions of internal and external forces to aggregate breakdown remains limited. This paper was conducted to analyse the relative contribution of internal and external forces to aggregate disintegration and the factors affecting aggregate stability during rainfall. Soil aggregates with a series of textures were selected as test soil samples; deionized water was employed as the soaking solution and rainfall material in static disintegration experiments and rainfall simulation tests. The effect of internal force (soil hydrophilicity) on aggregate disintegration was analysed by the static disintegration method, and the combined effects of internal force (soil hydrophilicity) and external force (raindrop impact) on soil aggregate breakdown were analysed by rainfall simulation experiments. The results indicated that external force caused more severe soil aggregate breakdown than internal force, and the crushed aggregate was mainly distributed in the range of 2–0.25 mm. With increasing rainfall kinetic energy, the degree of aggregate breakdown increased gradually, and the degree of aggregation of the soil particles decreased gradually. Furthermore, soil aggregates with a high clay content (> 30%) were more stable than medium-clay (20–30%) and low-clay (< 20%) soil aggregates, and the correlation coefficient provided a good representation of the relationship between the clay content and soil aggregate stability index (ASI). Therefore, external force contributed more to soil aggregate breakdown than internal force during rainfall, and clay plays an important role in aggregate stability. The results of this study are of great significance for elaborating the mechanism and factors affecting aggregate breakdown.  相似文献   

12.
Clay minerals have a major role in soil aggregation because of their large specific surface area and surface charges, which stimulate interactions with other mineral particles and organic matter. Soils usually contain a mixture of clay minerals with contrasting surface properties. Although these differences should result in different abilities of clay minerals regarding aggregate formation and stabilization, the role of different clay minerals in aggregation has been seldom evaluated. In this study, we took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals in aggregation. First, grassland and tilled soil samples were separated in water into aggregate‐size classes based on the aggregate hierarchy model. Then, clay mineralogy and organic C in the aggregate‐size classes were analysed. Interstratified minerals containing swelling phases accumulated in aggregated fractions compared with free clay fractions under the two land‐uses. The accumulation increased with decreasing aggregate size from large macroaggregates (> 500 µm) to microaggregates (50–250 µm). Carbon content and carbon‐to‐nitrogen ratio followed the opposite trend. This fully supports the aggregate hierarchy model, which postulates an increasing importance of mineral reactivity in smaller aggregates than in larger aggregates in which the cohesion relies mostly on physical enmeshment by fungal hyphae or small roots. Consequently, differences in the proportion of the different 2:1 clay minerals in soils can influence their structure development. Further research on the links between clay mineralogy and aggregation can improve our understanding of mechanisms of soil resistance to erosion and organic matter stabilization.  相似文献   

13.
The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates( 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction( 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction small macroaggregates fine microaggregates large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM PS ≥ GM. The available P content of the microaggregates( 0.25 mm) was 8-to 10-times higher than that of the macroaggregates( 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proportion of water-stable macroaggregates by consolidating microaggregates into macroaggregates.  相似文献   

14.
Stable macroaggregates (> 200 μm) of cultivated soils are reported in the literature to be richer in organic carbon, and in young organic carbon in particular, than microaggregates (< 200 μm). However, the nature of this additional carbon is not yet known. To determine it, we compared the composition of organic matter in stable macroaggregates with that in unstable ones. Macroaggregates 2–3 mm in diameter were separated from two silty cultivated soils from the Paris basin. They were slaked, and the primary particle composition of the resulting fractions was analysed. We used the natural abundance of 13C to quantify the amount of young carbon, derived from a maize crop, in the various size fractions. The stable macroaggregates were richer in total C and in young C (younger than 6 and 23 years respectively in the two soils studied) than the unstable ones. This young C comprised 50% particulate organic matter, 20% associated with silt and 30% with clay particles. We propose a schematic composition of aggregates in these soils in which stable aggregates are formed by the binding of microaggregates by additional young organic matter, predominantly plant debris. Young organic matter is preferentially incorporated and is responsible for aggregation, though it is eventually redistributed among aggregate classes through the destruction and re‐formation of the aggregates. We have developed a model to simulate this redistribution. The model shows that stable macroaggregates have a life of a few years, but that microaggregates may exist for decades. We suggest that the stabilization and de‐stabilization of macroaggregates in soils is linked to the incorporation and biodegradation of plant debris.  相似文献   

15.
Various methods exist for the isolation of particulate organic matter (POM), one of the soil‐organic‐matter (SOM) fractions reacting most sensitive on land‐use or soil‐management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy‐loam to sandy–clay‐loam texture and thus low macroaggregate stability. Method I used air‐dried aggregates of <2.0 mm size and a low‐energy sonication for aggregate disruption, method II used field‐moist aggregates <6.3 mm and a high‐energy–sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C‐NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free‐ and occluded‐POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C‐NMR spectroscopy. Method II isolates a free‐ and occluded‐POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O‐alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field‐moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High‐energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates.  相似文献   

16.
采用湿筛法测量了岷江流域不同土地利用方式下不同土层(0—10,10—20,20—30 cm)土壤大团聚体(> 2 mm)、中间团聚体(0.25~2 mm)、微团聚体(53 μm~0.25 mm)以及粉+黏团聚体(<53 μm)的质量分数及各粒径团聚体中的有机碳含量,并探讨了各粒径土壤团聚体的有机碳储量。结果表明,土地利用方式对土壤团聚体稳定性及其有机碳具有重要影响;土壤养分均呈现出一致性规律,大致表现为撂荒地 > 次生林 > 人工林 > 灌草丛 > 坡耕地,土壤全磷差异并不显著(p>0.05);林地的开垦行为会导致大团聚体的破碎化,灌草丛及坡耕地>0.25 mm的大团聚体含量较林地低,土壤结构趋于恶化;而坡耕地闲置为撂荒地后,则会促使粉+黏团聚体向粒径大的微团聚体及中间团聚体转化,使土壤结构趋于改善,在0—30 cm土层内,灌草丛及坡耕地土壤颗粒的MWD(平均质量直径)和GMD(几何平均直径)值均显著低于林地和撂荒地(p<0.05),坡耕地撂荒后,MWD和GMD值均显著升高(p<0.05),表明林地开垦为坡耕地导致土壤团聚体的稳定性降低,而坡耕地弃耕撂荒会增强团聚体的稳定性,提高土壤抵抗外力破坏的能力。不同土地利用方式下各粒径土壤团聚体有机碳含量均随土层深度的增加而降低。在0—30 cm土层深度内,不同土地利用方式下各粒径土壤团聚体有机碳储量表现为:大团聚体有机碳储量为林地 > 撂荒地 > 灌草丛 > 坡耕地,中间团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地,微团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地;粉+黏团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地。各粒径土壤团聚体内有机碳储量均为林地和撂荒地高于果园和坡耕地,表明将林地开垦为坡耕地后,将导致各团聚体组分内有机碳的损失,而坡耕地撂荒则有助于土壤有机碳的恢复和截存;林地和撂荒地土壤有机碳主要蓄积在中间团聚体内,而坡耕地则主要蓄积在粉+黏团聚体内,表明在土地利用变化过程中,粒径较大的团聚体有机碳不稳定,更容易发生变化。  相似文献   

17.
Purpose

Frequent cultivation and overhead irrigation have led to severe surface crusting, erosion and poor irrigation performance on sandy clay loam soils in the Coal River Valley, Tasmania, Australia. This study was established to identify the key soil properties related to aggregate breakdown determined by different methods, and explore options for reducing soil crusting.

Materials and methods

Soil aggregates were collected from 0 to 5 cm depth from 20 sites managed for packet salad and lettuce production. The stability of air-dried 2.00–4.75 mm aggregates was determined by rainfall simulation, wet sieving and clay dispersion. Soil aggregates were analysed for particle size, mineralogy, soluble and exchangeable cations, pH, EC, labile carbon and total carbon. The association between aggregate stability and the measured soil properties was explored using Spearman correlation, linear regression and regression tree analysis.

Result and discussion

Aggregate stability determined by rainfall simulation was closely associated with soil properties that promote aggregation, including effective cation exchangeable capacity (ECEC) and the proportion of polyvalent cations (Ca2+, Al3+). In contrast, aggregate stability determined by wet sieving was associated with soil properties that promote disaggregation, including quartz and sand content, and to lesser extent, the proportion of monovalent cations (especially K+). Clay dispersion was closely associated with pH, quartz content, soil texture and the sodium adsorption ratio. Soil carbon appeared to have only moderate influence on aggregate stability, but not clay dispersion, while labile carbon was not significantly related to any measure of aggregate stability or clay dispersion. Similarly, the proportion of Na+ ions was not related to either measure of aggregate stability and was only moderately related to clay dispersion.

Conclusions

Options for improving aggregate stability appear limited as aggregate stability was strongly related to the content of inherent soil properties such as sand/quartz and smectite contents. However, high correlation between exchangeable Ca2+ and aggregate stability determined by rainfall simulation indicates that soil crusting may be reduced through application of products that rich in Ca2+ such as gypsum.

  相似文献   

18.
Aggregate stability is an important physical indicator of soil quality, and so methods are required to measure it rapidly and cost‐effectively so that sufficient data can be collected to detect change with adequate statistical power. The standard methods to measure water‐stable aggregates (WSA) in soil involve sieving, but these have limitations that could be overcome if the aggregates were measured with a laser granulometer (LG) instrument. We present a novel method in which a LG is used to make two measurements of the continuous size distribution (<2000 µm) of a sample of aggregates. The first measurement is made on the WSA after these have been added to circulating water (initial air‐dried aggregate size range 1000–2000 µm). The second measurement is made on the disaggregated material (DM) after the circulating aggregates have been disrupted with ultrasound (sonication). We then compute the difference between the mean weight diameters (MWD) of these two size distributions; we refer to this value as the disaggregation reduction (DR; µm). Soils with more stable aggregates, which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation, have larger values of DR. We applied this method to six and ten sub‐samples, respectively, of soil aggregates (each ca. 0.3 g) from bulk soil material from two contrasting soil types from England, both under conventional tillage (CT). The mean DR values were, respectively, 178 and 30 µm, with coefficients of variation of 12.1 and 19% suggesting the DR value is reproducible for the small mass of soil used. We attribute the larger DR values to the greater abundance of micaceous clay minerals in one of the soils. The DR values computed for each Blackwater Drain (BD) sample after removal of organic matter (with hydrogen peroxide) were comparable to those subject to sonication suggesting that most of the aggregate structure is removed by sonication. We used aggregates (1000–2000 µm) from soil samples collected at 30 locations under CT (median soil organic carbon (SOC) = 1.4%) across two types of parent material in the Blackwater drain sub‐catchments of the Wensum catchment (Norfolk, UK). These soils had no coarse WSA, so we rescaled the size distributions to estimate DR for particle diameters <500 µm. Dithionite‐extractable iron concentration, plus a minor contribution from parent material class, accounted for 64% of the variation in rescaled DR highlighting the importance of crystalline iron oxyhydroxides for aggregate stability in this region where long‐term arable production has reduced top‐soil SOC concentrations. We discuss how this technique could be developed to monitor aggregate stability as a soil physical indicator.  相似文献   

19.
土粒表面电场对土壤团聚体破碎及溅蚀的影响   总被引:1,自引:1,他引:0  
团聚体是土壤结构的基本单元,其稳定性是评估土壤抗侵蚀能力的重要指标。土壤团聚体破碎是降雨溅蚀发生的关键一步。土粒表面电场对团聚体稳定性具有重要影响,必然也会深刻影响降雨溅蚀过程。该文以黄土母质发育的黄绵土和塿土为研究对象,采用不同浓度的电解质溶液定量调控土粒表面电场,研究不同电场强度对团聚体破碎及溅蚀的影响。结果发现:1)随电解质浓度的降低,土粒表面电位升高,表面电场增大,黄绵土和塿土团聚体平均重量直径减小,团聚体稳定性降低,降雨溅蚀量增大。2)电解质浓度小于10-2 mol/L,黄绵土和塿土表面电位绝对值分别高于202.0和231.6 mV,此时团聚体稳定性和溅蚀量变化不明显,表明表面电位202.0和231.6 mV分别是影响黄绵土和塿土团聚体稳定性及溅蚀的关键电位。3)随着土粒表面电场的减弱,团聚体破碎后释放的<0.15 mm微团聚体含量减小,>0.25 mm大团聚体含量增加,团聚体倾向于破碎为更大粒级的团聚体。4)电场作用下团聚体的破碎特征对降雨溅蚀具有重要的影响,溅蚀量与团聚体破碎释放的<0.15 mm微团聚体含量呈显著正相关,与>0.25 mm大团聚体含量呈显著负相关。上述结果表明,当降雨进入土壤后,对于干燥的土壤而言,土壤溶液电解质浓度被迅速稀释,土粒表面产生强大的电场,该电场通过影响团聚体破碎程度进而影响降雨溅蚀。该研究有助于加深对降雨溅蚀的科学认识,同时也为土壤团聚体稳定性及降雨溅蚀的人为调控提供了一定的理论依据。  相似文献   

20.
为研究灌溉耕作影响下土壤团聚体及有机碳的特征情况,以宁夏引黄灌区为研究对象,选取对照土壤与耕作土壤,通过干、湿筛结合的方法,得到大团聚体(2mm)、中间团聚体(2~0.25mm)、微团聚体(0.25~0.053mm)和粉+黏团聚体(0.053mm),并测定团聚体有机碳含量,分析团聚体有机碳与总有机碳之间的关系。结果表明,灌溉耕作对团聚体分布具有极显著影响(P0.01),其中大团聚体和中间团聚体质量分数上升,微团聚体和粉+黏团聚体质量分数下降,灌溉土壤团聚体分布趋势为微团聚体粉+黏团聚体中间团聚体大团聚体。经灌溉耕作后土壤团聚体稳定性大于对照土壤,不同类型的灌溉土壤稳定性基本一致,对照土壤间差异明显。除0.053mm外,团聚体有机碳分布在经过灌溉耕作后有显著性差异(P0.05),团聚体有机碳分布随粒级大小基本呈"V"形分布。团聚体有机碳含量均表现出灌溉土壤高于对照土壤,其中灌溉土壤中灌淤土和潮土团聚体有机碳总量较高。未受人为灌溉耕作影响的自然土壤团聚体有机碳与总有机碳间具有显著的正相关性,土壤总有机碳增加主要依赖0.053mm团聚体有机碳增加。引黄灌溉耕作有利于增加大粒级团聚体的比例,提升团聚体稳定,显著增加有机碳含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号