首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

2.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

3.

Purpose

Heavy metal fractionation varies according to land uses. To understand the behavior of heavy metals in wetland soils under long-term agricultural cultivation, we examined the distribution, source, and associated environmental risk of heavy metals in different types of wetland soils.

Materials and methods

Soils were collected in cultivated lands, artificial ditches, and riparian zones from a reclaimed wetland in the Sanjiang Plain, Northeast China. They were analyzed for total concentrations and chemical fractions of Pb, Cd, Cu, Zn, Cr, and Ni, as well as pH, soil organic matter, total phosphorus, and particle size distribution.

Results and discussion

Heavy metal concentrations were significantly lower in cultivated wetland than in ditch and riparian wetlands. Riparian wetland was found to exhibit the highest metal concentrations. When compared with other two wetland types, the cultivated wetland showed much higher partitioning levels of heavy metals in the acid-soluble fraction and lower partitioning levels in the oxidizable fraction. Although Cr, Cu, and Ni in ditch and riparian wetlands were identified as the metal pollutants of primary concern, they had a low or no risk of further dispersion to other environmental components. Weathering of parent materials was the main source of Cr and Cu, Pb, Cd, and Zn originated mainly from agricultural practices, and Ni emanated from a mixture of sources.

Conclusions

Long-term agricultural cultivation can lead to significant heavy metal loss in cultivated wetland but enrich heavy metal concentrations in ditch and riparian wetlands. Periodic ditch dredging is considered an effective measure for decreasing heavy metal input into the fluvial system and thereby reducing the dispersion to the regional water environment.  相似文献   

4.

Purpose

The Yellow River Delta, an active land-ocean interaction area, will develop into a large eco-economic region in East China during the coming decade. It is necessary to assess the geochemical features of heavy metals in the soils. The objectives of this research were to evaluate the concentrations and distribution of heavy metals (Cr, Ni, Cu, Zn, Pb, and Cd) in soil profiles of the area and to identify their sources.

Materials and methods

Horizon samples were collected based on pedogenic features from bottom to top in each profile to a depth of 120 cm and a total of 92 samples were collected. The sampling sites were grouped into four lines from inland to coastal area with three land use types (cotton field, cereal field, and wetland). The concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were measured by inductively coupled plasma-mass spectrometry. Iron oxide fractions in the soil were extracted by oxalate-oxalic acid and dithionite-citrate-bicarbonate. X-ray diffraction (XRD) was used to determine the mineral composition of the soils. Multivariate statistical analysis and historical data were employed to identify the possible sources of these heavy metals.

Results and discussion

The mean concentrations of heavy metals were elevated along the Yellow River region and in the southern part of the delta; however, they were generally lower than the Chinese guideline values. As for the depth distribution of heavy metals in soil profiles, the maximum values of Cr, Ni, Cu, Zn, and Cd in middle horizon of cotton field were almost twice than those in surface horizon. The iron oxides and XRD analysis indicated that the trace elements accumulation appeared to be related with the contents of crystalline iron oxide and layer silicates. Historical data from suspended sediments of the Yellow River and principal component analysis (PCA) implied that most of the metals (Cr, Ni, Cu, and Zn) were sourced from natural alluviation and sedimentation.

Conclusions

The Yellow River Delta soils were slightly polluted by heavy metals the Yellow River Delta. The special pedogenic horizon characterized by higher iron oxides and layered silicates minerals in the middle and lower part of the soil profile was found with heavy metals enrichment, which required to be studied further. Suspended sediments transported by the Yellow River were suggested to be one of the major sources for the heavy metals accumulation in the basal soils of this region.  相似文献   

5.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

6.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

7.
Data are presented for 32 elements (Li, Be, B, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ge, As, Rb, Sr, Y, Zr, Mo, Ag, Cd, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Hf, Tl, Pb, Bi) in organic-rich surface soils in Norway, based on samples from 464 sites. By considering geographical distributions based on isopleths, results from factor analysis, and ANOVA of median values from 12 different geographical regions, the contributions from natural and anthropogenic sources are estimated for each element. Long-range atmospheric transport of pollutants from areas out of Norway is a dominant source for Cd, Sb, Pb, and Bi and also a strongly contributing factor for Zn, As, Mo, and Tl. Also V, Ni, Cu, and Ge are somewhat affected, but other factors dominate for these elements. Local point sources of pollution provide significant contributions to soil concentrations of Ni, Cu, Zn, As, Mo, and Cd. The local bedrock is the overriding source of Li, Be, Ti, V, Cr, Mn, Rb, Zr, Cs, Ba, REE, Hf, and probably of Ge and Ag. Surface enrichment by root uptake in plants and return to the soil surface by decaying plant material is particularly evident for Mn, Zn, Rb, Cs, and Ba. These elements show no clear difference between south and north in the country, indicating that their plant uptake does not depend on latitude. In the case of B and Sr, atmospheric deposition of marine aerosols is an important source. Rb and Ag, and to a less extent Mn, Ga, and Ba, appear to be depleted in soils near the coast presumably due to cation exchange with airborne marine cations.  相似文献   

8.
This paper has investigated the ratios of closely related elements such as Mn, Cr, V, Ni, Co, Cu, Pb, Cd, Ba, Sr, La and Ce in the major soils of China, and the factors affecting them, and explored their use as indicators in soil formation, material transport and environmental pollution. Results show that the effect of soil-forming processes on the ratios of closely related elements varied with different elements, and became greater in the sequence of Ce/La <V/Cr=Ni/Co<Zn/Cu=Zn/Pb<Zn/Cd <Mn/Cr <Ba/Sr. The magnitude of the variation in the ratios of closely related elements depended on the chemical properties of the elements themselves, on the one hand, and the parent material and climatic conditions on the other.  相似文献   

9.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

10.

Purpose

Heavy metal content in soils could be a consequence of geogenic and different anthropogenic sources. In ancient times, soils in the Mediterranean region were affected by agriculture and viticulture, whereas more recently, industry and traffic might contribute more to their pollution. The aim of the study is to determine the extent of multisource heavy metal pollution in soils within the Koper area.

Materials and methods

Along the northern Adriatic Sea coast, around the port city of Koper/Capodistria, 24 topsoil samples were collected; sets of six samples representing four possible pollution sources: intensive agriculture, viticulture, port activities and industry. The parent material of the soil is mainly derived from the Eocene flysch weathered marls and calcarenites and the soil types are eutric. The chemical composition of the samples was determined by ICP-ES for oxides and several minor elements and by ICP-MS for heavy metals. The mineral composition of the selected samples was checked using X-ray powder diffraction. Different statistical analyses were performed on the normally distributed data.

Results and discussion

The mean concentrations of all samples are: Cr 215 mg kg?1, Ni 81 mg kg?1, Zn 67 mg kg?1, Cu 44 mg kg?1 and Pb and Co 18 mg kg?1. The ANOVA showed significant differences only in CaO, C/TOT, P2O5, Co and Pb between those locations within reach of the different contamination sources. The observed average values of heavy metals are well below Slovenia’s Directive limit for Cu, Pb and Zn, close to but not above it for Co and above the action value for Cr and Ni. According to Igeo, soils from all the sampling locations are uncontaminated with Co, Ni and Pb, and uncontaminated to moderately contaminated with Cu and Zn at one port location, and with Cr at all locations.

Conclusions

The very high Cr and Ni levels could still be geogenic because soils developed on Eocene flysch rocks are enriched in both metals. Cr and Ni are not correlated because of their different levels of sorption and retention in carbonate soils. Cr was retained and concentrated in the sand fraction but Ni has been mobilised in solution. The only serious threat to the environment seems to be an illegal waste dumping area near the port.  相似文献   

11.
沉积物重金属污染是水环境污染评价的重要内容,重金属含量水平常被作为水环境质量的重要指标之一。为了掌握华北平原的府河和白洋淀中沉积物重金属的污染水平,研究了19个沉积物样品和3个土壤样品中7种重金属的污染特征,利用地积累指数法、潜在生态危害指数法及生物效应浓度法评估了重金属的环境风险,并初步分析了污染来源。结果表明,府河和白洋淀沉积物受多种重金属复合污染,其中Zn、Pb、Cu和Cd污染较为严重,府河沉积物的潜在生态环境危害强于白洋淀。相关分析显示府河和白洋淀重金属污染具有相似污染源,保定市工业废水、生活污水及府河沿岸金属冶炼企业很可能是白洋淀地区重金属的主要来源。从城市环境管理、生态环境修复、宣传教育等方面提出白洋淀区域重金属污染控制对策与建议,为白洋淀区域生态环境保护提供科技支撑。  相似文献   

12.
【目的】高校校园地表灰尘重金属污染关系到师生健康,探究其地表灰尘重金属环境风险,可为高校校园管理提供数据支持。【方法】采集开封市某高校校园内外地表灰尘52个样品,测定样品中重金属镉(Cd)、铬(Cr)、铜(Cu)、镍(Ni)、铅(Pb)和锌(Zn)的含量,使用地积累指数法和潜在生态风险指数法分析重金属的污染程度和生态风险。【结果】高校地表灰尘重金属Cd、Cr、Cu、Ni、Pb和Zn平均含量分别为1.05、88.36、47.04、29.76、68.72和328.87 mg kg-1,其中Cd和Zn含量分别为当地灰尘背景值的3.49倍和4.26倍。地积累指数分析表明,地表灰尘重金属污染指数平均值由高到低依次为Zn> Cd> Pb> Cu> Cr> Ni,其中Zn与Cd处于偏中度污染,Pb,Cu和Cr处于轻度污染,Ni处于无污染状态。潜在生态风险评价表明,高校地表灰尘中6种重金属综合潜在生态风险指数为144.53,属于“轻微”生态风险等级,其中Cd是该高校地表灰尘中最主要的生态风险影响因子。正定矩阵因子分析法(PMF)表明,Cr和Ni主要来...  相似文献   

13.
In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological GOST (State Norms and Standards) 17.4.1.02-8, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher. The new sequence also differs from that of the metal hazard in soils according to the Russian standard on the maximal permissible concentration of mobile metal forms (MPCmob): Cu > Ni > Co > Cr > Zn. Neither an MPCmob nor an APCmob has been adopted for strongly hazardous thallium, selenium, and vanadium in Russia. The content of heavy metals in contaminated soils is very unevenly studied: 11 of them, i.e., Cu, Zn, Pb, Ni, Cd, Cr, As, Mn, Co, Hg, and Se, are better known, while the rest, much worse, although there are dangerous elements (Ba, V, Tl) among them.  相似文献   

14.
新疆奎屯垦区土壤重金属风险评价   总被引:9,自引:0,他引:9  
采用网格法采样,对新疆奎屯垦区3个团场土壤中As、Pb、Cu、Cd、Cr和Ni含量进行了测定,系统分析了该地区土壤重金属的含量水平、潜在生态风险程度、主要污染因子和污染来源。结果表明:奎屯垦区土壤重金属As、Pb、Cd、Cu、Cr、Ni的平均值分别为20.21 mg kg-1、35.91 mg kg-1、0.40 mg kg-1、27.18 mg kg-1、77.02 mg kg-1、39.31 mg kg-1,均没有超过国家土壤环境质量二级标准,但As、Cd有个别样点超标。各元素平均含量值均超过新疆土壤背景值,其中Cd、As、Pb最为显著,呈现出累积趋势。各重金属潜在生态风险由高至低顺序为Cd>As>Pb>Ni>Cu>Cr,其中Cd为主要潜在生态风险因子。进一步相关分析和因子分析结果显示,各元素的来源可分为两类,Cd、Pb和As为一类,来源主要受各种人为活动影响,Cu、Cr、Ni为一类,来源主要与成土母质有关。  相似文献   

15.
为掌握长江干流沿江地区土壤重金属状况,开展土壤表层样品采集和重金属空间分布研究,使用PMF(positive matrix factorization)模型解析土壤重金属来源,并选取地累积和潜在生态风险等方法,评估重金属的污染状况和生态风险。结果表明:1)土壤重金属的积累程度不同,As、Cd和Cu的超标率高,污染明显。Cd和Cu的变异系数高于1.0,分布不匀,受某些污染源的影响显著。2)各重金属含量呈现条带状的空间格局,在多个地区出现高值,土壤环境质量受到人类活动的负面影响。3)土壤重金属积累主要来源于自然、工业排放、交通运输和农业生产,贡献率分别为36.65%、28.48%、20.07%和14.80%。其中Cd与工业活动有关,Pb和Zn来自交通排放,Cr和Ni与自然源密切相关,As和Cu来源于农业生产。4)Cd的污染程度最高,81.88%的点位达到轻度污染。40%以上的点位受到As、Cu、Ni和Pb污染。75%以上点位的Cr和Zn含量较低,污染程度不高。单项生态风险指数的均值从大到小依次为:Cd、As、Ni、Cu、Pb、Zn、Cr。综合生态风险指数均值为63.17,处于轻微风险水平。该研究作为土壤生态调查的核心,可为土壤环境管理和重金属污染修复提供科学依据。  相似文献   

16.
The historical trend of heavy metal pollution recorded in sediment cores from Lake Shinji, western Japan, was investigated to evaluate the contribution of increasing long-range transport of heavy metals from the Asian continent in recent years. The concentrations of Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn and lead isotope ratios were determined for sediment cores collected at two sites in the lake. Among the metals, Cd, Sb, and Zn showed markedly high concentrations since the 1970s. Moreover, a high Pb concentration and less radiogenic lead isotope ratios have been observed since the 1980s in the core from a site close to the mouth of a major river. Air masses from the Asian continent, including China, Russia, and South Korea, have less radiogenic lead isotope ratios than those from Japan. This suggests that the recent increase in Pb concentration in the sediment core is primarily due to the long-range transport of heavy metals from the Asian continent, followed by their deposition in the catchment area of the river. The concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of the sediment around 2000 were calculated on the basis of the metal concentrations in excess of those before 1940. They were then compared with the volume-weighted annual average concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of rain samples collected on the shore of the lake for 1999–2001. The result showed that the ratios of the former to the latter are 1.0 for Cd, 0.69 for Sb, and 0.31 for Zn. Thus, it is likely that the long-range transport of Cd and Sb from the Asian continent also contributes significantly to the recent increase in the concentrations of these metals in the sediment core from Lake Shinji. For Zn, however, the contribution from the Asian continent was evaluated to be small, suggesting the importance of local sources such as effluent discharges.  相似文献   

17.

Purpose

The effect of soil heavy metals on crops and human health is an important research topic in some fields (Agriculture, Ecology et al.). In this paper, the objective is to understand the pollution status and spatial variability of soil heavy metals in this study area. These results can help decision-makers apportion possible soil heavy metal sources and formulate pollution control policies, effective soil remediation, and management strategies.

Materials and methods

A total of 212 topsoil samples (0–20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from agricultural areas of Yingbao County in Lixia River Region of Eastern China, by using four indices (pollution index (PI), Nemerow pollution index (PIN), index of geo-accumulation (I geo), E i /risk index (RI)) and cluster analysis to assess pollution level and ecological risk level of soil heavy metals and combining with geostatistics to analyze the concentration change of heavy metals in soils. GS+ software was used to analyze the spatial variation of soil heavy metals, and the semi-variogram model is the main tool to calculate the spatial variability and provide the input parameters for the spatial interpolation of kriging. Arcgis software was used to draw the spatial distribution of soil heavy metals.

Results and discussion

The result indicated that the eight heavy metals in soils of this area had moderate variations, with CVs ranging from 23.51 to 64.37 %. Single pollution index and Nemerow pollution index showed that about 2.7 and 1.36 % of soil sampling sites were moderately polluted by Cd and Zn, respectively. The pollution level of soil heavy metals decreased in the order of Cd?>?Zn?>?Pb?>?As?>?Cu?>?Cr?>?Ni?>?Hg. The I geo values of heavy metals in this area decreased in the order of Zn?>?Cd?>?As?>?Pb?>?Cu?>?Cr?>?Hg?>?Ni. According to the E i index, except Cd that was in the moderate ecological risk status, other heavy metals in soils were in the light ecological risk status, and the level of potential ecological risk (RI) of soil sampling sites of the whole area was light.

Conclusions

The results of four indices and the analysis of spatial variation indicated that the contents of Cd and Zn were contributed mainly by anthropogenic activities and located in the south-east of this study area. However, the contents of Hg, As, Cu, Pb, Cr, and Ni in soils were primarily influenced by soil parent materials.
  相似文献   

18.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

19.
水体沉积物是重金属元素的重要载体,其含量高低能反映水环境质量现状。采集滇池内湖滨带沉积物样品,分析了滇池内湖滨带表层沉积物中Pb、Cd、Cu、Zn、Cr、Ni、Fe、Mn 8种重金属元素含量特征,并用Hakanson潜在生态危害指数法评价其生态危害,旨在为合理预防和治理滇池内湖滨带的重金属污染以及内湖滨带生态系统的修复提供基础资料。结果表明,与“全国土壤环境质量标准”对比,表层沉积物中主要是Cd、Cu、Zn超标,重金属污染强度总体上是草海>外海。不同重金属间的相关性分析结果表明,Cu-Cd之间呈极显著相关,说明这两种元素污染源可能相同,几种污染重金属与胶体矿物元素Fe、Mn间的相关性不大,说明在所调查沉积物中,Fe/Mn氧化物或氢氧化物共沉淀或吸附Pb、Cd、Cu、Zn、Cr、Ni元素量较少。由潜在生态风险评价结果可知,滇池内湖滨带表层沉积物已具极强生态危害,各重金属对滇池内湖滨带生态风险影响程度由高到低依次为:Cd〉Cu〉Pb〉Ni〉Zn≈Cr。  相似文献   

20.
湘中下寒武统黑色页岩土壤的地球化学特征   总被引:11,自引:0,他引:11  
以湘中发育于下寒武统黑色页岩之上的土壤为研究对象,选择安化东坪、烟溪,桃江,宁乡等地的典型土壤及相应成土母岩,利用等离子质谱(ICP-MS)、X射线荧光光谱(XRF)等分析技术,对土壤、成土母岩(黑色页岩)的主量元素和微量元素(包括重金属元素、稀土元素等)进行了较系统的分析测定。结果表明,湘中下寒武统黑色页岩土壤风化作用强烈,风化指数CIA均在73以上。强烈的风化使得土壤具有明显贫CaO、Na2O,而富Al2O3、Fe2O3的化学组成特征。土壤因继承成土母岩(黑色页岩)的特征而富集Mo、Cd、Sn、Sb、U、V、Cr、Co、Ni、Cu、Zn、Tl、Pb、Th等多种重金属元素,其综合富集指数(EI值)平均在3以上,最高达17。地质累计指数(Igeo)评价结果显示,土壤重金属的富集已达到污染程度,土壤存在Cd、Mo、Sb、U、Sn、V、Cu、Tl、Ba等重金属的污染,并以Cd、Mo、Sb等重金属污染最强,达中度至极强污染程度。重金属与主量元素的相关性分析显示,土壤中的重金属主要赋存于黏土矿物和铁氧化物(针铁矿)等矿物相中,其中Ba、Sn、Th、Cu、Sc等主要赋存黏土矿物中;Zn、Ni、Mn、Co、Cd、Tl、Pb等则主要赋存于铁氧化物矿物(针铁矿)中;而Cr、V、Mo、Sb、U等则不受黏土矿物和铁氧化物矿物的控制。此外,不同地区土壤的Zr/Hf、Ta/Nb、Nd/Sm等元素比值相对稳定,依次为36.20、0.085、5.30(n=73),并与相应的成土母岩(黑色页岩)相应值基本一致。土壤与成土母岩具有相同的稀土配分型式,且成土过程中稀土元素不发生明显的分异。微量元素比值和稀土元素特征指示土壤中的重金属来自成土母岩(黑色页岩)本身,为自然污染源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号