首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

2.
Fermentation performance of eight waxy, seven nonwaxy soft, and 15 nonwaxy hard wheat cultivars was compared in a laboratory dry‐grind procedure. With nitrogen supplements in the mash, the range of ethanol yields was 368–447 L/ton. Nonwaxy soft wheat had an average ethanol yield of 433 L/ton, higher than nonwaxy hard and waxy wheat. Conversion efficiencies were 91.3–96.2%. Despite having higher levels of free sugars in grain, waxy wheat had higher conversion efficiency than nonwaxy wheat. Although there was huge variation in the protein content between nonwaxy hard and soft wheat, no difference in conversion efficiency was observed. Waxy cultivars had extremely low peak viscosity during liquefaction. Novel mashing properties of waxy cultivars were related to unique pasting properties of starch granules. With nitrogen supplementation, waxy wheat had a faster fermentation rate than nonwaxy wheat. Fermentation rates for waxy cultivars without nitrogen supplementation and nonwaxy cultivars with nitrogen supplementation were comparable. Ethanol yield was highly related to both total starch and protein content, but total starch was a better predictor of ethanol yield. There were strong negative relationships between total starch content of grain and both yield and protein content of distillers dried grains with solubles (DDGS).  相似文献   

3.
籼、粳超级稻氮素吸收利用与转运差异研究   总被引:4,自引:1,他引:3  
【目的】目前我国选育和认定的超级稻品种很多,但如何发挥其高产潜力至关重要。氮素是影响水稻生长发育、 产量和品质形成的最活跃因素之一,因此,深入分析籼、 粳超级稻氮素吸收、 利用与转运特征及其与产量形成的关系,从氮素营养层面上阐明超级粳稻高产形成机理,以期为超级稻品种的合理利用以及增产潜力的挖掘提供参考。【方法】2011~2012年在江苏苏中地区,以主体且具有代表性的5个超级杂交籼稻组合和5个常规粳型超级稻品种为试验材料,对稻-麦两熟制条件下籼、 粳超级稻主要生育期植株含氮率和氮素积累量、 氮素阶段吸收速率和阶段吸收量、 氮素利用效率,以及抽穗至成熟期叶、 茎、 鞘氮素转运量、 表观转运率和转运贡献率等进行了系统的比较研究。【结果】1)粳稻平均实收产量、 氮素吸收总量和百公斤籽粒吸氮量分别达10.89 t/hm2、 224.50 kg/hm2和2.79 kg,分别较籼稻高13.21%、 32.74%和17.45%,差异极显著。2)移栽有效分蘖临界叶龄期、 拔节抽穗期和抽穗成熟期, 粳稻氮素积累量显著或极显著高于籼稻,而有效分蘖临界叶龄期拔节期粳稻极显著低于籼稻。氮素阶段吸收速率表现的趋势与氮素阶段吸收量一致。3)抽穗期和成熟期粳稻植株各器官以及整个生育期整株的含氮率均显著或极显著高于籼稻。4)粳稻氮素吸收利用率和农学利用率略高于籼稻,但氮素生理利用率、 籽粒生产效率、 干物质生产效率和氮肥偏生产力,除氮素生理利用率外,均显著或极显著低于籼稻。5)成熟期,粳稻叶、 茎、 鞘含氮量所占比例均极显著地高于籼稻,但穗中含氮量所占比例极显著低于籼稻,因此,籼稻氮素收获指数极显著高于粳稻。6)抽穗成熟期,粳稻叶、 茎、 鞘氮素转运量、 表观转运率和转运贡献率均小于籼稻,除鞘的氮素转运贡献率外其他指标均达显著或极显著水平。7)籼稻籽粒氮主要依靠抽穗前源器官中贮积的氮素的输出与转运,粳稻主要依靠生育中后期(拔节成熟期)氮素的高速吸收。【结论】在稳定生育前期(移栽拔节期)氮素吸收的基础上,大幅提高生育中期和后期(拔节成熟期)氮素吸收速率和氮素积累量,是稳定形成较高的氮素吸收总量及粳稻高产形成的关键。  相似文献   

4.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

5.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

6.
铝毒和磷缺乏是酸性土壤上作物生产的主要限制因子。本研究中我们探究了5个粳稻和5个籼稻品种的磷利用效率和耐铝性之间的相互关系。结果表明,粳稻品种的耐铝性显著高于籼稻品种。对于耐铝性强的水稻品种,施加磷肥后地上部生物量显著增加,而铝敏感的品种对磷肥响应较小,这可能是由于其耐铝性差而酸性土壤中的铝毒导致根系结构和功能受损,从而影响养分的吸收和利用。不同水稻品种的耐铝性和磷吸收效率呈正比而与磷利用效率呈反比,且粳稻的地上部磷浓度及磷吸收效率高于籼稻,但磷利用效率则低于籼稻。这些结果对于酸性土壤中筛选耐铝和磷高效利用的水稻品种具有重要意义。  相似文献   

7.
8.
A waxy spring wheat (Triticum aestivum L.) genotype was fractionated into flour and starch by roller and wet‐milling, respectively. The resultant flour and starch were evaluated for end‐use properties and compared with their counterparts from hard and soft wheats and with commercial waxy and nonwaxy corn (Zea mays L.) starches. The waxy wheat flour had exceptionally high levels of water absorption and peak viscosity compared with hard or soft wheat flour. The flour formed an intermediate‐strength dough that developed rapidly and was relatively susceptible to mixing. Analysis by differential scanning calorimetry and X‐ray diffractometry showed waxy wheat starch had higher gelatinization temperatures, a greater degree of crystallization, and an absence of an amylose‐lipid complex compared with nonwaxy wheat. Waxy wheat and corn starches showed greater refrigeration and freeze‐thaw stabilities than did nonwaxy starches as demonstrated by syneresis tests. They were also similar in pasting properties, but waxy wheat starch required lower temperature and enthalpy to gelatinize. The results show analogies between waxy wheat and waxy corn starches, but waxy wheat flour was distinct from hard or soft wheat flour in pasting and mixing properties.  相似文献   

9.
Starches from nine varieties of rice, including four indica, three japonica, and two waxy cultivars, were used for the investigation of the correlation between retrogradation and water mobility. Retrogradation and water mobility were analyzed by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) and expressed as enthalpy change (ΔH) and differential relaxation rate (ΔR2) for water‐17O. Water contents were measured by DSC and Karl‐Fischer methods. The results indicated that three different profiles, based on amylose content, were observed for the ΔH changes of rice starch cooks during storage. They fit well to the nonlinear regression equations of exponential rise to maximum and exponential growth models. The water content, as measured with DSC, decreased during storage but increased as measured with the Karl‐Fischer method. This discrepancy might be attributed to the different characteristics of water measured by the two methods. The ΔR2 of rice starch cooks showed an increasing trend during storage but was more complicated than the ΔH trend. The nonlinear regression models were also applied to fit the changes of ΔR2 for indica varieties in the initial six days and for waxy varieties up to 24 days. This resembled the ΔH changes.  相似文献   

10.
《Cereal Chemistry》2017,94(4):699-704
The objective of this study was to investigate the starch characteristics of a novel waxy rice cultivar Hitachimochi 36 (H36) with an extremely slow hardening rate of waxy rice cake and the relationships between starch physicochemical properties and texture of waxy rice cake. Starch isolated from H36 showed significantly higher digestibility than that from other waxy rice cultivars, and the starch digestibility highly correlated with the starch crystallinity. The compressive force of the starch gel prepared from H36 was significantly lower than that from other cultivars when stored at 5°C for five days, which reflected the differences in endothermic enthalpies corresponding to retrograded amylopectin. Various textural parameters of cooked waxy rice cake prepared from H36 were also remarkably different from those of cooked waxy rice cake prepared from other waxy rice cultivars. The cooked waxy rice cake prepared from H36 exhibited the lowest compressive force and breaking force by tensile and rupture tests, respectively. The analysis of amylopectin chain length distribution indicated that amylopectin of H36 contained higher proportions of the short chains. The difference in amylopectin chain length distribution and lower crystallinity of starch contributed to the unique textural properties of waxy rice cake prepared from H36.  相似文献   

11.
Manufacture of pasta products is paramount for durum wheat (Triticum turgidum L. var. durum). The recent development of waxy durum wheat containing starch with essentially 100% amylopectin may provide new food processing applications and present opportunities for value‐added crop production. This investigation was conducted to determine differences in some chemical and functional properties of waxy durum starch. Starch was isolated from two waxy endosperm lines and four nonwaxy cultivars of durum wheat. One of the waxy lines (WX‐1) was a full waxy durum wheat whereas the other line (WX‐0) was heterogeneous, producing both waxy and nonwaxy seed. Effects on starch swelling, solubility, pasting, gelatinization, and retrogradation were examined. The full waxy starch had four times more swelling power than the nonwaxy durum starches at 95°C, and was also more soluble at three of the four temperatures used. Starch pasting occurred earlier and peak viscosities were greater for starches from both waxy lines than for the nonwaxy starches, but their slurries were less stable with continued stirring and heating. Greater energy was required to melt gelatinized waxy starch gels, but no differences were found in either refrigerated storage or freeze‐thaw retrogradation, as determined by differential scanning calorimetry. The results of this investigation showed some significant differences in the starch properties of the waxy durum wheat lines compared to the nonwaxy durum wheats.  相似文献   

12.
不同类型水稻种质氮素营养效率的变异分析   总被引:17,自引:2,他引:17  
采用田间试验,在常规氮素管理下,以氮素吸收效率(NAE)、利用效率(NUE)和收获指数(NHI)为衡量指标,分析了国内外607份不同类型水稻种质氮素营养效率的变异状况。结果表明,水稻NAE、NUE和NHI存在显著的基因型差异,以NHI为最大和NAE为最小。不同类型水稻间的NAE、NUE和NHI未达显著差异,但籼型杂交稻NAE、NUE和NHI的变异小于常规籼稻和常规粳稻。相关分析表明,水稻NAE与NUE、NHI呈极显著负相关,NUE与NHI间无显著相关;水稻NUE和NHI与单株产量存在极显著的正相关,NAE与单株产量无显著相关。频数分析可知,常规籼稻NAE、NUE及NHI和籼型杂交稻NUE的种质频数分布呈典型正态曲线,低、高效种质较少,中效种质众多;常规粳稻NAE、NUE和NHI种质的频数分布呈近似正态分布,略偏向低效;籼型杂交稻NAE的种质频数分布离散程度较高和高效种质较多,NHI的种质频数分布呈近似正态分布和略偏低效。籼型杂交稻的NAE、NUE和NHI差异小而分布较集中,常规粳稻最分散,常规籼稻居中。不同类型水稻的氮素营养效率的极差很大,可分为若干组,各组间差异显著。  相似文献   

13.
香稻品种RVA谱多样性研究   总被引:2,自引:1,他引:1  
对来自不同种植区域的593份香稻材料(香糯稻152份,香籼稻342份,香粳稻99份)进行了RVA谱的多样性分析。结果表明,香糯稻以最终粘度的变异系数最大,为42.9,香籼稻和香粳稻以回生值的变异系数最大,分别为71.9和76.1。按遗传多样性指数(Shannon-wiener多样性指数)的分级标准计算,不同种质资源RVA谱特征值的分级情况复杂,除了峰值时间分布相对集中外,其他特征值的分级情况差别较大。RVA谱各特征值的遗传多样性指数均大于1.0,香糯稻峰值粘度和最终粘度的遗传多样性指数高达2.02和2.01,香籼稻和香粳稻均以回生值的遗传指数最高,分别为2.09和1.99。不同香稻种质间的淀粉糊化特性潜在分异明显。  相似文献   

14.
Physicochemistry and structural studies of two types of japonica rice, low amylose Calmochi-101 (CM101) and intermediate amylose M-202 (M202), were conducted to determine similarities and differences between the rices perhaps attributable to amylose content differences. The rheological behavior of the gelation and pasting processes of flours and starches was determined with high accuracy and precision using a controlled stress rheometer. Fat and protein, although minor constituents of milled rice, were shown to have significant effects on the physicochemical and pasting properties of starches and flours. Removal of protein and lipids with aqueous alkaline or detergent solutions caused lower pasting temperatures and higher overall viscosity in both starches, compared with their respective flours. There was less viscosity difference between M202 flour and its starch when isolated by enzymatic hydrolysis of protein. The protease did not reduce internally bound lipids, suggesting that fats help to determine pasting properties of rice flours and their respective starches. Structural integrity differences in individual granules of waxy and nonwaxy rice flours, starches, and whole raw, soaked, and cooked milled grain were revealed by fracture analysis and scanning electron microscopy. Calmochi 101 and M202 did not differ in weight-averaged molar mass (Mw) and root-mean-square radii (Rz) between flours and starches, as determined by high-performance size exclusion chromatography (HPSEC) and multiple-angle laser light scattering (MALLS) (Park, I.; Ibanez, A. M.; Shoemaker, C. F. Starch 2007, 59, 69-77).  相似文献   

15.
硅(Si)可以改善磷(P)的营养,但是其内在机制尚不明确。本研究以4个籼稻和3个粳稻品种为研究对象,通过水培试验探究硅对不同水稻品种磷积累的影响。在营养液中添加硅显著降低了籼稻和粳稻品种的地上部磷含量,但几乎不影响根部磷含量。加硅处理不影响所有供试水稻品种的磷吸收及磷从根系向地上部的转移,但提高了磷的利用效率,增加了植株P/Mn和P/Zn比率。磷转运蛋白(PT)基因表达分析表明,在粳稻品种中只有OsPT6被硅下调,而OsPT6在籼稻品种中没有显著性变化;其他PT基因的表达不受硅的影响。由此,硅对不同水稻品种的磷积累有不同的影响,磷利用率的提高可能归因于较高的P/Mn和P/Zn比率,从而导致植物中较高的有效磷。  相似文献   

16.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

17.
A unique wheat genotype carrying waxy‐type allelic composition at the Wx loci, Gunji‐1, was developed, and its starch properties were evaluated in comparison to parental waxy and wild‐type wheat varieties. Gunji‐1 was null in all three of the Wx genes but exhibited a lower level of Wx proteins than the wild‐type. Starch amylose content and cold water retention capacity were 10.1 and 70.5% for Gunji‐1, 4.2 and 76.6% for waxy, and 27.9 and 65.0% for wild‐type, respectively. No significant differences were observed in microstructure, granule size distribution, and X‐ray diffractograms of the starch granules isolated from Gunji‐1 compared with those of waxy and wild‐type wheat varieties. Starch pasting peak, breakdown, and setback viscosities and peak temperature of Gunji‐1 were intermediate between waxy and wild‐type wheat. In starch gel hardness, Gunji‐1 (1.1 N) was more similar to waxy wheat (0.5 N) than to the wild‐type variety (17.6 N). Swelling power, swelling volume, paste transmittance during storage, and gelatinization enthalpy of Gunji‐1 were lower than those of waxy wheat but greater than those of wild‐type wheat. Retrogradation of starch stored for one week at 4°C expressed with DSC endothermic enthalpy was absent in the waxy wheat variety, whereas Gunji‐1 exhibited both retrogradation of amylopectin and amylose‐lipid complex melting similar to the wild‐type parent, even though enthalpies of Gunji‐1 were much smaller than the wild‐type parent.  相似文献   

18.
Previous investigations have suggested waxy (amylose‐free) wheats (Triticum aestivum L.) possess weak gluten properties and may not be suitable for commercial gluten extraction. This limitation could prevent the use of waxy wheat as a source of unique starch, because gluten is a by‐product of the wheat starch purification process. Fifty waxy wheat lines were used to determine the extent to which gluten protein and other grain quality related traits might vary and, consequently, allow the development of waxy wheat with acceptable gluten properties. Among the waxy lines, significant variation was observed for all measured quality traits with the exception of flour protein concentration. No waxy entries statistically equaled the highest ranking nonwaxy entry for grain volume weight, falling number, flour yield, or mixograph mix time. No waxy lines numerically exceeded or equaled the mean of the nonwaxy controls for falling number, flour yield, or mixograph mix time. For grain and flour protein related variables, however, many waxy lines were identified well within the range of acceptability, relative to the nonwaxy controls used in this study. Approximately 50% of the waxy lines did not differ from the highest ranking nonwaxy cultivar for grain and flour protein concentrations. Forty‐three (86%) of the tested waxy lines were not sig‐nificantly different from the nonwaxy line with the highest mixograph mixing tolerance, 22/50 (44%) of the waxy wheat lines did not differ from the highest ranking nonwaxy line in gluten index scores, and 17/50 (34%) did not differ from the highest ranking nonwaxy line in extracted wet gluten. All waxy experimental lines produced gluten via Glutomatic washing. The quality of the gluten, as measured both by mixograph and gluten index, varied widely among the waxy lines tested. These observations suggest that weak gluten is not a natural consequence of the waxy trait, and waxy cultivars with acceptable gluten properties can be developed.  相似文献   

19.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

20.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号